Big Data in der Praxis

Größe: px
Ab Seite anzeigen:

Download "Big Data in der Praxis"

Transkript

1 Jonas Freiknecht Big Data in der Praxis Lösungen mit Hadoop, HBase und Hive Daten speichern, aufbereiten, visualisieren HANSER

2 Vorwort XI 1 Einleitung 1 2 Big-Data Historische Entstehung Big-Data - ein passender Begriff? Die drei V Das vierte V - Veracity Der Verarbeitungsaufwand ist big Sicht der Industrien auf Big-Data Eingliederung in BI und Data-Mining 15 3 Hadoop Hadoop kurz vorgestellt HDFS - das Hadoop Distributed File System Hadoop 2.x und YARN Hadoop als Single-Node-Cluster aufsetzen Falls etwas nicht funktioniert Map-Reduce Aufsetzen einer Entwicklungsumgebung Implementierung eines Map-Reduce-Jobs Ausführen eines Jobs über Kommandozeile Verarbeitung im Cluster Aufsetzen eines Hadoop-Clusters Starten eines Jobs via Hadoop-API Verketten von Map-Reduce-Jobs Verarbeitung anderer Dateitypen YARN-Anwendungen Logging und Log-Aggregation in YARN Eine einfache YARN-Anwendung 129

3 -vpö. QÜM Vor-und Nachteile der verteilten Verarbeitung Die Hadoop Java-API Ein einfacher HDFS-Explorer Cluster-Monitor Überwachen der Anwendungen im Cluster Gegenüberstellung zur traditionellen Verarbeitung Big-Data aufbereiten Optimieren der Algorithmen zur Datenauswertung Ausdünnung und Gruppierung Ausblick auf Apache Spark Markt der Big-Data-Lösungen Das Hadoop-Ecosystem Ambari Sqoop Flume HBase Hive Pig Zookeeper Mahout Spark Data Analytics und das Reporting NoSQL und HBase Historische Entstehung Das CAP-Theorem Typen von Datenbanken Umstieg von SQL und Dateisystemen auf NoSQL oder HDFS Methoden der Datenmigration HBase Das Datenmodell von HBase Aufbau von HBase Installation als Stand-alone Arbeiten mit der HBase Shell Verteilte Installation auf dem HDFS Laden von Daten HBase Bulk Loading über die Shell Datenextrakt aus einer Datenbank über Sqoop HBase Java-API Der Umstieg von einem RDBMS auf HBase 242

4 6 Data-Warehousing mit Hive Installation von Hive Architektur von Hive Das Command Line Interface (CLI) HiveQL als Abfragesprache Anlegen von Datenbanken Primitive Datentypen Komplexe Datentypen Anlegen von Tabellen Partitionierung von Tabellen Externe und interne Tabellen Löschen und leeren von Tabellen Importieren von Daten Zählen von Zeilen via count Das SELECT-Statement Beschränken von SELECT über DISTINCT SELECT auf partitionierte Tabellen SELECT sortieren mit SORT BY und ORDER BY Partitionieren von Daten durch Bucketing Gruppieren von Daten mittels GROUP BY Subqueries - verschachtelte Abfragen Ergebnismengen vereinigen mit UNION ALL Mathematische Funktionen String-Funktionen Aggregatfunktionen User-Defined Functions HAVING Datenstruktur im HDFS Verändern von Tabellen Erstellen von Views Löschen einer View Verändern einer View Tabellen zusammenführen mit JOINs Hive Security Implementieren eines Authentication-Providers Authentication-Provider für HiveServer Verwenden von PAM zur Benutzerauthentifizierung Hive und JDBC Datenimport mit Sqoop Datenexport mit Sqoop Hive und Impala Unterschied zu Pig Zusammenfassung 319

5 7 Big-Data-Visualisierung Theorie der Datenvisualisierung Diagrammauswahl gemäß Datenstruktur Visualisieren von Big-Data erfordert ein Umdenken Aufmerksamkeit lenken Kontextsensitive Diagramme D-Diagramme Ansätze, um Big-Data zu visualisieren Neue Diagrammarten Werkzeuge zur Datenvisualisierung Entwicklung einer einfachen Visualisierungskomponente Auf dem Weg zu neuem Wissen - aufbereiten, anreichern und empfehlen Eine Big-Data-Table als zentrale Datenstruktur Anreichern von Daten Anlegen einer Wissensdatenbank Passende Zuordnung von Daten Diagrammempfehlungen über Datentypanalyse Diagrammempfehlungen in der BDTable Textanalyse - Verarbeitung unstrukturierter Daten Erkennung von Sprachen Natural Language Processing Klassifizierung Sentiment-Analysis Mustererkennung mit Apache UIMA Zusammenfassung und Ausblick Häufige Fehler Anhang Installation und Verwendung von Sqoop Hadoop für Windows 7 kompilieren 421 Literaturverzeichnis 425 Index 429

Einleitung Big Data... Hadoop...

Einleitung Big Data... Hadoop... 1 Einleitung 1 2 Big Data... 7 2.1 Historische Entstehung... 9 2.2 Big Data - ein passender Begriff?... 10 2.2.1 Die drei V... 11 2.2.2 Weitere V s... 14 2.2.3 Der Verarbeitungsaufwand ist big... 14 2.2.4

Mehr

BIG DATA. in der Praxis. Lösungen mit Hadoop, HBase und Hive Daten speichern, aufbereiten, visualisieren

BIG DATA. in der Praxis. Lösungen mit Hadoop, HBase und Hive Daten speichern, aufbereiten, visualisieren jonas FREIKNECHT BIG DATA in der Praxis Lösungen mit Hadoop, HBase und Hive Daten speichern, aufbereiten, visualisieren Auf DVD: 18 fertige Beispielprojekte plus Videotutorials Freiknecht Big Data in der

Mehr

BIG DATA. in der Praxis. Lösungen mit Hadoop, HBase und Hive Daten speichern, aufbereiten, visualisieren

BIG DATA. in der Praxis. Lösungen mit Hadoop, HBase und Hive Daten speichern, aufbereiten, visualisieren jonas FREIKNECHT BIG DATA in der Praxis Lösungen mit Hadoop, HBase und Hive Daten speichern, aufbereiten, visualisieren Auf DVD: 18 fertige Beispielprojekte plus Videotutorials Inhalt Vorwort................................................................

Mehr

Big Data: Apache Hadoop Grundlagen

Big Data: Apache Hadoop Grundlagen Seminarunterlage Version: 1.07 Version 1.07 vom 5. September 2018 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen

Mehr

Big Data Informationen neu gelebt

Big Data Informationen neu gelebt Seminarunterlage Version: 1.01 Copyright Version 1.01 vom 21. Mai 2015 Dieses Dokument wird durch die veröffentlicht. Copyright. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen

Mehr

Big Data Technologien

Big Data Technologien Big Data Technologien - Ein Überblick - Prof. Dr. Jens Albrecht [email protected] Big Data Landscape 2016 Prof. Dr. Jens Albrecht Big Data 3 Systemarchitektur im Wandel Gestern und heute Strukturierte

Mehr

Hadoop & SQL Oracle BI & DWH Konferenz 2013 19./20. März 2013, Kassel. Carsten Herbe metafinanz Informationssysteme GmbH

Hadoop & SQL Oracle BI & DWH Konferenz 2013 19./20. März 2013, Kassel. Carsten Herbe metafinanz Informationssysteme GmbH Hadoop & SQL Oracle BI & DWH Konferenz 2013 19./20. März 2013, Kassel Carsten Herbe metafinanz Informationssysteme GmbH In unserer Business Line Business Intelligence & Risk gibt es fünf Bereiche: Risk,

Mehr

Beratung. Results, no Excuses. Consulting. Lösungen. Grown from Experience. Ventum Consulting. SQL auf Hadoop Oliver Gehlert. 2014 Ventum Consulting

Beratung. Results, no Excuses. Consulting. Lösungen. Grown from Experience. Ventum Consulting. SQL auf Hadoop Oliver Gehlert. 2014 Ventum Consulting Beratung Results, no Excuses. Consulting Lösungen Grown from Experience. Ventum Consulting SQL auf Hadoop Oliver Gehlert 1 Ventum Consulting Daten und Fakten Results, no excuses Fachwissen Branchenkenntnis

Mehr

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht Big-Data-Technologien - Überblick - Quelle: http://www.ingenieur.de/panorama/fussball-wm-in-brasilien/elektronischer-fussball-smartphone-app-helfen-training Big-Data-Anwendungen im Unternehmen Logistik

Mehr

Die wichtigsten Hadoop-Komponenten für Big Data mit SAS

Die wichtigsten Hadoop-Komponenten für Big Data mit SAS Webinar@Lunchtime Die wichtigsten Hadoop-Komponenten für Big Data mit SAS Herzlich Willkommen bei Webinar@Lunchtime Moderation Anne K. Bogner-Hamleh SAS Institute GmbH Education Consultant Xing-Profil:

Mehr

Big Data in Azure. Ein Beispiel mit HD Insight. Ralf Stemmer

Big Data in Azure. Ein Beispiel mit HD Insight. Ralf Stemmer Big in Azure Ein Beispiel mit HD Insight Ralf Stemmer Agenda owas ist Big? Was ist HD Insight? owelche Probleme kann man damit lösen? odemo Was ist Big? Was ist HD Insight? Datenexplosion - Rasanter Zuwachs

Mehr

Schneller als Hadoop?

Schneller als Hadoop? Schneller als Hadoop? Einführung in Spark Cluster Computing 19.11.2013 Dirk Reinemann 1 Agenda 1. Einführung 2. Motivation 3. Infrastruktur 4. Performance 5. Ausblick 19.11.2013 Dirk Reinemann 2 EINFÜHRUNG

Mehr

Das Leben der Anderen

Das Leben der Anderen Das Leben der Anderen Twitter-Analyse mit Oracle12c, JSON und APEX Carsten Czarski Business Unit Database Oracle Deutschland B.V. & Co KG About: Carsten Czarski 1973 München Verheiratet zwei Kinder ORACLE

Mehr

BIG DATA IM RETAIL-SEKTOR AM BEISPIEL KASSENBONDATEN BUSINESS ANALYTICS DAY

BIG DATA IM RETAIL-SEKTOR AM BEISPIEL KASSENBONDATEN BUSINESS ANALYTICS DAY BIG DATA IM RETAIL-SEKTOR AM BEISPIEL KASSENBONDATEN BUSINESS ANALYTICS DAY 08.03.2017 REWE Systems GmbH Jonas Freiknecht inovex GmbH Bernhard Schäfer AGENDA 1 / Vorstellung REWE Systems GmbH und inovex

Mehr

Auf einen Blick. Abfrage und Bearbeitung. Erstellen einer Datenbank. Komplexe Abfragen. Vorwort... 13

Auf einen Blick. Abfrage und Bearbeitung. Erstellen einer Datenbank. Komplexe Abfragen. Vorwort... 13 Auf einen Blick Vorwort... 13 Teil 1 Vorbereitung Kapitel 1 Einleitung... 17 Kapitel 2 SQL der Standard relationaler Datenbanken... 21 Kapitel 3 Die Beispieldatenbanken... 39 Teil 2 Abfrage und Bearbeitung

Mehr

Inhaltsverzeichnis. Lothar Piepmeyer. Grundkurs Datenbanksysteme. Von den Konzepten bis zur Anwendungsentwicklung ISBN:

Inhaltsverzeichnis. Lothar Piepmeyer. Grundkurs Datenbanksysteme. Von den Konzepten bis zur Anwendungsentwicklung ISBN: Lothar Piepmeyer Grundkurs Datenbanksysteme Von den Konzepten bis zur Anwendungsentwicklung ISBN: 978-3-446-42354-1 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-42354-1

Mehr

Auf einen Blick. Abfrage und Bearbeitung. Erstellen einer Datenbank. Komplexe Abfragen. Vorwort 13

Auf einen Blick. Abfrage und Bearbeitung. Erstellen einer Datenbank. Komplexe Abfragen. Vorwort 13 Auf einen Blick Vorwort 13 Teil 1 Vorbereitung Kapitel 1 Einleitung 17 Kapitel 2 SQL - der Standard relationaler Datenbanken 21 Kapitel 3 Die Beispieldatenbanken 39 Teil 2 Abfrage und Bearbeitung Kapitel

Mehr

Datenbanken Unit 9: OLAP, OLTP und objektrelationale Datenbanken

Datenbanken Unit 9: OLAP, OLTP und objektrelationale Datenbanken Datenbanken Unit 9: OLAP, OLTP und objektrelationale Datenbanken 17. V. 2017 Outline 1 Organisatorisches 2 SQL 3 OLTP, OLAP, SAP, and Data Warehouse OLTP and OLAP SAP 4 Objekt-relationale Datenbanken Beispiel

Mehr

Datenbanken Unit 9: OLAP, OLTP, Data Warehouse Ranking Algorithmen

Datenbanken Unit 9: OLAP, OLTP, Data Warehouse Ranking Algorithmen Datenbanken Unit 9: OLAP, OLTP, Data Warehouse Ranking Algorithmen 28. V. 2018 Outline 1 Organisatorisches 2 OLTP, OLAP, SAP, and Data Warehouse OLTP and OLAP SAP 3 Ranking 4 SQL Organisatorisches Ergebnisse

Mehr

Inhaltsverzeichnis. Vorwort Kapitel 1 Einleitung... 15

Inhaltsverzeichnis. Vorwort Kapitel 1 Einleitung... 15 Vorwort..................................................... 13 Kapitel 1 Einleitung.......................................... 15 Kapitel 2 SQL der Standard relationaler Datenbanken... 19 2.1 Die Geschichte................................

Mehr

Data Mart (Star Schema) Offload nach Hadoop

Data Mart (Star Schema) Offload nach Hadoop Data Mart (Star Schema) Offload nach Hadoop Carsten Herbe Metafinanz-Informationssysteme GmbH München Schlüsselworte Data Mart, Hadoop, HDFS, Hive, Impala, Parquet, Kompression, Snappy, Star Schema, Performance

Mehr

Inhaltsverzeichnis. Vorwort 13. Kapitel 1 Einleitung 15

Inhaltsverzeichnis. Vorwort 13. Kapitel 1 Einleitung 15 Vorwort 13 Kapitel 1 Einleitung 15 Kapitel 2 SQL-der Standard relationaler Datenbanken... 19 2.1 Die Geschichte 19 2.2 Die Bestandteile 20 2.3 Die Verarbeitung einer SQL-Anweisung 22 2.4 Die Struktur von

Mehr

MCSA: SQL 2016 Database Development

MCSA: SQL 2016 Database Development MCSA: SQL 2016 Database Development Querying Data with Transact-SQL & Developing SQL Databases Seminarziel In diesem 6-tägigen Kurs werden die Teilnehmer von Grund auf in die Entwicklung

Mehr

Big Data & Analytics Nationaler Akademietag, Fulda Referent: Meinhard Lingo

Big Data & Analytics Nationaler Akademietag, Fulda Referent: Meinhard Lingo Big Data & Analytics Nationaler Akademietag, Fulda 20.04.2018 Referent: Meinhard Lingo E-Mail: [email protected] Big Data & Analytics Big Data-Anwendungen: Ein Paradigmenwechsel. Kompetenzen? mögliche

Mehr

Hadoop Demo HDFS, Pig & Hive in Action. Oracle DWH Konferenz 2014 Carsten Herbe

Hadoop Demo HDFS, Pig & Hive in Action. Oracle DWH Konferenz 2014 Carsten Herbe Hadoop Demo HDFS, Pig & Hive in Action Oracle DWH Konferenz 2014 Carsten Herbe Wir wollen eine semi-strukturierte Textdatei in Hadoop verarbeiten und so aufbereiten, dass man die Daten relational speichern

Mehr

Designing Business Intelligence Solutions with Microsoft SQL Server MOC 20467

Designing Business Intelligence Solutions with Microsoft SQL Server MOC 20467 Designing Business Intelligence Solutions with Microsoft SQL Server MOC 20467 In diesem 5-tägigen Microsoft-Kurs lernen Sie die Implementierung einer Self-Service Business Intelligence (BI) und Big Data

Mehr

Einführung in Hadoop

Einführung in Hadoop Einführung in Hadoop Inhalt / Lern-Ziele Übersicht: Basis-Architektur von Hadoop Einführung in HDFS Einführung in MapReduce Ausblick: Hadoop Ökosystem Optimierungen Versionen 10.02.2012 Prof. Dr. Christian

Mehr

Hadoop. High Performance Batches in der Cloud. Hadoop. Folie 1 25. Januar 2011

Hadoop. High Performance Batches in der Cloud. Hadoop. Folie 1 25. Januar 2011 High Performance Batches in der Cloud Folie 1 Alles geht in die Cloud Image: Chris Sharp / FreeDigitalPhotos.net Cloud und Batches passen zusammen Batches Cloud Pay-per-Use Nur zeitweise genutzt Hohe Rechenkapazitäten

Mehr

Daniel Warner SQL. Das Praxisbuch. Mit 119 Abbildungen. Franzis

Daniel Warner SQL. Das Praxisbuch. Mit 119 Abbildungen. Franzis Daniel Warner SQL Das Praxisbuch Mit 119 Abbildungen Franzis Inhaltsverzeichnis Teil I - Einleitung 15 1 Einleitung 17 1.1 Zum Aufbau des Buchs 17 1.2 Hinweise zur Buch-CD 18 1.3 Typografische Konventionen

Mehr

Vorwort Einführung in Power Query Erste Abfrage erstellen... 21

Vorwort Einführung in Power Query Erste Abfrage erstellen... 21 Vorwort... 11 1 Einführung in Power Query... 13 1.1 Power Query installieren und aktivieren... 13 1.2 Power Query aktivieren bzw. deaktivieren... 14 Was tun, wenn das Register nicht angezeigt wird... 16

Mehr

PL/SQL vs. Spark Umsteigertipps für's DWH

PL/SQL vs. Spark Umsteigertipps für's DWH PL/SQL vs. Spark Umsteigertipps für's DWH Christopher Thomsen Hamburg Jens Bleiholder Berlin Schlüsselworte Big Data, Spark, PL/SQL, SQL, ETL, Hadoop, DWH Einleitung Mit Hadoop 2.0 öffnete sich die Big

Mehr

ODI und Big Data Möglichkeiten und ein Erfahrungsbericht Dr. Holger Dresing Oracle Deutschland B.V. & Co. KG Hannover

ODI und Big Data Möglichkeiten und ein Erfahrungsbericht Dr. Holger Dresing Oracle Deutschland B.V. & Co. KG Hannover ODI und Big Data Möglichkeiten und ein Erfahrungsbericht Dr. Holger Dresing Oracle Deutschland B.V. & Co. KG Hannover Schlüsselworte Oracle Data Integrator ODI, Big Data, Hadoop, MapReduce,, HDFS, PIG,

Mehr

Bibliografische Informationen digitalisiert durch http://d-nb.info/995021198

Bibliografische Informationen digitalisiert durch http://d-nb.info/995021198 Auf einen Blick 1 Einleitung 15 2 Datenbankentwurf 23 3 Datenbankdefinition 43 4 Datensätze einfügen (INSERT INTO) 95 5 Daten abfragen (SELECT) 99 6 Daten aus mehreren Tabellen abfragen (JOIN) 143 7 Unterabfragen

Mehr

Symbiose hybrider Architekturen im Zeitalter digitaler Transformation. Hannover, 18.03.2015

Symbiose hybrider Architekturen im Zeitalter digitaler Transformation. Hannover, 18.03.2015 Symbiose hybrider Architekturen im Zeitalter digitaler Transformation Hannover, 18.03.2015 Business Application Research Center (BARC) B (Analystengruppe Europas führendes IT-Analysten- und -Beratungshaus

Mehr

Big Data im Retail-Sektor am Beispiel Kassenbondaten

Big Data im Retail-Sektor am Beispiel Kassenbondaten Big Data im Retail-Sektor am Beispiel Kassenbondaten REWE Systems GmbH Jonas Freiknecht inovex GmbH Bernhard Schäfer Business Analytics Day, 08.03.2017 AGENDA 1. Vorstellung REWE Systems GmbH und inovex

Mehr

Inhaltsverzeichnis. Inhalt. 1 Einführung in die Datenbanktechnologie

Inhaltsverzeichnis. Inhalt. 1 Einführung in die Datenbanktechnologie 3 Inhaltsverzeichnis 1 Einführung in die Datenbanktechnologie 1.1 Einleitung... 8 1.1.1 Zielsetzung... 8 1.1.2 Aufbau des Studienbuches... 9 1.1.3 Abgrenzung... 10 1.2 Grundbegriffe... 10 1.3 Datenbanksysteme...

Mehr

Hadoop. Eine Open-Source-Implementierung von MapReduce und BigTable. von Philipp Kemkes

Hadoop. Eine Open-Source-Implementierung von MapReduce und BigTable. von Philipp Kemkes Hadoop Eine Open-Source-Implementierung von MapReduce und BigTable von Philipp Kemkes Hadoop Framework für skalierbare, verteilt arbeitende Software Zur Verarbeitung großer Datenmengen (Terra- bis Petabyte)

Mehr

RavenDB, schnell und skalierbar

RavenDB, schnell und skalierbar RavenDB, schnell und skalierbar Big Data & NoSQL, Aydin Mir Mohammadi bluehands GmbH & Co.mmunication KG [email protected] Immer mehr Mehr Performance Mehr Menge Mehr Verfügbarkeit Skalierung http://www.flickr.com/photos/39901968@n04/4864698533/

Mehr

Inhaltsverzeichnis. Bernd Müller, Harald Wehr. Java Persistence API 2. Hibernate, EclipseLink, OpenJPA und Erweiterungen ISBN:

Inhaltsverzeichnis. Bernd Müller, Harald Wehr. Java Persistence API 2. Hibernate, EclipseLink, OpenJPA und Erweiterungen ISBN: Inhaltsverzeichnis Bernd Müller, Harald Wehr Java Persistence API 2 Hibernate, EclipseLink, OpenJPA und Erweiterungen ISBN: 978-3-446-42693-1 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-42693-1

Mehr

Big Data und Oracle bringen die Logistik in Bewegung

Big Data und Oracle bringen die Logistik in Bewegung OPITZ CONSULTING Deutschland GmbH Dortmund, 07.05.2014 Bild-Quelle: Web-Seite von Pasta ZARA, Big Artikel Data So und entstehen Oracle bringen unsere die Nudeln Logistik in Bewegung http://de.pastazara.com/so-entstehen-unsere-nudeln

Mehr

Erfahrungsbericht: Umstieg von RDBMS auf Big Data-Technologien

Erfahrungsbericht: Umstieg von RDBMS auf Big Data-Technologien Wir unternehmen IT. Erfahrungsbericht: Umstieg von RDBMS auf Big Data-Technologien Karlsruhe, 30.09.2015 $id thgreiner Thorsten Greiner Teamleiter Software Development ConSol* Software GmbH, Düsseldorf

Mehr

on Azure mit HDInsight & Script Ac2ons

on Azure mit HDInsight & Script Ac2ons Willkommen beim #GAB 2015! on Azure mit HDInsight & Script Ac2ons Lokale Sponsoren: HansPeter Grahsl Netconomy Entwickler & Berater FH CAMPUS 02 Twi9er: @hpgrahsl Überblick Inhalte Was ist HDInsight? Wozu

Mehr

Analyse Infrastruktur. Revolution oder Evolution durch neue Technologie?

Analyse Infrastruktur. Revolution oder Evolution durch neue Technologie? Analyse Infrastruktur Revolution oder Evolution durch neue Technologie? Ziel dieses Vortrags Gestiegene Anforderungen und neue, in die Analysen zu integrierende Datenquellen zwingen zu Anpassungen in der

Mehr

R.I.P Oracle-Datenbank. ggg

R.I.P Oracle-Datenbank. ggg R.I.P Oracle-Datenbank ggg DOAG Konferenz + Ausstellung - Nürnberg 16. November 2016 Jedes IT-Projekt benötigt eine Datenbank 2 Große Websites, aber... 3 Gartner Studie 4 DB-Engines Ranking 5 Anwendungsfall

Mehr

Wiederholung VU Datenmodellierung

Wiederholung VU Datenmodellierung Wiederholung VU Datenmodellierung VU Datenbanksysteme Reinhard Pichler Arbeitsbereich Datenbanken und Artificial Intelligence Institut für Informationssysteme Technische Universität Wien Wintersemester

Mehr

IBM DB2 für Unix/Linux/Windows SQL Grundlagen

IBM DB2 für Unix/Linux/Windows SQL Grundlagen IBM DB2 für Unix/Linux/Windows SQL Grundlagen Seminarunterlage Version: 2.12 Version 2.12 vom 22. Mai 2017 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen

Mehr

SQL. Ziele. Grundlagen von SQL. Beziehung zur relationalen Algebra SELECT, FROM, WHERE. Joins ORDER BY. Aggregatfunktionen. dbis.

SQL. Ziele. Grundlagen von SQL. Beziehung zur relationalen Algebra SELECT, FROM, WHERE. Joins ORDER BY. Aggregatfunktionen. dbis. SQL Lehr- und Forschungseinheit Datenbanken und Informationssysteme Ziele Grundlagen von SQL Beziehung zur relationalen Algebra SELECT, FROM, WHERE Joins ORDER BY Aggregatfunktionen Lehr- und Forschungseinheit

Mehr

SQL. erfolgreich Madrid Amsterdam An imprint of Pearson

SQL. erfolgreich Madrid Amsterdam An imprint of Pearson 10 01101110 John-Harry 01110 Wieken 0110 0110 0110 10 01101 011 01110 0110 010 011011011 0 10 01111010 01101 011011 0110 0110 01110 011011101 01101 0110 010 0101 10 011011101 0101 0110 010 010 0110 01101110

Mehr

Infrastruktur & Datenarchitekturen für Big-Data-Szenarien Hadoop & Co. Im Detail. Referent: Steffen Vierkorn

Infrastruktur & Datenarchitekturen für Big-Data-Szenarien Hadoop & Co. Im Detail. Referent: Steffen Vierkorn Infrastruktur & Datenarchitekturen für Big-Data-Szenarien Hadoop & Co. Im Detail Referent: Steffen Vierkorn Agenda 10.00 10.30 Begrüßung & aktuelle Entwicklungen bei QUNIS 10.30 11.00 11.00 11.30 11.30

Mehr

Einführung in SQL Datenbanken bearbeiten

Einführung in SQL Datenbanken bearbeiten Einführung in SQL Datenbanken bearbeiten Jürgen Thomas Entstanden als Wiki-Buch Bibliografische Information Diese Publikation ist bei der Deutschen Nationalbibliothek registriert. Detaillierte Angaben

Mehr

Marcus Throll, Oliver Bartosch. Einstieg in SQL. Verstehen, einsetzen, nachschlagen. Galileo Press

Marcus Throll, Oliver Bartosch. Einstieg in SQL. Verstehen, einsetzen, nachschlagen. Galileo Press Marcus Throll, Oliver Bartosch Einstieg in SQL Verstehen, einsetzen, nachschlagen Galileo Press Auf einen Blick 1 Einleitung 15 2 Datenbankentwurf 23 3 Datenbankdefinition 43 4 Datensätze einfügen (INSERT

Mehr

Hans-Peter Zorn Inovex GmbH. Wer gewinnt das SQL-Rennen auf der Hadoop-Strecke?

Hans-Peter Zorn Inovex GmbH. Wer gewinnt das SQL-Rennen auf der Hadoop-Strecke? Hans-Peter Zorn Inovex GmbH Wer gewinnt das SQL-Rennen auf der Hadoop-Strecke? War nicht BigData das gleiche NoSQL? Data Lake = Keine Struktur? flickr/matthewthecoolguy Oder gar ein Hadump? flickr/autohistorian

Mehr

ISU 1. Ue_08/02_Datenbanken/SQL. 08 Datenbanken. Übung. SQL Einführung. Eckbert Jankowski. www.iit.tu-cottbus.de

ISU 1. Ue_08/02_Datenbanken/SQL. 08 Datenbanken. Übung. SQL Einführung. Eckbert Jankowski. www.iit.tu-cottbus.de 08 Datenbanken Übung SQL Einführung Eckbert Jankowski www.iit.tu-cottbus.de Datenmodell (Wiederholung, Zusammenfassung) Objekte und deren Eigenschaften definieren Beziehungen zwischen den Objekten erkennen/definieren

Mehr

Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen

Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen Oracle DWH-Konferenz 21. März 2012 Dr. Carsten Bange Gründer & Geschäftsführer BARC Big Data bietet Methoden und Technologien

Mehr

SQL on Hadoop für praktikables BI auf Big Data.! Hans-Peter Zorn und Dr. Dominik Benz, Inovex Gmbh

SQL on Hadoop für praktikables BI auf Big Data.! Hans-Peter Zorn und Dr. Dominik Benz, Inovex Gmbh SQL on Hadoop für praktikables BI auf Big Data! Hans-Peter Zorn und Dr. Dominik Benz, Inovex Gmbh War nicht BigData das gleiche NoSQL? 2 Wie viele SQL Lösungen für Hadoop gibt es mittlerweile? 3 ! No SQL!?

Mehr

Datenbanken Unit 9: OLAP, OLTP und objektrelationale Datenbanken

Datenbanken Unit 9: OLAP, OLTP und objektrelationale Datenbanken Datenbanken Unit 9: OLAP, OLTP und objektrelationale Datenbanken 31. V. 2016 Outline 1 Organisatorisches 2 SQL 3 OLTP, OLAP, SAP, and Data Warehouse OLTP and OLAP SAP 4 Objekt-relationale Datenbanken Beispiel

Mehr

Rolf Däßler. Das Einsteigersem. MySQL 5

Rolf Däßler. Das Einsteigersem. MySQL 5 Rolf Däßler Das Einsteigersem MySQL 5 Inhaltsverzeichnis Vorwort 11 Einleitung 13 Was ist MySQL? 13 Eigenschaften 13 Leistungsmerkmale 15 Inhalt und Aufbau des Buches 17 Verwendete Programmversionen 18

Mehr

Vorwort zur 5. Auflage... 15 Über den Autor... 16

Vorwort zur 5. Auflage... 15 Über den Autor... 16 Vorwort zur 5. Auflage...................................... 15 Über den Autor............................................ 16 Teil I Grundlagen.............................................. 17 1 Einführung

Mehr

June 2015. Automic Hadoop Agent. Data Automation - Hadoop Integration

June 2015. Automic Hadoop Agent. Data Automation - Hadoop Integration June 2015 Automic Hadoop Agent Data Automation - Hadoop Integration + Aufbau der Hadoop Anbindung + Was ist eigentlich ist MapReduce? + Welches sind die Stärken von Hadoop + Welches sind die Schwächen

Mehr

Querying Data with Transact-SQL (MOC 20761)

Querying Data with Transact-SQL (MOC 20761) Querying Data with Transact-SQL (MOC 20761) SQL ist die Datenbanksprache, die jeder Administrator oder Entwickler beherrschen muss. Diese fünftägige Schulung vermittelt den Teilnehmern die technischen

Mehr

ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE. NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik

ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE. NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik ARFA ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik Ralf Leipner Domain Architect Analytics, Risk Management & Finance 33. Berner Architekten

Mehr

NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse

NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse Carsten Czarski Oracle Deutschland B.V. & Co KG Big Data Betrachten von Daten die bislang nicht betrachtet wurden

Mehr

GROUP BY, HAVING und Sichten

GROUP BY, HAVING und Sichten GROUP BY, HAVING und Sichten Tutorübungen 09/33 zu Grundlagen: Datenbanken (WS 14/15) Michael Schwarz Technische Universität München 11.11 / 12.11.2014 1/12 GROUP BY HAVING Sichten Eine Tabelle studenten

Mehr

Datenbanken Grundlagen und Design

Datenbanken Grundlagen und Design Frank Geisler Datenbanken Grundlagen und Design 3., aktualisierte und erweiterte Auflage mitp Vorwort 15 Teil I Grundlagen 19 i Einführung in das Thema Datenbanken 21 i.i Warum ist Datenbankdesign wichtig?

Mehr

Auf einen Blick D ie We lt vo n SA P Der Einstieg ins System Mandanten SAP-Berechtigungen ABAP-Dictionary-Objekte SAP-Entwicklungsobjekte

Auf einen Blick D ie We lt vo n SA P Der Einstieg ins System Mandanten SAP-Berechtigungen ABAP-Dictionary-Objekte SAP-Entwicklungsobjekte Auf einen Blick 1 Die Welt von SAP... 19 2 Der Einstieg ins System... 35 3 Mandanten... 67 4 SAP-Berechtigungen... 79 5 ABAP-Dictionary-Objekte... 89 6 SAP-Entwicklungsobjekte... 153 7 Transporte zwischen

Mehr

Datenzugriffskomponente mit JPA 2.1

Datenzugriffskomponente mit JPA 2.1 Datenzugriffskomponente mit JPA 2.1 (Grundlagen der Java Persistence Architecture) Vladislav Faerman Gliederung Einführung Konfiguration Objekt-Relationales Mapping (ORM) mit JPA Das zentrale Konzept der

Mehr

SQL oder NoSQL: Das ist die Frage! Oracle NoSQL Database

SQL oder NoSQL: Das ist die Frage! Oracle NoSQL Database SQL oder NoSQL: Das ist die Frage! Oracle NoSQL Database Carsten Czarski Oracle Deutschland B.V. & Co KG Agenda NoSQL: Was ist das und wozu ist das gut? Anwendungsbereiche für NoSQL-Technologien,

Mehr

Oracle 10g Einführung

Oracle 10g Einführung Kurs Oracle 10g Einführung Teil 5 Einführung Timo Meyer Administration von Oracle-Datenbanken Timo Meyer Sommersemester 2006 Seite 1 von 16 Seite 1 von 16 Agenda 1 Tabellen und Views erstellen 2 Indizes

Mehr

Folien php/mysql Kurs der Informatikdienste

Folien php/mysql Kurs der Informatikdienste Folien php/mysql Kurs der Informatikdienste 1. Einführung in die Datenbank MySQL Kursbeispiel und Kursziele 1.1 Das Kursbeispiel: eine kleine Personalverwaltung 1.2 Was brauchen wir? 1.3 Ziele Kurs AEMS1,

Mehr

Microsoft Azure Deutschland ist jetzt verfügbar -

Microsoft Azure Deutschland ist jetzt verfügbar - Einordnung und Überblick Data Scientist Operationalisierung IT-Abteilung Anwendungsentwickler Der Data Scientist agil Tool seiner Wahl möglichst wenig Zeit Skalierung Code für die Operationalisierung Der

Mehr

Wiederholung VU Datenmodellierung

Wiederholung VU Datenmodellierung Wiederholung VU Datenmodellierung VL Datenbanksysteme Reinhard Pichler Arbeitsbereich Datenbanken und Artificial Intelligence Institut für Informationssysteme Technische Universität Wien Wintersemester

Mehr

Einführung in Hadoop & MapReduce. Dr. Kathrin Spreyer Big Data Engineer

Einführung in Hadoop & MapReduce. Dr. Kathrin Spreyer Big Data Engineer Einführung in Hadoop & MapReduce Dr. Kathrin Spreyer Big Data Engineer München, 19.06.2013 Agenda Einleitung 1. HDFS 2. MapReduce 3. APIs 4. Hive & Pig 5. Mahout Tools aus Hadoop-Ökosystem 6. HBase 2 Worum

Mehr

BIG UNIVERSITÄTSRECHENZENTRUM

BIG UNIVERSITÄTSRECHENZENTRUM UNIVERSITÄTS RECHENZENTRUM LEIPZIG BIG DATA @ UNIVERSITÄTSRECHENZENTRUM Forschung und Entwicklung Entwicklung eines E-Science-Angebots für die Forschenden an der Universität Leipzig Stefan Kühne Axel Ngonga

Mehr

Big Data. Professional IT Master. Prof. Dr. Ingo Claßen. Überblick. Verarbeitungsmodell. Verarbeitungsablauf. Verteilte Daten. Ressourcenmanagement

Big Data. Professional IT Master. Prof. Dr. Ingo Claßen. Überblick. Verarbeitungsmodell. Verarbeitungsablauf. Verteilte Daten. Ressourcenmanagement Big Data Professional IT Master Prof. Dr. Ingo Claßen Hochschule für Technik und Wirtschaft Berlin Überblick Verarbeitungsmodell Verarbeitungsablauf Verteilte Daten Ressourcenmanagement Koordination Überblick

Mehr

Hadoop aus IT-Operations Sicht Teil 1 Hadoop-Grundlagen

Hadoop aus IT-Operations Sicht Teil 1 Hadoop-Grundlagen Hadoop aus IT-Operations Sicht Teil 1 Hadoop-Grundlagen Brownbag am Freitag, den 26.07.2013 Daniel Bäurer inovex GmbH Systems Engineer Wir nutzen Technologien, um unsere Kunden glücklich zu machen. Und

Mehr

Einleitung Erste Abfrage erstellen...2

Einleitung Erste Abfrage erstellen...2 Einleitung...7 1 Einführung in Power Query... 11 1.1 Power Query installieren und aktivieren... 11 1.2 Power Query aktivieren bzw. deaktivieren... 12 Was tun, wenn das Register nicht angezeigt wird...

Mehr

BIG SQL FOR HORTONWORKS (MOGELPACKUNG ODER GENIALER SCHACHZUG?)

BIG SQL FOR HORTONWORKS (MOGELPACKUNG ODER GENIALER SCHACHZUG?) THOMAS KALB BIG SQL FOR HORTONWORKS (MOGELPACKUNG ODER GENIALER SCHACHZUG?) Big SQL for Hortonworks (Mogelpackung oder genialer Schachzug) Copyright 2017 ITGAIN GmbH 1 AGENDA ITGAIN Big SQL Aktionen PoC

Mehr

2 Anlegen und Konfigurieren von Datenbanken 35

2 Anlegen und Konfigurieren von Datenbanken 35 Inhalt 1 Einführung und Installation 9 1.1 Einführung 11 1.1.1 Aufbau 11 1.1.2 Schreibkonventionen 12 1.1.3 Zur Beispieldatenbank 13 1.1.4 Kurz-Installation 19 1.2 Die Oracle-Installation 20 1.3 Die Installation

Mehr

Anwendungsentwicklung Datenbanken SQL. Stefan Goebel

Anwendungsentwicklung Datenbanken SQL. Stefan Goebel Anwendungsentwicklung Datenbanken SQL Stefan Goebel SQL Structured Query Language strukturierte Abfragesprache von ANSI und ISO standardisiert deklarativ bedeutet was statt wie SQL beschreibt, welche Daten

Mehr

Skalierbare Webanwendungen

Skalierbare Webanwendungen Skalierbare Webanwendungen Thomas Bachmann Lead Software Architect & CIO Mambu GmbH Twitter: @thobach Anwendungsbeispiel Hohe Nichtfunktionale Anforderungen Sicherheit Vertraulichkeit Integrität Verfügbarkeit

Mehr

Wie baut man ein komplementäres Data Warehouse auf Basis von Hadoop? Gerd König

Wie baut man ein komplementäres Data Warehouse auf Basis von Hadoop? Gerd König Wie baut man ein komplementäres Data Warehouse auf Basis von Hadoop? Gerd König 11. November 2013 / DW2013 COMPANY PROFILE WE ARE HERE Vom Standort Kreuzlingen / Schweiz bedient YMC seit 2001 namhafte

Mehr

Rückblick. SQL bietet viele Möglichkeiten zur Anfrageformulierung

Rückblick. SQL bietet viele Möglichkeiten zur Anfrageformulierung Rückblick SQL bietet viele Möglichkeiten zur Anfrageformulierung mathematische Funktionen (z.b. ABS(A) und SIGN(A)) Aggregatfunktionen (z.b. MIN(A) und SUM(A)) Boole sche Operatoren (AND, OR, EXCEPT) Verknüpfungen

Mehr

Big Data Management Thema 14: Cassandra

Big Data Management Thema 14: Cassandra Thema 14: Cassandra Jan Kristof Nidzwetzki Thema 14: Cassandra 1 / 25 Übersicht 1 Grundlagen Überblick Geschichte Datenmodel 2 Architektur Der logische Ring Persistenz der Daten Tunable Consistency Read

Mehr