Big Data in der Praxis
|
|
|
- Artur Peters
- vor 6 Jahren
- Abrufe
Transkript
1 Jonas Freiknecht Big Data in der Praxis Lösungen mit Hadoop, HBase und Hive Daten speichern, aufbereiten, visualisieren HANSER
2 Vorwort XI 1 Einleitung 1 2 Big-Data Historische Entstehung Big-Data - ein passender Begriff? Die drei V Das vierte V - Veracity Der Verarbeitungsaufwand ist big Sicht der Industrien auf Big-Data Eingliederung in BI und Data-Mining 15 3 Hadoop Hadoop kurz vorgestellt HDFS - das Hadoop Distributed File System Hadoop 2.x und YARN Hadoop als Single-Node-Cluster aufsetzen Falls etwas nicht funktioniert Map-Reduce Aufsetzen einer Entwicklungsumgebung Implementierung eines Map-Reduce-Jobs Ausführen eines Jobs über Kommandozeile Verarbeitung im Cluster Aufsetzen eines Hadoop-Clusters Starten eines Jobs via Hadoop-API Verketten von Map-Reduce-Jobs Verarbeitung anderer Dateitypen YARN-Anwendungen Logging und Log-Aggregation in YARN Eine einfache YARN-Anwendung 129
3 -vpö. QÜM Vor-und Nachteile der verteilten Verarbeitung Die Hadoop Java-API Ein einfacher HDFS-Explorer Cluster-Monitor Überwachen der Anwendungen im Cluster Gegenüberstellung zur traditionellen Verarbeitung Big-Data aufbereiten Optimieren der Algorithmen zur Datenauswertung Ausdünnung und Gruppierung Ausblick auf Apache Spark Markt der Big-Data-Lösungen Das Hadoop-Ecosystem Ambari Sqoop Flume HBase Hive Pig Zookeeper Mahout Spark Data Analytics und das Reporting NoSQL und HBase Historische Entstehung Das CAP-Theorem Typen von Datenbanken Umstieg von SQL und Dateisystemen auf NoSQL oder HDFS Methoden der Datenmigration HBase Das Datenmodell von HBase Aufbau von HBase Installation als Stand-alone Arbeiten mit der HBase Shell Verteilte Installation auf dem HDFS Laden von Daten HBase Bulk Loading über die Shell Datenextrakt aus einer Datenbank über Sqoop HBase Java-API Der Umstieg von einem RDBMS auf HBase 242
4 6 Data-Warehousing mit Hive Installation von Hive Architektur von Hive Das Command Line Interface (CLI) HiveQL als Abfragesprache Anlegen von Datenbanken Primitive Datentypen Komplexe Datentypen Anlegen von Tabellen Partitionierung von Tabellen Externe und interne Tabellen Löschen und leeren von Tabellen Importieren von Daten Zählen von Zeilen via count Das SELECT-Statement Beschränken von SELECT über DISTINCT SELECT auf partitionierte Tabellen SELECT sortieren mit SORT BY und ORDER BY Partitionieren von Daten durch Bucketing Gruppieren von Daten mittels GROUP BY Subqueries - verschachtelte Abfragen Ergebnismengen vereinigen mit UNION ALL Mathematische Funktionen String-Funktionen Aggregatfunktionen User-Defined Functions HAVING Datenstruktur im HDFS Verändern von Tabellen Erstellen von Views Löschen einer View Verändern einer View Tabellen zusammenführen mit JOINs Hive Security Implementieren eines Authentication-Providers Authentication-Provider für HiveServer Verwenden von PAM zur Benutzerauthentifizierung Hive und JDBC Datenimport mit Sqoop Datenexport mit Sqoop Hive und Impala Unterschied zu Pig Zusammenfassung 319
5 7 Big-Data-Visualisierung Theorie der Datenvisualisierung Diagrammauswahl gemäß Datenstruktur Visualisieren von Big-Data erfordert ein Umdenken Aufmerksamkeit lenken Kontextsensitive Diagramme D-Diagramme Ansätze, um Big-Data zu visualisieren Neue Diagrammarten Werkzeuge zur Datenvisualisierung Entwicklung einer einfachen Visualisierungskomponente Auf dem Weg zu neuem Wissen - aufbereiten, anreichern und empfehlen Eine Big-Data-Table als zentrale Datenstruktur Anreichern von Daten Anlegen einer Wissensdatenbank Passende Zuordnung von Daten Diagrammempfehlungen über Datentypanalyse Diagrammempfehlungen in der BDTable Textanalyse - Verarbeitung unstrukturierter Daten Erkennung von Sprachen Natural Language Processing Klassifizierung Sentiment-Analysis Mustererkennung mit Apache UIMA Zusammenfassung und Ausblick Häufige Fehler Anhang Installation und Verwendung von Sqoop Hadoop für Windows 7 kompilieren 421 Literaturverzeichnis 425 Index 429
Einleitung Big Data... Hadoop...
1 Einleitung 1 2 Big Data... 7 2.1 Historische Entstehung... 9 2.2 Big Data - ein passender Begriff?... 10 2.2.1 Die drei V... 11 2.2.2 Weitere V s... 14 2.2.3 Der Verarbeitungsaufwand ist big... 14 2.2.4
BIG DATA. in der Praxis. Lösungen mit Hadoop, HBase und Hive Daten speichern, aufbereiten, visualisieren
jonas FREIKNECHT BIG DATA in der Praxis Lösungen mit Hadoop, HBase und Hive Daten speichern, aufbereiten, visualisieren Auf DVD: 18 fertige Beispielprojekte plus Videotutorials Freiknecht Big Data in der
BIG DATA. in der Praxis. Lösungen mit Hadoop, HBase und Hive Daten speichern, aufbereiten, visualisieren
jonas FREIKNECHT BIG DATA in der Praxis Lösungen mit Hadoop, HBase und Hive Daten speichern, aufbereiten, visualisieren Auf DVD: 18 fertige Beispielprojekte plus Videotutorials Inhalt Vorwort................................................................
Big Data: Apache Hadoop Grundlagen
Seminarunterlage Version: 1.07 Version 1.07 vom 5. September 2018 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen
Big Data Informationen neu gelebt
Seminarunterlage Version: 1.01 Copyright Version 1.01 vom 21. Mai 2015 Dieses Dokument wird durch die veröffentlicht. Copyright. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen
Big Data Technologien
Big Data Technologien - Ein Überblick - Prof. Dr. Jens Albrecht [email protected] Big Data Landscape 2016 Prof. Dr. Jens Albrecht Big Data 3 Systemarchitektur im Wandel Gestern und heute Strukturierte
Hadoop & SQL Oracle BI & DWH Konferenz 2013 19./20. März 2013, Kassel. Carsten Herbe metafinanz Informationssysteme GmbH
Hadoop & SQL Oracle BI & DWH Konferenz 2013 19./20. März 2013, Kassel Carsten Herbe metafinanz Informationssysteme GmbH In unserer Business Line Business Intelligence & Risk gibt es fünf Bereiche: Risk,
Beratung. Results, no Excuses. Consulting. Lösungen. Grown from Experience. Ventum Consulting. SQL auf Hadoop Oliver Gehlert. 2014 Ventum Consulting
Beratung Results, no Excuses. Consulting Lösungen Grown from Experience. Ventum Consulting SQL auf Hadoop Oliver Gehlert 1 Ventum Consulting Daten und Fakten Results, no excuses Fachwissen Branchenkenntnis
Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht
Big-Data-Technologien - Überblick - Quelle: http://www.ingenieur.de/panorama/fussball-wm-in-brasilien/elektronischer-fussball-smartphone-app-helfen-training Big-Data-Anwendungen im Unternehmen Logistik
Die wichtigsten Hadoop-Komponenten für Big Data mit SAS
Webinar@Lunchtime Die wichtigsten Hadoop-Komponenten für Big Data mit SAS Herzlich Willkommen bei Webinar@Lunchtime Moderation Anne K. Bogner-Hamleh SAS Institute GmbH Education Consultant Xing-Profil:
Big Data in Azure. Ein Beispiel mit HD Insight. Ralf Stemmer
Big in Azure Ein Beispiel mit HD Insight Ralf Stemmer Agenda owas ist Big? Was ist HD Insight? owelche Probleme kann man damit lösen? odemo Was ist Big? Was ist HD Insight? Datenexplosion - Rasanter Zuwachs
Schneller als Hadoop?
Schneller als Hadoop? Einführung in Spark Cluster Computing 19.11.2013 Dirk Reinemann 1 Agenda 1. Einführung 2. Motivation 3. Infrastruktur 4. Performance 5. Ausblick 19.11.2013 Dirk Reinemann 2 EINFÜHRUNG
Das Leben der Anderen
Das Leben der Anderen Twitter-Analyse mit Oracle12c, JSON und APEX Carsten Czarski Business Unit Database Oracle Deutschland B.V. & Co KG About: Carsten Czarski 1973 München Verheiratet zwei Kinder ORACLE
BIG DATA IM RETAIL-SEKTOR AM BEISPIEL KASSENBONDATEN BUSINESS ANALYTICS DAY
BIG DATA IM RETAIL-SEKTOR AM BEISPIEL KASSENBONDATEN BUSINESS ANALYTICS DAY 08.03.2017 REWE Systems GmbH Jonas Freiknecht inovex GmbH Bernhard Schäfer AGENDA 1 / Vorstellung REWE Systems GmbH und inovex
Auf einen Blick. Abfrage und Bearbeitung. Erstellen einer Datenbank. Komplexe Abfragen. Vorwort... 13
Auf einen Blick Vorwort... 13 Teil 1 Vorbereitung Kapitel 1 Einleitung... 17 Kapitel 2 SQL der Standard relationaler Datenbanken... 21 Kapitel 3 Die Beispieldatenbanken... 39 Teil 2 Abfrage und Bearbeitung
Inhaltsverzeichnis. Lothar Piepmeyer. Grundkurs Datenbanksysteme. Von den Konzepten bis zur Anwendungsentwicklung ISBN:
Lothar Piepmeyer Grundkurs Datenbanksysteme Von den Konzepten bis zur Anwendungsentwicklung ISBN: 978-3-446-42354-1 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-42354-1
Auf einen Blick. Abfrage und Bearbeitung. Erstellen einer Datenbank. Komplexe Abfragen. Vorwort 13
Auf einen Blick Vorwort 13 Teil 1 Vorbereitung Kapitel 1 Einleitung 17 Kapitel 2 SQL - der Standard relationaler Datenbanken 21 Kapitel 3 Die Beispieldatenbanken 39 Teil 2 Abfrage und Bearbeitung Kapitel
Datenbanken Unit 9: OLAP, OLTP und objektrelationale Datenbanken
Datenbanken Unit 9: OLAP, OLTP und objektrelationale Datenbanken 17. V. 2017 Outline 1 Organisatorisches 2 SQL 3 OLTP, OLAP, SAP, and Data Warehouse OLTP and OLAP SAP 4 Objekt-relationale Datenbanken Beispiel
Datenbanken Unit 9: OLAP, OLTP, Data Warehouse Ranking Algorithmen
Datenbanken Unit 9: OLAP, OLTP, Data Warehouse Ranking Algorithmen 28. V. 2018 Outline 1 Organisatorisches 2 OLTP, OLAP, SAP, and Data Warehouse OLTP and OLAP SAP 3 Ranking 4 SQL Organisatorisches Ergebnisse
Inhaltsverzeichnis. Vorwort Kapitel 1 Einleitung... 15
Vorwort..................................................... 13 Kapitel 1 Einleitung.......................................... 15 Kapitel 2 SQL der Standard relationaler Datenbanken... 19 2.1 Die Geschichte................................
Data Mart (Star Schema) Offload nach Hadoop
Data Mart (Star Schema) Offload nach Hadoop Carsten Herbe Metafinanz-Informationssysteme GmbH München Schlüsselworte Data Mart, Hadoop, HDFS, Hive, Impala, Parquet, Kompression, Snappy, Star Schema, Performance
Inhaltsverzeichnis. Vorwort 13. Kapitel 1 Einleitung 15
Vorwort 13 Kapitel 1 Einleitung 15 Kapitel 2 SQL-der Standard relationaler Datenbanken... 19 2.1 Die Geschichte 19 2.2 Die Bestandteile 20 2.3 Die Verarbeitung einer SQL-Anweisung 22 2.4 Die Struktur von
MCSA: SQL 2016 Database Development
MCSA: SQL 2016 Database Development Querying Data with Transact-SQL & Developing SQL Databases Seminarziel In diesem 6-tägigen Kurs werden die Teilnehmer von Grund auf in die Entwicklung
Big Data & Analytics Nationaler Akademietag, Fulda Referent: Meinhard Lingo
Big Data & Analytics Nationaler Akademietag, Fulda 20.04.2018 Referent: Meinhard Lingo E-Mail: [email protected] Big Data & Analytics Big Data-Anwendungen: Ein Paradigmenwechsel. Kompetenzen? mögliche
Hadoop Demo HDFS, Pig & Hive in Action. Oracle DWH Konferenz 2014 Carsten Herbe
Hadoop Demo HDFS, Pig & Hive in Action Oracle DWH Konferenz 2014 Carsten Herbe Wir wollen eine semi-strukturierte Textdatei in Hadoop verarbeiten und so aufbereiten, dass man die Daten relational speichern
Designing Business Intelligence Solutions with Microsoft SQL Server MOC 20467
Designing Business Intelligence Solutions with Microsoft SQL Server MOC 20467 In diesem 5-tägigen Microsoft-Kurs lernen Sie die Implementierung einer Self-Service Business Intelligence (BI) und Big Data
Einführung in Hadoop
Einführung in Hadoop Inhalt / Lern-Ziele Übersicht: Basis-Architektur von Hadoop Einführung in HDFS Einführung in MapReduce Ausblick: Hadoop Ökosystem Optimierungen Versionen 10.02.2012 Prof. Dr. Christian
Hadoop. High Performance Batches in der Cloud. Hadoop. Folie 1 25. Januar 2011
High Performance Batches in der Cloud Folie 1 Alles geht in die Cloud Image: Chris Sharp / FreeDigitalPhotos.net Cloud und Batches passen zusammen Batches Cloud Pay-per-Use Nur zeitweise genutzt Hohe Rechenkapazitäten
Daniel Warner SQL. Das Praxisbuch. Mit 119 Abbildungen. Franzis
Daniel Warner SQL Das Praxisbuch Mit 119 Abbildungen Franzis Inhaltsverzeichnis Teil I - Einleitung 15 1 Einleitung 17 1.1 Zum Aufbau des Buchs 17 1.2 Hinweise zur Buch-CD 18 1.3 Typografische Konventionen
Vorwort Einführung in Power Query Erste Abfrage erstellen... 21
Vorwort... 11 1 Einführung in Power Query... 13 1.1 Power Query installieren und aktivieren... 13 1.2 Power Query aktivieren bzw. deaktivieren... 14 Was tun, wenn das Register nicht angezeigt wird... 16
PL/SQL vs. Spark Umsteigertipps für's DWH
PL/SQL vs. Spark Umsteigertipps für's DWH Christopher Thomsen Hamburg Jens Bleiholder Berlin Schlüsselworte Big Data, Spark, PL/SQL, SQL, ETL, Hadoop, DWH Einleitung Mit Hadoop 2.0 öffnete sich die Big
ODI und Big Data Möglichkeiten und ein Erfahrungsbericht Dr. Holger Dresing Oracle Deutschland B.V. & Co. KG Hannover
ODI und Big Data Möglichkeiten und ein Erfahrungsbericht Dr. Holger Dresing Oracle Deutschland B.V. & Co. KG Hannover Schlüsselworte Oracle Data Integrator ODI, Big Data, Hadoop, MapReduce,, HDFS, PIG,
Bibliografische Informationen digitalisiert durch http://d-nb.info/995021198
Auf einen Blick 1 Einleitung 15 2 Datenbankentwurf 23 3 Datenbankdefinition 43 4 Datensätze einfügen (INSERT INTO) 95 5 Daten abfragen (SELECT) 99 6 Daten aus mehreren Tabellen abfragen (JOIN) 143 7 Unterabfragen
Symbiose hybrider Architekturen im Zeitalter digitaler Transformation. Hannover, 18.03.2015
Symbiose hybrider Architekturen im Zeitalter digitaler Transformation Hannover, 18.03.2015 Business Application Research Center (BARC) B (Analystengruppe Europas führendes IT-Analysten- und -Beratungshaus
Big Data im Retail-Sektor am Beispiel Kassenbondaten
Big Data im Retail-Sektor am Beispiel Kassenbondaten REWE Systems GmbH Jonas Freiknecht inovex GmbH Bernhard Schäfer Business Analytics Day, 08.03.2017 AGENDA 1. Vorstellung REWE Systems GmbH und inovex
Inhaltsverzeichnis. Inhalt. 1 Einführung in die Datenbanktechnologie
3 Inhaltsverzeichnis 1 Einführung in die Datenbanktechnologie 1.1 Einleitung... 8 1.1.1 Zielsetzung... 8 1.1.2 Aufbau des Studienbuches... 9 1.1.3 Abgrenzung... 10 1.2 Grundbegriffe... 10 1.3 Datenbanksysteme...
Hadoop. Eine Open-Source-Implementierung von MapReduce und BigTable. von Philipp Kemkes
Hadoop Eine Open-Source-Implementierung von MapReduce und BigTable von Philipp Kemkes Hadoop Framework für skalierbare, verteilt arbeitende Software Zur Verarbeitung großer Datenmengen (Terra- bis Petabyte)
RavenDB, schnell und skalierbar
RavenDB, schnell und skalierbar Big Data & NoSQL, Aydin Mir Mohammadi bluehands GmbH & Co.mmunication KG [email protected] Immer mehr Mehr Performance Mehr Menge Mehr Verfügbarkeit Skalierung http://www.flickr.com/photos/39901968@n04/4864698533/
Inhaltsverzeichnis. Bernd Müller, Harald Wehr. Java Persistence API 2. Hibernate, EclipseLink, OpenJPA und Erweiterungen ISBN:
Inhaltsverzeichnis Bernd Müller, Harald Wehr Java Persistence API 2 Hibernate, EclipseLink, OpenJPA und Erweiterungen ISBN: 978-3-446-42693-1 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-42693-1
Big Data und Oracle bringen die Logistik in Bewegung
OPITZ CONSULTING Deutschland GmbH Dortmund, 07.05.2014 Bild-Quelle: Web-Seite von Pasta ZARA, Big Artikel Data So und entstehen Oracle bringen unsere die Nudeln Logistik in Bewegung http://de.pastazara.com/so-entstehen-unsere-nudeln
Erfahrungsbericht: Umstieg von RDBMS auf Big Data-Technologien
Wir unternehmen IT. Erfahrungsbericht: Umstieg von RDBMS auf Big Data-Technologien Karlsruhe, 30.09.2015 $id thgreiner Thorsten Greiner Teamleiter Software Development ConSol* Software GmbH, Düsseldorf
on Azure mit HDInsight & Script Ac2ons
Willkommen beim #GAB 2015! on Azure mit HDInsight & Script Ac2ons Lokale Sponsoren: HansPeter Grahsl Netconomy Entwickler & Berater FH CAMPUS 02 Twi9er: @hpgrahsl Überblick Inhalte Was ist HDInsight? Wozu
Analyse Infrastruktur. Revolution oder Evolution durch neue Technologie?
Analyse Infrastruktur Revolution oder Evolution durch neue Technologie? Ziel dieses Vortrags Gestiegene Anforderungen und neue, in die Analysen zu integrierende Datenquellen zwingen zu Anpassungen in der
R.I.P Oracle-Datenbank. ggg
R.I.P Oracle-Datenbank ggg DOAG Konferenz + Ausstellung - Nürnberg 16. November 2016 Jedes IT-Projekt benötigt eine Datenbank 2 Große Websites, aber... 3 Gartner Studie 4 DB-Engines Ranking 5 Anwendungsfall
Wiederholung VU Datenmodellierung
Wiederholung VU Datenmodellierung VU Datenbanksysteme Reinhard Pichler Arbeitsbereich Datenbanken und Artificial Intelligence Institut für Informationssysteme Technische Universität Wien Wintersemester
IBM DB2 für Unix/Linux/Windows SQL Grundlagen
IBM DB2 für Unix/Linux/Windows SQL Grundlagen Seminarunterlage Version: 2.12 Version 2.12 vom 22. Mai 2017 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen
SQL. Ziele. Grundlagen von SQL. Beziehung zur relationalen Algebra SELECT, FROM, WHERE. Joins ORDER BY. Aggregatfunktionen. dbis.
SQL Lehr- und Forschungseinheit Datenbanken und Informationssysteme Ziele Grundlagen von SQL Beziehung zur relationalen Algebra SELECT, FROM, WHERE Joins ORDER BY Aggregatfunktionen Lehr- und Forschungseinheit
SQL. erfolgreich Madrid Amsterdam An imprint of Pearson
10 01101110 John-Harry 01110 Wieken 0110 0110 0110 10 01101 011 01110 0110 010 011011011 0 10 01111010 01101 011011 0110 0110 01110 011011101 01101 0110 010 0101 10 011011101 0101 0110 010 010 0110 01101110
Infrastruktur & Datenarchitekturen für Big-Data-Szenarien Hadoop & Co. Im Detail. Referent: Steffen Vierkorn
Infrastruktur & Datenarchitekturen für Big-Data-Szenarien Hadoop & Co. Im Detail Referent: Steffen Vierkorn Agenda 10.00 10.30 Begrüßung & aktuelle Entwicklungen bei QUNIS 10.30 11.00 11.00 11.30 11.30
Einführung in SQL Datenbanken bearbeiten
Einführung in SQL Datenbanken bearbeiten Jürgen Thomas Entstanden als Wiki-Buch Bibliografische Information Diese Publikation ist bei der Deutschen Nationalbibliothek registriert. Detaillierte Angaben
Marcus Throll, Oliver Bartosch. Einstieg in SQL. Verstehen, einsetzen, nachschlagen. Galileo Press
Marcus Throll, Oliver Bartosch Einstieg in SQL Verstehen, einsetzen, nachschlagen Galileo Press Auf einen Blick 1 Einleitung 15 2 Datenbankentwurf 23 3 Datenbankdefinition 43 4 Datensätze einfügen (INSERT
Hans-Peter Zorn Inovex GmbH. Wer gewinnt das SQL-Rennen auf der Hadoop-Strecke?
Hans-Peter Zorn Inovex GmbH Wer gewinnt das SQL-Rennen auf der Hadoop-Strecke? War nicht BigData das gleiche NoSQL? Data Lake = Keine Struktur? flickr/matthewthecoolguy Oder gar ein Hadump? flickr/autohistorian
ISU 1. Ue_08/02_Datenbanken/SQL. 08 Datenbanken. Übung. SQL Einführung. Eckbert Jankowski. www.iit.tu-cottbus.de
08 Datenbanken Übung SQL Einführung Eckbert Jankowski www.iit.tu-cottbus.de Datenmodell (Wiederholung, Zusammenfassung) Objekte und deren Eigenschaften definieren Beziehungen zwischen den Objekten erkennen/definieren
Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen
Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen Oracle DWH-Konferenz 21. März 2012 Dr. Carsten Bange Gründer & Geschäftsführer BARC Big Data bietet Methoden und Technologien
SQL on Hadoop für praktikables BI auf Big Data.! Hans-Peter Zorn und Dr. Dominik Benz, Inovex Gmbh
SQL on Hadoop für praktikables BI auf Big Data! Hans-Peter Zorn und Dr. Dominik Benz, Inovex Gmbh War nicht BigData das gleiche NoSQL? 2 Wie viele SQL Lösungen für Hadoop gibt es mittlerweile? 3 ! No SQL!?
Datenbanken Unit 9: OLAP, OLTP und objektrelationale Datenbanken
Datenbanken Unit 9: OLAP, OLTP und objektrelationale Datenbanken 31. V. 2016 Outline 1 Organisatorisches 2 SQL 3 OLTP, OLAP, SAP, and Data Warehouse OLTP and OLAP SAP 4 Objekt-relationale Datenbanken Beispiel
Rolf Däßler. Das Einsteigersem. MySQL 5
Rolf Däßler Das Einsteigersem MySQL 5 Inhaltsverzeichnis Vorwort 11 Einleitung 13 Was ist MySQL? 13 Eigenschaften 13 Leistungsmerkmale 15 Inhalt und Aufbau des Buches 17 Verwendete Programmversionen 18
Vorwort zur 5. Auflage... 15 Über den Autor... 16
Vorwort zur 5. Auflage...................................... 15 Über den Autor............................................ 16 Teil I Grundlagen.............................................. 17 1 Einführung
June 2015. Automic Hadoop Agent. Data Automation - Hadoop Integration
June 2015 Automic Hadoop Agent Data Automation - Hadoop Integration + Aufbau der Hadoop Anbindung + Was ist eigentlich ist MapReduce? + Welches sind die Stärken von Hadoop + Welches sind die Schwächen
Querying Data with Transact-SQL (MOC 20761)
Querying Data with Transact-SQL (MOC 20761) SQL ist die Datenbanksprache, die jeder Administrator oder Entwickler beherrschen muss. Diese fünftägige Schulung vermittelt den Teilnehmern die technischen
ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE. NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik
ARFA ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik Ralf Leipner Domain Architect Analytics, Risk Management & Finance 33. Berner Architekten
NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse
NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse Carsten Czarski Oracle Deutschland B.V. & Co KG Big Data Betrachten von Daten die bislang nicht betrachtet wurden
GROUP BY, HAVING und Sichten
GROUP BY, HAVING und Sichten Tutorübungen 09/33 zu Grundlagen: Datenbanken (WS 14/15) Michael Schwarz Technische Universität München 11.11 / 12.11.2014 1/12 GROUP BY HAVING Sichten Eine Tabelle studenten
Datenbanken Grundlagen und Design
Frank Geisler Datenbanken Grundlagen und Design 3., aktualisierte und erweiterte Auflage mitp Vorwort 15 Teil I Grundlagen 19 i Einführung in das Thema Datenbanken 21 i.i Warum ist Datenbankdesign wichtig?
Auf einen Blick D ie We lt vo n SA P Der Einstieg ins System Mandanten SAP-Berechtigungen ABAP-Dictionary-Objekte SAP-Entwicklungsobjekte
Auf einen Blick 1 Die Welt von SAP... 19 2 Der Einstieg ins System... 35 3 Mandanten... 67 4 SAP-Berechtigungen... 79 5 ABAP-Dictionary-Objekte... 89 6 SAP-Entwicklungsobjekte... 153 7 Transporte zwischen
Datenzugriffskomponente mit JPA 2.1
Datenzugriffskomponente mit JPA 2.1 (Grundlagen der Java Persistence Architecture) Vladislav Faerman Gliederung Einführung Konfiguration Objekt-Relationales Mapping (ORM) mit JPA Das zentrale Konzept der
SQL oder NoSQL: Das ist die Frage! Oracle NoSQL Database
SQL oder NoSQL: Das ist die Frage! Oracle NoSQL Database Carsten Czarski Oracle Deutschland B.V. & Co KG Agenda NoSQL: Was ist das und wozu ist das gut? Anwendungsbereiche für NoSQL-Technologien,
Oracle 10g Einführung
Kurs Oracle 10g Einführung Teil 5 Einführung Timo Meyer Administration von Oracle-Datenbanken Timo Meyer Sommersemester 2006 Seite 1 von 16 Seite 1 von 16 Agenda 1 Tabellen und Views erstellen 2 Indizes
Folien php/mysql Kurs der Informatikdienste
Folien php/mysql Kurs der Informatikdienste 1. Einführung in die Datenbank MySQL Kursbeispiel und Kursziele 1.1 Das Kursbeispiel: eine kleine Personalverwaltung 1.2 Was brauchen wir? 1.3 Ziele Kurs AEMS1,
Microsoft Azure Deutschland ist jetzt verfügbar -
Einordnung und Überblick Data Scientist Operationalisierung IT-Abteilung Anwendungsentwickler Der Data Scientist agil Tool seiner Wahl möglichst wenig Zeit Skalierung Code für die Operationalisierung Der
Wiederholung VU Datenmodellierung
Wiederholung VU Datenmodellierung VL Datenbanksysteme Reinhard Pichler Arbeitsbereich Datenbanken und Artificial Intelligence Institut für Informationssysteme Technische Universität Wien Wintersemester
Einführung in Hadoop & MapReduce. Dr. Kathrin Spreyer Big Data Engineer
Einführung in Hadoop & MapReduce Dr. Kathrin Spreyer Big Data Engineer München, 19.06.2013 Agenda Einleitung 1. HDFS 2. MapReduce 3. APIs 4. Hive & Pig 5. Mahout Tools aus Hadoop-Ökosystem 6. HBase 2 Worum
BIG UNIVERSITÄTSRECHENZENTRUM
UNIVERSITÄTS RECHENZENTRUM LEIPZIG BIG DATA @ UNIVERSITÄTSRECHENZENTRUM Forschung und Entwicklung Entwicklung eines E-Science-Angebots für die Forschenden an der Universität Leipzig Stefan Kühne Axel Ngonga
Big Data. Professional IT Master. Prof. Dr. Ingo Claßen. Überblick. Verarbeitungsmodell. Verarbeitungsablauf. Verteilte Daten. Ressourcenmanagement
Big Data Professional IT Master Prof. Dr. Ingo Claßen Hochschule für Technik und Wirtschaft Berlin Überblick Verarbeitungsmodell Verarbeitungsablauf Verteilte Daten Ressourcenmanagement Koordination Überblick
Hadoop aus IT-Operations Sicht Teil 1 Hadoop-Grundlagen
Hadoop aus IT-Operations Sicht Teil 1 Hadoop-Grundlagen Brownbag am Freitag, den 26.07.2013 Daniel Bäurer inovex GmbH Systems Engineer Wir nutzen Technologien, um unsere Kunden glücklich zu machen. Und
Einleitung Erste Abfrage erstellen...2
Einleitung...7 1 Einführung in Power Query... 11 1.1 Power Query installieren und aktivieren... 11 1.2 Power Query aktivieren bzw. deaktivieren... 12 Was tun, wenn das Register nicht angezeigt wird...
BIG SQL FOR HORTONWORKS (MOGELPACKUNG ODER GENIALER SCHACHZUG?)
THOMAS KALB BIG SQL FOR HORTONWORKS (MOGELPACKUNG ODER GENIALER SCHACHZUG?) Big SQL for Hortonworks (Mogelpackung oder genialer Schachzug) Copyright 2017 ITGAIN GmbH 1 AGENDA ITGAIN Big SQL Aktionen PoC
2 Anlegen und Konfigurieren von Datenbanken 35
Inhalt 1 Einführung und Installation 9 1.1 Einführung 11 1.1.1 Aufbau 11 1.1.2 Schreibkonventionen 12 1.1.3 Zur Beispieldatenbank 13 1.1.4 Kurz-Installation 19 1.2 Die Oracle-Installation 20 1.3 Die Installation
Anwendungsentwicklung Datenbanken SQL. Stefan Goebel
Anwendungsentwicklung Datenbanken SQL Stefan Goebel SQL Structured Query Language strukturierte Abfragesprache von ANSI und ISO standardisiert deklarativ bedeutet was statt wie SQL beschreibt, welche Daten
Skalierbare Webanwendungen
Skalierbare Webanwendungen Thomas Bachmann Lead Software Architect & CIO Mambu GmbH Twitter: @thobach Anwendungsbeispiel Hohe Nichtfunktionale Anforderungen Sicherheit Vertraulichkeit Integrität Verfügbarkeit
Wie baut man ein komplementäres Data Warehouse auf Basis von Hadoop? Gerd König
Wie baut man ein komplementäres Data Warehouse auf Basis von Hadoop? Gerd König 11. November 2013 / DW2013 COMPANY PROFILE WE ARE HERE Vom Standort Kreuzlingen / Schweiz bedient YMC seit 2001 namhafte
Rückblick. SQL bietet viele Möglichkeiten zur Anfrageformulierung
Rückblick SQL bietet viele Möglichkeiten zur Anfrageformulierung mathematische Funktionen (z.b. ABS(A) und SIGN(A)) Aggregatfunktionen (z.b. MIN(A) und SUM(A)) Boole sche Operatoren (AND, OR, EXCEPT) Verknüpfungen
Big Data Management Thema 14: Cassandra
Thema 14: Cassandra Jan Kristof Nidzwetzki Thema 14: Cassandra 1 / 25 Übersicht 1 Grundlagen Überblick Geschichte Datenmodel 2 Architektur Der logische Ring Persistenz der Daten Tunable Consistency Read
