Bipolartransistor- npn
|
|
|
- Viktoria Schneider
- vor 9 Jahren
- Abrufe
Transkript
1 Transistor gesteuertes Bauelement (transfer resistor) durch eine angelegte Spannung oder elektrischen Stromsteuerbarer elektrischer Widerstand zum Schalten oder Verstärken von elektrischen Signalen bipolar beide Ladungsträgerarten (Elektronen und Löcher) tragen zur Leitung bei Bipolartransistor wie 2 Dioden zusammen in einem Kristall (aber so eng benachbart, dass sie sich gegenseitig beeinflussen) der Emitter ist sehr hoch dotiert (wesentlich stärker als die Basis), die Basis ist sehr schmal die Basis-Emitter-Diode wird in Durchlassrichtung betrieben, die Basis-Kollektor- Diode in Sperrrichtung Emitter N N Kollektor-Anschluss E V N C 3,5V Kontakt Basis 36 B 1,5V 37 Die Basis-Emitter-Diode wird in Durchlassrichtung betrieben. Der Emitter ist sehr hoch dotiert (wesentlich stärker als die Basis), d.h. der B-E-Strom besteht ganz überwiegend aus der Ladungsträgerart des Emitters (Elektronen bei npn). die Basis ist sehr schmal die vom Emitter kommenden Ladungsträger rekombinieren nur zum geringen Teil im Basisgebiet Die meisten dieser Ladungsträger (in die Basis injizierte Minoritäts- Ladungsträger) diffundieren bis zur Basis-Kollektor-Sperrschicht, wo sie von der Feldstärke ergriffen werden hoher Sperrstrom Die vom Emitter kommenden Ladungsträger rekombinieren nur zum geringen Teil im Basisgebiet. Der effektive Basisstrom I B besteht nur aus diesem (geringen) Anteil (plus den wenigen Löchern, die ins Emitter-Gebiet gelangen). Die meisten Ladungsträger werden in der Basis-Kollektor-Sperrschicht von der Sperr-Feldstärke ergriffen der Kollektorstrom I C ist ein Vielfaches des Basisstroms I C = β I B (β Stromverstärkung, β= 2.. 1) E V N N C 3,5V E V N N C 3,5V B 1,5V 38 B 1,5V 39 1
2 Bipolartransistor als Schalter (bzw. Negations-Gatter) Als eigentlicher Schalter dient die Kollektor-Emitter- Strecke der Schalteingang ist die Basis. (Emitter-Schaltung) Bipolartransistor in lanartechnologie lanartechnologie für integrierte Schaltkreise der Kollektor wird auch noch nach oben herausgeführt Schalter (bzw. Negations-Gatter): U > 2,5V (log. 1) I B fließt, Transistor leitet U CE < 1V (log. ) U <,7V (log. ) Quelle des Bildes: I B =, Transistor sperrt Wikipedia Bipolartransistor U CE > 4V (log. 1) 41 4 Bipolartransistor TTL-Gatter NAND als TTL-Schaltkreis Tpische Werte: 1 = 4 kω, 2 = 1.6 kω, 3 = 1 kω, 4 = 125 Ω Aufbau eines MOS-FET MOS Metal-Oide-Semiconductor (MIS Metal-Isolator-Semic.) FET Feldeffekttransisitor (ein elektrisches Feld bewirkt den Effekt) Source Metall-Elektrode (ol-si) Isolation, SiO 2 (Oide) Normal- und Inversbetrieb von T1, Gegentaktendstufe T3, T4, Hubdiode D
3 Source und Source sind eigentlich vertauschbar als Source bezeichnet man die Elektrode, die die Ladungsträger des Kanals aussendet Wird zwischen und Source eine Spannung U DS gelegt, so kann trotzdem kein Strom fließen: entweder ist der pn-übergang zwischen und gesperrt ( an D) oder der pn-übergang zwischen Source und ( an S). Einen Transistor-Effekt wie bei npn gibt es nicht kein Basis -Strom 44 Wird an und Source eine Spannung U DS gelegt,so kann trotzdem kein Strom fließen das ändert sich, wenn an das eine (positive) Spannung gelegt wird. MOS-Kondensator: V p- - Elektronen als Minoritätsladungsträger 1V Verarmung 4V Inversion, es hat sich ein n-kanal gebildet 45 Source an Ladungsträgern verarmte Schicht um Source, Kanal und (schematisch) Es hat sich bei U GB (=U GS ) > U th ein n-kanal gebildet. p- n-kanal-mosfet (und anders herum, dann U GB < ) U th Schwellspannung (ca. 1,5V je nach Bauform) Wird jetzt an und Source eine Spannung U DS gelegt, so kann ein Strom fließen. Unser MOSFET kann als Schalterarbeiten. 46 Der n-kanal MOSFET wirkt wie ein Schalter: Eingangsspannung niedrig (U < 1,5V) Transistor gesperrt (Schalter offen) Eingangsspannung hoch (U > 2,5V) Transistor leitend (Schalter geschlossen) Leistungslose Steuerung: isoliertes I G =, = 47 3
4 1 2 Der n-kanal MOSFET wirkt wie ein Negator: U < 1,5V = Transistor gesperrt,u 5V, =1 U > 2,5V =1 Transistor leitend, U V, = Durch arallelschalten von 2 Transistoren erhält man ein NO 1 = 2 = =1, ansonsten (mind. ein Schalter zu) = Durch eihenschaltung (Achtung ) erreicht man ein NAND Nachteil: Strom durch und die Transistoren, Leistungsverbrauch 48 Ausweg: C-MOS (ComplementarMOS aus n-kanal und p-kanal) 49 Unipolartransistor, CMOS Unipolartransistor, CMOS C-MOS(ComplementarMOS aus n-kanal und p-kanal) C-MOS(ComplementarMOS aus n-kanal und p-kanal) p-kanal pull up wenn U E < 2V n-kanal pull down wenn U E > 1,5V S p-kan D p-kan D n-kan S n-kan und Source sind eigentlich vertauschbar. Meist sind aber Source und () verbunden. Als Source bezeichnet man die Elektrode, die die Ladungsträger des Kanals aussendet. Beim p-kanal sind das Löcher, also liegt Source am ol (an U DD ). verbotener Bereich: U E = 1,5V 2V besser: 1V 2,5V Da immer (außer im verbotenen Bereich) ein Transistor gesperrt ist, fließt praktisch kein Strom und es entsteht kaum Verlustleistung. Hohe Taktrate - häufigeres Umschalten - höhere Verlustleistung. 5 n-kanal U GS > U th 1,5V Kanal p-kanal negativ U GS-p < U th-p -3V Kanal U GS = U G -U S = U E -5V < -3V U E < 2V 51 4
5 Unipolartransistor, CMOS Unipolartransistor, CMOS C-MOS(ComplementarMOS aus n-kanal und p-kanal) C-MOS(Complementar MOS aus n-kanal und p-kanal) NAND Gatter: U E > 1,5V pull down pull-up, Y=1: A= B= pull-down, Y=: A=1 B=1 Kurzschluss - verboten!! U E < 2V pull up verbotener Bereich: U E = 1,5V 2V besser: 1V 2,5V A B Y NAND Ausgangskennlinie = f (U DS ) bei U GS = const. (arameter) Source Für U GS = const. Wächst zunächst linear mit U DS (I = U/), U DS = U GS - U th U GS = 5V U GS = 4V U GS = 3V U GS = 2V 5V U DS dann aber immer schwächer und für U DS > U GS U th gar nicht mehr (bzw. nur ganz wenig) Grund: Einschnürung des Kanals, Abschnürungbei Es hatte sich bei U GB (=U GS ) > U th ein n-kanal gebildet. Mit wachsendem U DS schnürt der Kanal sich auf der -Seite ein. Grund: die Spannung U DS fällt über der Länge des Kanals ab: = (Source): U K =, =L/2: U K U DS /2, =L (): U K = U DS U GS < 1,5V U DS U GS U th 54 U GS = U GK () U K (), U GK () wird zum hin immer kleiner 55 5
6 S G U GS U GK D U K () U GS U th und U DS < U GS -U th Kanal U GS < U th : = (keinkanal) U GS U th (und U DS < U = U GS - U th ): =K ((U GS -U th ) U DS - ½U DS2 ) U GS = U GK () U K (), U GK () >! U th U K () wird zum hin (d.h. mit wachsendem ) immer größer, entsprechend wird U GK () immer kleiner, der Kanal wird dort dünner. Wenn U GK () unter U th absinkt ist der Kanal völlig abgeschnürt! U K (L) = U DS, U GK (L) = U GS - U DS > U th, U DS < U GS -U th Kanal 56 K Steilheit, U Abschnür-(inch-off) Spannung U GS U th und U DS U GS -U th Kanal abgeschnürt der Strom wächst nicht weiter, setzen U DS = U GS -U th oben ein: =½ K (U GS - U th ) 2 unabhängig von U DS! 57 U GS U th und U DS U GS -U th Kanal abgeschnürt der Strom wächst nicht weiter: =½ K (U GS -U th ) 2 Aber warum kann überhaupt ein Strom fließen, wenn der Kanal doch abgeschnürt ist? Einfache Antwort: Würde kein Strom fließen, würde keine Spannung über dem Kanal abfallen und er wäre nicht mehr abgeschnürt. hsikalische Antwort: Das ist wie am Kollektor eines npn-transistors: die ganze Spannung U DS -U fällt über dem abgeschnürten Stück ab hohe Feldstärke. Elektronen aus dem Kanal, die in den Einfluss der Feldstärke kommen, werden zum 5V U gezogen, der Strom fließt also weiter. DS quadratische Funktion: = K ((U GS -U th ) U DS - ½ U DS2 ) U DS = U GS - U th unabhängig von U DS : = ½ K (U GS - U th ) 2 U GS = 5V U GS = 4V U GS = 3V U GS = 2V 6
7 Herleitung: =K ((U GS -U th ) U DS - ½U DS2 ) G = I / A = κ E = e n µ E (s. S. 22) I n = e n µ n A E A = W h (Weite Höhe des Kanals) I n = W µ n σ() E() σ= e n h - (Flächen-)Ladungsdichte Q = C U, σ= Q/A = C/A U = c U σ() = c o (U GS -U th -U K ()) I n = W µ n c o (U GS -U th - U K ()) du K /d Herleitung =K ((U GS - U th ) U DS - ½U DS2 ) I n = W µ n c o (U GS -U th - U K ()) du K /d I n L = W µ n c o ((U GS -U th ) U K (L) -½ U K2 (L)) keine Abschnürung - U K (L) = U DS = W/L µ n c o ((U GS -U th ) U DS -½ U DS2 ) K = W/L µ n c o Abschnürung- U K (L ) = U = U GS U th =½ W/L µ n c o (U GS -U th ) 2 L L (da L < L wächst mit steigendem U DS leicht an) 6 61 K = W/L µ n c o Steilheit Enthält Weite und Länge des Kanals in weiten Grenzen durch die Bauform beeinflussbar. Im p-kanal: K = W/L µ p c o (µ p < µ n ) I MAX = 5V / Abschnürung: =½ W/L µ n c o (U GS -U th ) 2 (da L < L wächst mit steigendem U DS leicht an) U th U GS U DS = U GS - U th U GS = 5V U GS = 4V U = U GS < U th : = (kein Kanal) U GS U th U GS sei nur wenig größer alsu th ( noch klein) wie groß ist jetzt U DS = U? U DS = 5V U = 5V 5V > U GS -U th U GS = 3V U GS = 2V 5V 62 der Kanal ist also schon abgeschnürt, es gilt: =½ K (U GS -U th )
Teil 1: Digitale Logik
Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs: Technologische Grundlagen programmierbare logische Bausteine 1 Halbleiterdiode Bauelement, durch
Teil 1: Digitale Logik
Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs: Technologische Grundlagen programmierbare logische Bausteine 1 Halbleiterdiode Bauelement, durch
Halbleiter und Nanostrukturen - Fragen zum Bipolartransistor, Praktikum, Prof. Förster
Halbleiter und Nanostrukturen - Fragen zum Bipolartransistor, Praktikum, Prof. Förster Christoph Hansen [email protected] Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht.
Ausarbeitung: MOSFET
Ausarbeitung: MOSFET Inhaltverzeichnis: 1. Einleitung 2. Definition 3. Aufbau 4. Kennlinien 5. Anwendungen 6. Vor- & Nachteile 7. Quellen 1 1.Einleitung: Die erste begrifflich ähnliche MOSFET- Struktur
6. Bipolare Transistoren Funktionsweise. Kollektor (C) NPN-Transistor. Basis (B) n-halbleiter p n-halbleiter. Emitter (E) Kollektor (C)
6.1. Funktionsweise NPN-Transistor Kollektor (C) E n-halbleiter p n-halbleiter C Basis (B) B Emitter (E) PNP-Transistor Kollektor (C) E p-halbleiter n p-halbleiter C Basis (B) B Emitter (E) 1 Funktionsweise
4. Feldeffekttransistor
4. Feldeffekttransistor 4.1 Aufbau und Funktion eines Sperrschicht-FETs (J-FET) Eine ganz andere Halbleiterstruktur gegenüber dem Bipolartransistor weist der Feldeffektransistor auf. Hier wird ein dotierter
E Technologische Grundlagen
E Technologische Grundlagen 2002, Franz J. Hauck, Verteilte Systeme, Univ. Ulm, [2005sTI1ETech.fm, 20050517 14.57] http://wwwvs.informatik.uniulm.de/teach/ws04/avo/ E.1 1 Einordnung Ebene 6 Ebene 5 Ebene
Transistor BJT I. Roland Küng, 2009
Transistor BJT I Roland Küng, 2009 Aufbau-Bezeichnungen Typ NPN Typ PNP Aufbau Praktisch Typ NPN B Schicht dünn E Schicht hoch dotiert (viel Phosphor bei n, Bor bei p) B E C Funktionsweise I E hoch dotiert
Analoge und digitale Signale
Analoge und digitale Signale Binär Erster binärer Zustand Zweiter binärer Zustand Schalter geschlossen Schalter geöffnet Impuls vorhanden Impuls nicht vorhanden Transistor leitend Transistor sperrt Spannung
1. Diode und Transistor
1. Diode und Transistor Vergleichen Sie Diode und Transistor aus Bild 1. a) Wie groß sind jeweils die Elektronenströme? b) Wie groß sind jeweils die Löcherströme? E B C 18-3 N = A 17-3 10 cm 16-3 Basislänge
Transistoren. David Schütze Projekt: Search-E Gruppe B2 Betreuer: Sascha Eden.
Transistoren David Schütze Projekt: Search-E Gruppe B2 Betreuer: Sascha Eden http://hobbyelektronik.de.tl/der-erste-transistor-der-welt.htm Gliederung Was ist ein Transistor Geschichte Bipolartransistor
Grundlagen der Rechnertechnologie Sommersemester Vorlesung Dr.-Ing. Wolfgang Heenes
Grundlagen der Rechnertechnologie Sommersemester 2010 9. Vorlesung Dr.-Ing. Wolfgang Heenes 15. Juni 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 1 Inhalt 1. Der Feldeffekt 2. Feldeffekttransistoren
Vorbereitung zum Versuch Transistorschaltungen
Vorbereitung zum Versuch Transistorschaltungen Armin Burgmeier (47488) Gruppe 5 9. Dezember 2007 0 Grundlagen 0. Halbleiter Halbleiter bestehen aus Silizium- oder Germanium-Gittern und haben im allgemeinen
Halbleiter und Transistoren - Prinzip und Funktionsweise
Halbleiter und Transistoren - Prinzip und Funktionsweise Reine Halbleitermaterialien, wie Silizium (Si) oder Germanium (Ge) sind bei Zimmertemperatur fast Isolatoren: bzw. bei sinkender Temperatur HL Isolator
AFu-Kurs nach DJ4UF. Technik Klasse A 06: Transistor & Verstärker. Amateurfunkgruppe der TU Berlin. Stand
Technik Klasse A 06: Transistor & Amateurfunkgruppe der TU Berlin http://www.dk0tu.de Stand 04.05.2016 This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License. Amateurfunkgruppe
TRANSISTORKENNLINIEN 1 (TRA 1) DANIEL DOLINSKY UND JOHANNES VRANA
TRANSISTORKENNLINIEN 1 (TRA 1) DANIEL DOLINSKY UND JOHANNES VRANA Inhaltsverzeichnis 1. Einleitung... 1 2. Messverfahren... 1 3. Bemerkung zur Fehlerrechnung... 1 4. Stromverstärkungsfaktor... 2 5. Eingangskennlinie...
E Technologische Grundlagen
1 Einordnung E Technologische Grundlagen Ebene 6 Ebene 5 Ebene 4 Ebene 3 Ebene 2 Ebene 1 Ebene 0 roblemorientierte Sprache Assemblersprache etriebssystem ISA (Instruction Set Architecture) Mikroarchitektur
1 Grundlagen. 1.1 Aufbau eines Bipolartransistors Allgemeiner Aufbau Aufbau eines npn-bipolartransistors
1 Grundlagen 1.1 Aufbau eines Bipolartransistors 1.1.1 Allgemeiner Aufbau Der zweite wichtige Transistortyp neben dem Feldeffekttransistor ist der Bipolartransistor. Seine Funktionsweise beruht auf beiden
Grundlagen der Rechnerarchitektur
Grundlagen der Rechnerarchitektur [CS3100.010] Wintersemester 2014/15 Tobias Scheinert / (Heiko Falk) Institut für Eingebettete Systeme/Echtzeitsysteme Ingenieurwissenschaften und Informatik Universität
Unipolar-Transistor, FET, MOSFET
msw / Kern 01-2016 FET-Uebersicht 1/6 Unipolar-Transistor, FET, MOSFET Ueberblick und Kurzrepetition FET/MOSFET (vs. Bipolartransistor) Inhalt: - FET/MOSFET anschauliche Betrachtung anhand Modell - Begriffe
Universität des Saarlandes Lehrstuhl für Elektronik und Schaltungstechnik Elektronik I, WS 09/10 Übung 15
Universität des Saarlandes Lehrstuhl für Elektronik und Schaltungstechnik Elektronik I, WS 09/10 Übung 15 U N S A R I V E R S A V I E I T A S N I S S Aufgabe 1) Metall-Halbleiter-Übergang: Dotierung,Sperrschichtkapazität.
LABORÜBUNG Feldeffekttransistor
LABORÜBUNG Feldeffekttransistor Letzte Änderung: 14.4 2005 Lothar Kerbl Inhaltsverzeichnis Überblick... 2 Messaufgabe 1: Steuerkennlinie n-kanal j-fet... 2 Steuerkennlinien von MOS-FETs... 4 Theoretische
Technische Grundlagen der Informatik
Technische Grundlagen der Informatik WS 2008/2009 4. Vorlesung Klaus Kasper WS 2008/2009 Technische Grundlagen der Informatik Inhalt Wiederholung Wechselspannung Einfache Logische Verknüpfungen Logikschaltungen
Inhalt. Begriffserklärung. Aufbau. Funktionsprinzip. Kennlinien. Grundschaltungen. Praxiswissen
Von Thomas Jakobi Inhalt Begriffserklärung Aufbau Funktionsprinzip Kennlinien Grundschaltungen Praxiswissen 2 Was sind Transistoren? 3 Begriffserklärung Name engl. transfer resistor veränderbarer Widerstand
Elektronik-Grundlagen I Elektronische Bauelemente
Elektronik-Grundlagen I Elektronische Bauelemente - Einführung für Studierende der Universität Potsdam - H. T. Vierhaus BTU Cottbus Technische Informatik P-N-Übergang HL-Kristall, Einkristall p-dotiert
Handout. Der MosFET. Von Dominik Tuszyński. Tutor: Ulrich Pötter
Handout Der MosFET Von Dominik Tuszyński Tutor: Ulrich Pötter 1 Inhaltsverzeichnis: 1. Geschichte S.3 2. Aufbau S.3 3. Funktionsweise S.4 4. Kennlinienfeld S.5 5. Verwendung S.6 6. Quellen S.7 2 1. Geschichte
Logikausgang Grundschaltungen in CMOS-Technik
Logikausgang Grundschaltungen in CMOS-Technik X Liers - PEG-Vorlesung WS00/0 - Institut für Informatik - FU Berlin 49 Logikausgang Grundschaltungen CS INV in CMOS-Technik (Tristate) Transistor leitet X
Heute werden Elektronenröhren durch moderne Halbleiterbauelemente ersetzt. Röhrendiode Elektronenröhren
Heute werden Elektronenröhren durch moderne Halbleiterbauelemente ersetzt. Röhrendiode Elektronenröhren Transistoren Halbleiterdiode Der Transistor Der Transistor ist ein aktives auelement, der über einen
VORBEREITUNG: TRANSISTOR
VORBEREITUNG: TRANSISTOR FREYA GNAM, GRUPPE 26, DONNERSTAG 1. TRANSISTOR-KENNLINIEN Ein Transistor ist ein elektronisches Halbleiterbauelement, das zum Schalten und zum Verstärken von elektrischen Strömen
5. Tutorium Digitaltechnik und Entwurfsverfahren
5. Tutorium Digitaltechnik und Entwurfsverfahren Tutorium Nr. 13 Alexis Tobias Bernhard Fakultät für Informatik, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft
12. Vorlesung. Logix Schaltungsanalyse Elektrische Schaltelemente Logikschaltungen Diode Transistor Multiplexer Aufbau Schaltungsrealisierung
2. Vorlesung Logix Schaltungsanalyse Elektrische Schaltelemente Logikschaltungen Diode Transistor Multiplexer Aufbau Schaltungsrealisierung Campus-Version Logix. Vollversion Software und Lizenz Laboringenieur
ELEXBO Elektro-Experimentier-Box MOSFET-Kit. -Aufbau, Funktionen und Eigenschaften der Feldeffekttransistoren.
Mosfet 1 -Aufbau, Funktionen und Eigenschaften der Feldeffekttransistoren. Aufbau und Bauteile J-Fet N-Kanal BF244 Mosfet-P-Kanal sperrend STP12PF06 4 Mosfet N-Kanal sperrend IRLZ24NPBF 4 Widerstände 47kΩ
Technische Grundlagen der Informatik
Technische Grundlagen der Informatik WS 2008/2009 3. Vorlesung Klaus Kasper WS 2008/2009 Technische Grundlagen der Informatik Inhalt Wiederholung Kapazität, Induktivität Halbleiter, Halbleiterdiode Wechselspannung
5. Tutorium Digitaltechnik und Entwurfsverfahren
5. Tutorium Digitaltechnik und Entwurfsverfahren Tutorium Nr. 9 Alexis Tobias Bernhard Fakultät für Informatik, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft
Grundlagen der Rechnertechnologie Sommersemester Vorlesung Dr.-Ing. Wolfgang Heenes
Grundlagen der Rechnertechnologie Sommersemester 2010 12. Vorlesung Dr.-Ing. Wolfgang Heenes 6. Juli 2010 TechnischeUniversität Darmstadt Dr.-Ing. WolfgangHeenes 1 Inhalt 1. Logikfamilien 2. Die Ausgangsstufen
Grundlagen der Rechnertechnologie Sommersemester Vorlesung Dr.-Ing. Wolfgang Heenes
Grundlagen der Rechnertechnologie Sommersemester 2010 10. Vorlesung Dr.-Ing. Wolfgang Heenes 22. Juni 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 1 Inhalt 1. Vorbesprechung drittes Labor
Grundlagen der Rechnertechnologie Sommersemester Vorlesung Dr.-Ing. Wolfgang Heenes
Grundlagen der Rechnertechnologie Sommersemester 2010 6. Vorlesung Dr.-Ing. Wolfgang Heenes 25. Mai 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 1 Inhalt 1. ipolartransistoren 2. Kennlinienfelder
Institut für Mikrosystemtechnik. Prof. Dr. D. Ehrhardt. Bauelemente und Schaltungstechnik,
Feldeffekttransistoren 1 JFET Sperrschicht - FET (Junction FET) Sperrschicht breitet sich mit Ansteuerung in den Kanal aus und sperrt diesen Es gibt zwei Arten n-kanal, p-kanal 2 JFET Schaltzeichen 3 Das
Technische Grundlagen der Informatik
Technische Grundlagen der Informatik WS 2008/2009 5. Vorlesung Klaus Kasper WS 2008/2009 Technische Grundlagen der Informatik Inhalt Wiederholung Feldeffekttransistoren (FET) Logikschaltungen in CMOS-Technologie
Einführung in die Elektronik für Physiker
Hartmut Gemmeke Forschungszentrum Karlsruhe, IPE [email protected] Tel.: 07247-82-5635 Einführung in die Elektronik für Physiker JFET - MOSFET 11. Feldeffekt-Transistoren Ausgangskennlinie und typische
Es wäre von Vorteil, wenn dich die Begriffe Dotierung, thermische Paarbildung, Influenz und Halbleiterdiode nicht gänzlich aus der Fassung brächten.
Der MOS-FET-Transistor (Isolierschicht-Feldeffekt-Transistor) Voraussetzungen: Es wäre von Vorteil, wenn dich die Begriffe Dotierung, thermische Paarbildung, Influenz und Halbleiterdiode nicht gänzlich
Der Bipolar-Transistor
Universität Kassel F 16: Elektrotechnik / Informatik FG FSG: Fahrzeugsysteme und Grundlagen der Elektrotechnik Wilhelmshöher Allee 73 D-34121 Kassel Prinzip des Transistors Seite: 2 Aufbau des ipolar-transistors,
Grundlagen der VLSI-Technik
Grundlagen der VLSI-Technik VLSI-Systeme I Prof. Dr. Dirk Timmermann Institut für Angewandte Mikroelektronik und Datentechnik Fakultät für Informatik und Elektrotechnik Universität Rostock Vorteile der
Der MosFET. Referent: Dominik Tuszyoski
Der MosFET Referent: Dominik Tuszyoski 27.05.2010 1. Geschichte 1.1.Erfinder 1.2.Ein paar Fakten 2. Einsatzgebiete 3. Aufbau 3.1. Schaltzeichen 3.2. physikalischer Aufbau 3.3. Funktionsweise 3.4.1. Kennlinienfeld
Waldschmidt, K.: Schaltungen der Datenverarbeitung, Teubner, 1980, ISBN
Computersysteme 2. Grundlagen digitaler Schaltungen 2.1 Boole sche Funktionen 2.2 Darstellung Boole scher Funktionen 2.3 Funktionen mit einer Eingabevariablen 2.4 Funktionen mit zwei Eingabevariablen 2.5
Feldeffekttransistoren
Feldeffekttransistoren Feldeffekttransistoren sind Halbleiter, die im Gegensatz zu den normalen, bipolaren Transistoren mit einem elektrischen Feld, d.h. leistungslos gesteuert werden. 1 Klassifikation
E l e k t r o n i k II
Fachhochschule Südwestfalen Hochschule für Technik und Wirtschaft E l e k t r o n i k II Dr.-Ing. Arno Soennecken EEX European Energy Exchange AG Neumarkt 9-19 04109 Leipzig Vorlesung Feldeffekttransistoren
Mikroprozessor - und Chiptechnologie
Mikroprozessor - und Chiptechnologie I 1 1 Halbleiterfunktionen 2 8 Halbleiterbauelemente 8 Halbleiterbauelemente 8.1 Grundlagen 8.2 Dioden 8.3 Transistoren 8.4 Einfache Grundschaltungen Als halbleitend
Beispielklausur 3 - Halbleiterbauelemente. Aufgabe 1: Halbleiterphysik I Punkte
Aufgabe 1: Halbleiterphysik I Punkte 1.1) Skizzieren Sie das Bändermodell eines mit Bor (dritte Hauptgruppe) dotierten Halbleiters. Zeichnen Sie das Störstellenniveau (ca. 100meV oberhalb der Valenzbandenergie),
Abschlussprüfung Schaltungstechnik 2
Name: Platz: Abschlussprüfung Schaltungstechnik 2 Studiengang: Mechatronik SS2009 Prüfungstermin: Prüfer: Hilfsmittel: 22.7.2009 (90 Minuten) Prof. Dr.-Ing. Großmann, Prof. Dr.-Ing. Eder Nicht programmierbarer
4. Dioden Der pn-übergang
4.1. Der pn-übergang Die Diode ist ein Halbleiterbauelement mit zwei Anschlüssen: Eine Diode besteht aus einem Halbleiterkristall, der auf der einen Seite p- und auf der anderen Seite n-dotiert ist. Die
Präsentation SSP Immanuel Mayrhuber, Boris Scherwitzl
Präsentation SSP Immanuel Mayrhuber, Boris Scherwitzl Übersicht Erklärung eines pn Übergangs Halbleiterdioden Photodioden Leuchtdioden Bipolartransistor JFET MOSFET pn Übergang y y y y y y Übergang von
MOSFET (Metal-Oxid-Silizium Feldeffekttransistor)
MOSFET (Metal-Oxid-Silizium Feldeffekttransistor) Inhaltverzechnis Inhaltverzechnis 1 1. Einführung in die MOS Schaltungen und Aufbau eines MOSFETs 2 2. Wirkungsweise eines N-MOSFETs und Berechnung von
Grundlagen - Labor. Praktikumsübung. Laborversuch GL-24 / Bipolar-Transistor, MOSFET, J-FET Kennlinien und Anwendungen
GRUNDLAGENLABOR 1(15) Fachbereich Systems Engineering Grundlagen - Labor Praktikumsübung Laborversuch GL-24 / Bipolar-Transistor, MOSFET, J-FET Kennlinien und Anwendungen Versuchsziele: Kennenlernen von
NvK-Gymnasium Bernkastel-Kues Widerstände. Physik Elektronik 1 U 5V = R= 20 = 0,25A R 20 1V 1A
Widerstände I R 20 = Ω U 5V I = R= 20 = Ω 0,25A U = R I 10 100Ω = 1kΩ ± 5% 402 100Ω = 40, 2kΩ ± 2% 1Ω = 1V 1A Widerstände U = R I 1Ω = 1V 1A 12 100 kω = 1, 2MΩ ± 5% 56 10Ω = 560Ω ± 10% 47 100Ω = 4,7kΩ
Bauelemente der Elektronik
Inhalt: Bauelemente der Elektronik Passive Bauelemente Aktive Bauelemente Halbleiterdiode Bipolartransistor Bipolartransistor als elektronischer Verstärker Feldeffekttransistor Feldeffektransistor als
Einfaches Halbleitermodell
Kapitel 9 Einfaches Halbleitermodell 9.1 Aufbau des liziumkristallgitters Der Inhalt dieses Kapitels ist aus Bauer/Wagener: Bauelemente und Grundschaltungen der Elektronik entnommen. Auf der äußeren Schale
Integrierte Digitalschaltungen Vom Transistor zu Integrierten Systemen Vorlesung 10,
Integrierte Digitalschaltungen Vom Transistor zu Integrierten Systemen Vorlesung 10, 16.06.2016 Nils Pohl FAKULTÄT FÜR ELEKTROTECHNIK UND INFORMATIONSTECHNIK Lehrstuhl für Integrierte Systeme Organisatorisches
Kennlinien von Dioden: I / A U / V. Zusammenfassung Elektronik Dio.1
Kennlinien von Dioden: I / A / V I = I S (e / T ) mit : T = kt / e 6mV I S = Sperrstrom Zusammenfassung Elektronik Dio. Linearisiertes Ersatzschaltbild einer Diode: Anode 00 ma I F r F 00 ma ΔI F Δ F 0,5
Mikroprozessor - und Chiptechnologie
Mikroprozessor - und Chiptechnologie I 1 1 Halbleiterfunktionen 2 8 Halbleiterbauelemente 8 Halbleiterbauelemente 8.1 Grundlagen 8.2 Dioden 8.3 Transistoren 8.4 Einfache Grundschaltungen Als halbleitend
Logikfamilien der Digitaltechnik
Logikfamilien der Digitaltechnik W.Kippels 22. März 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Grundlagen der TTL-Technik 2 2.1 NND-Gatter in TTL-Technik....................... 2 2.2 NOR-Gatter in TTL-Technik........................
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Der Transistor als Schalter. Das komplette Material finden Sie hier:
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Der Transistor als Schalter Das komplette Material finden Sie hier: School-Scout.de 24. Der Transistor als Schalter 1 von 14 Der Transistor
7. Unipolare Transistoren, MOSFETs
7.1. Funktionsweise Die Bezeichnung MOSFET (Metal Oxide Semiconductor Field Effect Transistor) deutet auf den Aufbau dieses Transistors hin: Das Halbleiterelement ist mit einer sehr dünnen, isolierenden
3 Der Bipolartransistor
3 Der Bipolartransistor 3.1 Einführung Aufbau Ein Bipolartransistor (engl.: Bipolar Junction Transistor, BJT) besteht aus zwei gegeneinander geschalteten pn-übergängen (Dioden) mit einer gemeinsamen, sehr
E l e k t r o n i k I
Fachhochschule Südwestfalen Hochschule für Technik und Wirtschaft E l e k t r o n i k I Dr.-Ing. Arno Soennecken EEX European Energy Exchange AG Neumarkt 9-19 04109 Leipzig Vorlesung Bipolare Transistoren
Elektronik NATURWISSENSCHAFT UND TECHNIK. 1. Halbleiter Messung der Beleuchtungsstärke (Zusatzexperiment)
1. Halbleiter 1.1. Ein belichtungsabhängiger Widerstand (LDR) 1 LDR-Widerstand 4 Verbindungsleitungen 1.2. Messung der Beleuchtungsstärke (Zusatzexperiment) 1 LDR-Widerstand 4 Verbindungsleitungen 1. Halbleiter
Originaldokument enthält an dieser Stelle eine Grafik! Original document contains a graphic at this position!
FUNKTIONSWEISE Thema : HALBLEITERDIODEN Die Eigenschaften des PN-Überganges werden in Halbleiterdioden genutzt. Die p- und n- Schicht befinden sich einem verschlossenen Gehäuse mit zwei Anschlussbeinen.
Halbleiter, Dioden. wyrs, Halbleiter, 1
Halbleiter, Dioden Halbleiter, 1 Inhaltsverzeichnis Aufbau & physikalische Eigenschaften von Halbleitern Veränderung der Eigenschaften mittels Dotierung Vorgänge am Übergang von dotierten Materialen Verhalten
Schaltungstechnik
KLAUSUR Schaltungstechnik 26.07.2012 Prof. Dr.-Ing. habil. F. Ellinger Dauer: 180 min. Aufgabe 1 2 3 4 5 6 Punkte 15 12 17 13 10 11 78 Modellgleichungen Für die Klausur werden folgende Transistormodelle
Transistorschaltungen
Transistorschaltungen V DD in Volt 3 2 V Ein - UTh,P V Ein - UTh,N 1-1 0 1 2 3 U Th,P U Th,N V Ein in Volt a) Schaltung b) Übertragungsfunktion Bipolar Transistorschaltung im System I Ein C Ein? V CC I
pn-übergang, Diode, npn-transistor, Valenzelektron, Donatoren, Akzeptoren, Ladungsträgerdiffusion, Bändermodell, Ferminiveau
Transistor 1. LITERATUR: Berkeley, Physik; Kurs 6; Kap. HE; Vieweg Dorn/Bader und Metzler, Physik; Oberstufenschulbücher Beuth, Elektronik 2; Kap. 7; Vogel 2. STICHWORTE FÜR DIE VORBEREITUNG: pn-übergang,
Grundlagen-Vertiefung zu PS8. Bau und Funktion von Feldeffekt-Transistoren Version vom 5. März 2013
Grundlagen-Vertiefung zu PS8 Bau und Funktion von Feldeffekt-Transistoren Version vom 5. März 2013 Feldeffekt-Transistoren Feldeffekt-Transistoren (FET) sind Halbleiter-Bauelemente, deren elektrischer
Geschichte der Halbleitertechnik
Geschichte der Halbleitertechnik Die Geschichte der Halbleitertechnik beginnt im Jahr 1823 als ein Mann namens v. J. J. Berzellus das Silizium entdeckte. Silizium ist heute das bestimmende Halbleitermaterial
0Elementare Transistorschaltungen
Teilanfang E1 0Elementare Transistorschaltungen VERSUCH Praktikanten: Rainer Kunz Rolf Paspirgilis Links Versuch E1 Elementare Transistorschaltungen Q In diesem Protokoll: O»Einleitung«auf Seite 3 O»Transistoren«auf
5.5 Drehstrom, Mehrphasenwechselstrom
5.5 Drehstrom, Mehrphasenwechselstrom Mehrere (hier: N = 3) Wechselspannungen gleicher Frequenz und äquidistanter Phasenverschiebung 2p/N (hier: 2,09 rad oder 120 ) n 1 U n U0 cos t 2p N Relativspannung
Lufthansa B1 Lehrgang Unterrichtsmitschrift Modul M4 Electronic Fundamentals
Halbleiter Halbleiter sind stark abhängig von : - der mechanischen Kraft (beeinflusst die Beweglichkeit der Ladungsträger) - der Temperatur (Zahl und Beweglichkeit der Ladungsträger) - Belichtung (Anzahl
1 Grundprinzip eines Bipolartransistors
Hochfrequenztechnik I Bipolare Transistoren BPT/1 1 Grundprinzip eines Bipolartransistors Ein bipolarer Transistor besteht aus einer pnp-schichtenfolge (pnp-transistor) bzw. einer npn-schichtenfolge (npn-transistor).
Versuch P1-50,51,52 - Transistorgrundschaltungen. Vorbereitung. Von Jan Oertlin. 4. November 2009
Versuch P1-50,51,52 - Transistorgrundschaltungen Vorbereitung Von Jan Oertlin 4. November 2009 Inhaltsverzeichnis 0. Funktionsweise eines Transistors...2 1. Transistor-Kennlinien...2 1.1. Eingangskennlinie...2
Der Transistor (Grundlagen)
Der Transistor (Grundlagen) Auf dem Bild sind verschiedene Transistoren zu sehen. Die Transistoren sind jeweils beschriftet. Diese Beschriftung gibt Auskunft darüber, um welchen Transistortyp es sich handelt
Die wichtigsten Eigenschaften von bipolaren Transistoren.
Elektronik-Kurs Die wichtigsten Eigenschaften von bipolaren Transistoren. Es gibt 2 Arten von bipolaren Transistoren: NPN-Transistoren PNP-Transistoren Diese Bezeichnung entspricht dem inneren Aufbau der
AfuTUB-Kurs Einleitung
Technik Klasse E 13:, Amateurfunkgruppe der TU Berlin https://dk0tu.de WiSe 2017/18 SoSe 2018 cbea This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License. Amateurfunkgruppe
Transistorkennlinien 1 (TRA 1) Gruppe 8
Transistorkennlinien 1 (TRA 1) Gruppe 8 1 Einführung Dieser Versuch beschäftigt sich mit Transistoren und ihren Kennlinien. Ein Transistor besteht aus drei aufeinanderfolgenden Schichten, wobei die äußeren
Halbleiterbauelemente
Halbleiterbauelemente Martin Adam Versuchsdatum: 10.11.2005 Betreuer: DI Bojarski 16. November 2005 Inhaltsverzeichnis 1 Versuchsbeschreibung 2 1.1 Ziel................................... 2 1.2 Aufgaben...............................
1 Grundlagen. 1.1 Aufbau eines n-kanal-fet Allgemeiner Aufbau. 1.1 Aufbau eines n-kanal-fet
1 Grundlagen 1.1 Aufbau eines nkanalfet 1.1.1 Allgemeiner Aufbau Ein Transistor ist ein elektronisches Halbleiterbauelement das zum Schalten oder Verstärken von Strom verwendet werden kann. Der Stromfluss
Praktikum Versuch Bauelemente. Versuch Bauelemente
1 Allgemeines Seite 1 1.1 Grundlagen 1.1.1 db-echnung Da in der Elektrotechnik häufig mit sehr großen oder sehr kleinen Werten gerechnet wird, benutzt man für diese vorzugsweise die logarithmische Darstellung.
Herleitung der Flip-Flop-Schaltung Zum Lesen und Verstehen
Herleitung der Flip-Flop-Schaltung Zum Lesen und Verstehen In diesem Dokument soll Schritt für Schritt erklärt werden, wie es zu dem Phänomen der Flip-Flop-Schaltung bzw. des Wechselblickers kommt. Dies
Aufgabe 1: Resistiver Touchscreen (20 Punkte)
1 Aufgabe 1: Resistiver Touchscreen (20 Punkte) Gegeben sind zwei Widerstandsfilme aus Indiumzinnoxid, die auf einen Glasträger aufgedampft wurden. Diese sollen zur Realisierung eines berührungsempfindlichen
Fototransistor. Der Fototransistor. von Philip Jastrzebski. Betreuer: Christian Brose Philip Jastrzebski 1
Der Fototransistor von Philip Jastrzebski Betreuer: Christian Brose 17.11.2008 Philip Jastrzebski 1 Gliederung: I. Aufbau & Funktionsweise Fotodiode Fototransistor V. Vor- und Nachteile VII. Bsp: Reflexkoppler
Dotierter Halbleiter
FH München FK 03 Maschinenbau Diplomprüfung Elektronik SS 007 Freitag, 0.7.007 Prof. Dr. Höcht (Prof. Dr. Kortstock) Zugelassene Hilfsmittel: Alle eigenen Dauer der Prüfung: 90 Minuten 1 Homogene Halbleiter
3. Halbleiter und Elektronik
3. Halbleiter und Elektronik Halbleiter sind Stoe, welche die Eigenschaften von Leitern sowie Nichtleitern miteinander vereinen. Prinzipiell sind die Elektronen in einem Kristallgitter fest eingebunden
