Leistungsbauelemente
|
|
|
- Carin Kuntz
- vor 9 Jahren
- Abrufe
Transkript
1 I (Kurs-Nr ), apl. Prof. Dr. rer. nat. Fakultät für Mathematik und Informatik Fachgebiet Elektrotechnik und Informationstechnik ( ) D Hagen 1
2 Gliederung Einleitung Physikalische Grundlagen Halbleitertechnologie pin-dioden Bipolare Leistungstransistoren Thyristoren IGBT s Schottky-Dioden Leistungs-MOSFETs 2
3 pn-übergang: Grenzfläche aus p-typ und n-typ Halbleiter p-typ HL n-typ HL Grundstruktur der meisten Halbleiterbauelemente Verständnis des pn-übergangs ist essentiell für das Verständnis von Halbleiter- / n Die physikalische Eigenschaften des Übergangsgebietes bestimmen das Verhalten des pn-übergangs 3 C. Kittel, Einführung in die Festkörperphysik (Oldenbourg, 1980)
4 Vor der Bildung eines pn-übergangs (I): p-typ Si n-typ Si E C E C E F E F E V E V Wir betrachten moderat dotierte Halbleiter (Si) n-typ Si: N D < 0.05N C p-typ Si: N A < 0.05N V Boltzmann-Näherung (ansonsten Fermi-Dirac-Statistik) N C, N V : effektive Zustandsdichten für das Leitungsband und das Valenzband N A, N D : Konzentration der Akzeptoren und Donatoren 4
5 5 Vor der Bildung eines pn-übergangs (II): p-typ Si n-typ Si E C E V E F E C E V E F = = T k E E N N p V F V A exp = = T k E E N N n F C C D exp = h T k m N e C π = h T k m N h V π = A V V F N N T k E E ln = D C F C N N T k E E ln
6 6 Abrupter pn-übergang (einige Formeln): Thermodynamisches Gleichgewicht (keine Spannung angelegt, kein Stromfluss) Elektronenstromdichte: Löcherstromdichte: Das Fermi-Niveau ist über die gesamte Probe konstant x E n x n q T k E n q J F n n n = + = = μ μ 0 x E p x p q T k E p q J F p p p = = = μ μ 0 = 0 x E F
7 Nach der Bildung des pn-übergangs (I): E C p-typ Si n-typ Si Elektronen Im Moment des Kontakts E F E C E F E V Löcher Das Fermi-Niveau der p-dotierten Seite richtet sich mit dem Fermi-Niveau der n-dotierten Seite aus Diffusion der beweglichen Ladungsträger über die Kontaktfläche hinaus wegen Konzentrationsgradient Bildung eines elektrischen Feldes durch nicht mobile ionisierte Dotieratome Raumladungs- oder Verarmungszone E V 7
8 Nach der Bildung des pn-übergangs (III): p-typ Si n-typ Si E C E F E C E F E V E V Verarmungszone (Raumladungszone) Elektronen und Löcher diffundieren so lange über die Kontaktfläche in das p- bzw. n-dotierte Gebiet, bis das Gegenfeld, das sich aus den ionisierten Atomrümpfen aufbaut, die Diffusion unterbindet 8
9 Abrupter pn-übergang (Raumladungszone): p-dotierter Bereich n-dotierter Bereich 9 p-dotierung n-dotierung Verarmungszone (Raumladungszone)
10 Abrupter pn-übergang (Raumladungszone): p-dotierter Bereich n-dotierter Bereich Banddiagramm q V bi = E V bi : Diffusionspotenzial ( built-in voltage ) g ( q V + q V ) n p-dotierung p n-dotierung Verarmungszone (Raumladungszone) 10
11 Abrupter pn-übergang (Raumladungszone): p-dotierter Bereich n-dotierter Bereich Elektrisches Feld Fläche: Diffusionspotenzial Potenzial 11 V bi : Diffusionspotenzial ("built-in voltage") p-dotierung n-dotierung Verarmungszone (Raumladungszone)
12 Abrupter pn-übergang ("built-in" Spannung V bi ): GaAs Si N B : "background" Dotierung der schwächer dotierten Seite Ge V bi jeweils für p + n- und und n + p-übergänge es gilt: V bi (n + p) > V bi (p + n) 12
13 Abrupter pn-übergang (Raumladungszone): Breite der Raumladungszone W D in Abhängigkeit von N B (p + n-übergang aus Silizium bei T = 300 K) 13 Linke y-achse: Breite der Raumladungszone W D Rechte y-achse: Kapazität C der Verarmungszone N B : "background" Dotierung der schwächer dotierten Seite Direkter Zusammenhang zwischen Kapazität und Breite der Raumladungszone
14 Abrupte und graduelle : Abrupter pn-übergang p-dotierter Bereich n-dotierter Bereich flache Dotierung durch Ionenimplantation kurze Diffusionszeiten "linearly graded junction" p-dotierter Bereich n-dotierter Bereich kontinuierlicher Übergang von p-typ nach n-typ tiefe lange Diffusionszeiten 14
15 Gradueller pn-übergang: p-dotierter Bereich n-dotierter Bereich Breite W der Raumladungszone Verteilung der Dotierungsverunreinigungen und der Raumladung 15
16 Gradueller pn-übergang: p-dotierter Bereich n-dotierter Bereich 16 Verteilung des elektrischen Feldes und des Potenzials
17 Gradueller pn-übergang: p-dotierter Bereich n-dotierter Bereich Banddiagramm 17
18 Gradueller pn-übergang: Gradientenspannung V g in Abhängigkeit von dem Dotierungsgradienten (T = 300 K) V g ln ( c a) a: Dotierungsgradient [cm -4 ] GaAs c: Konstanten Si (incl. T) Ge 18
19 Gradueller pn-übergang: Breite und Kapazität der Verarmungszone in Abhängigkeit von dem Dotierungsgradienten (Silizium, 300 K) Bias: V g V = 0.1 V V g + V = 1.0 V V g + V = 10 V V g + V = 100 V 19
20 Strom-Spannungs-Kennlinie des pn-übergangs: pn-übergang Diode Ideale Diodenkennlinie: - lineare Darstellung mit normierten Einheiten 20
21 Strom-Spannungs-Kennlinie des pn-übergangs: pn-übergang Diode Ideale Diodenkennlinie: - halb-logarithmische Darstellung mit normierten Einheiten 21
22 Strom-Spannungs-Kennlinie des pn-übergangs: Ideale Diode Shockley-Modell In Vorwärtsrichtung gepolt In Rückwärtsrichtung gepolt Energiebanddiagramm des pn-übergangs nach dem idealen Shockley-Modell 22
23 Strom-Spannungs-Kennlinie des pn-übergangs: Ideale Diode Shockley-Modell In Vorwärtsrichtung gepolt In Rückwärtsrichtung gepolt Ladungsträgerkonzentrationen über den pn-übergang Nach dem idealen Shockley-Modell 23
24 Strom-Spannungs-Kennlinie des pn-übergangs: pn-übergang Diode Reale Diodenkennlinie - halb-logarithmische Darstellung mit normierten Einheiten Deutliche Abweichungen zur idealen Kennlinie (sowohl in Vorwärts- als auch Rückwärtsrichtung) 24
25 Strom-Spannungs-Kennlinie des pn-übergangs: Reale Diodenkennlinie Vorwärtsrichtung: Generations-Rekombinations-Ströme (a) Diffusionsströme (b) Injektionsströme (c) Serienwiderstand (d) Rückwärtsrichtung: 25 Rekombinations-Generations-Leckströme (e) Durchbruch: Lawinen- ("Avalanche"-) Durchbruch
26 Durchbruch des pn-übergangs: Lawinendurchbruch (einseitig abrupter pn-übergang) Durchbruchspannungen in Abhängigkeit von der Dotierungskonzentration für Ge, Si, GaAs und GaP Oberhalb der gestrichelten Linie überwiegt Tunnel-Durchbruch (sehr hohe Dotierungskonzentrationen) 26
27 Durchbruch des pn-übergangs: Lawinendurchbruch ("linearly graded junction") Durchbruchspannungen in Abhängigkeit von der Dotierungskonzentration für Ge, Si, GaAs und GaP Oberhalb der gestrichelten Linie überwiegt Tunnel-Durchbruch (sehr hohe Dotierungskonzentrationen) 27
28 Durchbruch des pn-übergangs: Lawinendurchbruch Vergleich: Einseitig abrupter pn-übergang und "linearly graded junction" Durchbruchspannungen Abrupter pn-übergang Konzentrationsgradienten Linearly Graded Junction 28
29 Durchbruch des pn-übergangs: Lawinendurchbruch (einseitig abrupter pn-übergang) Weite der Verarmungs- Zone beim Durchbruch Maximales Feld beim Durchbruch Ge, Si, GaAs, GaP Abhängigkeit von der Dotierungskonzentration 29
30 Durchbruch des pn-übergangs: Lawinendurchbruch ("linearly graded junction") Weite der Verarmungs- Zone beim Durchbruch Maximales Feld beim Durchbruch Ge, Si, GaAs, GaP 30 Abhängigkeit von der Dotierungskonzentration Konzentrationsgradienten
31 Durchbruch des pn-übergangs: Lawinendurchbruch Vergleich: Einseitig abrupter pn-übergang und "linearly graded junction Weite der RLZ, Feld beim Durchbruch Abrupter pn-übergang Linearly Graded Junction Konzentrationsgradienten 31
32 Durchbruch des pn-übergangs: Lawinendurchbruch (eindiffundierter pn-übergang) Durchbruchspannung bei einem diffundierten pn-übergang für verschiedene Dotierungsgradienten Flache Gradienten erlauben höhere Durchbruchspannungen bei höheren Dotierkonzentrationen Widerstand kann in Durchlassrichtung reduziert werden 32
33 Durchbruch des pn-übergangs: Lawinendurchbruch (einseitig abrupter pnn + -Übergang) Durchbruchspannungen für pnn + - Übergang Unterschiedliche Basisweiten w 33
34 Gliederung Einleitung Physikalische Grundlagen Halbleitertechnologie pin-dioden Bipolare Leistungstransistoren Thyristoren IGBT s Schottky-Dioden Leistungs-MOSFETs 34
35 35 Gliederung Pause
Leistungsbauelemente
I (Kurs-Nr. 21645), apl. Prof. Dr. rer. nat. Fakultät für Mathematik und Informatik Fachgebiet Elektrotechnik und Informationstechnik ( ) D-58084 Hagen 1 Gliederung Einleitung Physikalische Grundlagen
Leistungsbauelemente
II (Kurs-Nr. 21646), apl. Prof. Dr. rer. nat. Fakultät für Mathematik und Informatik Fachgebiet Elektrotechnik und Informationstechnik ( ) D-58084 Hagen 1 Gliederung Einleitung Physikalische Grundlagen
1 Metallisierung. 1.1 Der Metall-Halbleiter-Kontakt Kontaktierung von dotierten Halbleitern. 1.1 Der Metall-Halbleiter-Kontakt
1 isierung 1.1 Der -Halbleiter-Kontakt 1.1.1 Kontaktierung von dotierten Halbleitern Nach der Herstellung der Transistoren im Siliciumsubstrat müssen diese mittels elektrischer Kontakte miteinander verbunden
Das elektrochemische Potential
11.1 Das elektrochemische Potential Die Trennung von Drift und Diffusionsströmen ist nur ein Hilfsmittel zur quantitativen Modellierung (ähnlich wie bei der Überlagerung von verschiedenen Kräften)! Woher
1. Diode und Transistor
1. Diode und Transistor Vergleichen Sie Diode und Transistor aus Bild 1. a) Wie groß sind jeweils die Elektronenströme? b) Wie groß sind jeweils die Löcherströme? E B C 18-3 N = A 17-3 10 cm 16-3 Basislänge
Leistungsbauelemente
, apl. Prof. Dr. rer. nat. Fakultät für Mathematik und Informatik Fachgebiet Elektrotechnik und Informationstechnik ( ) D-58084 Hagen 1 Vorbemerkung Vorlesung Leistungsbaulemente Zweitägige kompakte Blockvorlesung
1 Leitfähigkeit in Festkörpern
1 Leitfähigkeit in Festkörpern Elektrische Leitfähigkeit ist eine physikalische Größe, die die Fähigkeit eines Stoffes angibt, elektrischen Strom zu leiten. Bändermodell Die Leitfähigkeit verschiedener
PN Übergang. Sebastian Schwerdhöfer. Hauptseminar zu Grundlagen der Experimentellen Physik im SS Einstieg. Ladungsträgerdichte.
PN Übergang Sebastian Schwerdhöfer der Shockley Hauptseminar zu Grundlagen der Experimentellen Physik im SS. 2012 Gliederung Ziel: Shockley der Diodenkennlinie ) ) U I U) = I S exp 1 n U T Weg: Dichte
Grundlagen der Rechnertechnologie Sommersemester Vorlesung Dr.-Ing. Wolfgang Heenes
Grundlagen der Rechnertechnologie Sommersemester 2010 5. Vorlesung Dr.-Ing. Wolfgang Heenes 18. Mai 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 1 Inhalt 1. Aufbau der Materie 2. Energiebändermodell
3 Halbleiter : pn-übergang, Solarzelle, Leuchtdiode. 3.1 Allgemeines F 3.1
1 3 Halbleiter : pn-übergang, Solarzelle, Leuchtdiode 3.1 Allgemeines F 3.1 N isolierte Atome werden zum Festkörper (FK) zusammengeführt Wechselwirkung der beteiligten Elektronen Aufspaltung der Energieniveaus
Kontakte zwischen Metallen und verschiedenen Halbleitermaterialien
UniversitätQOsnabrück Fachbereich Physik Dr. W. Bodenberger Kontakte zwischen Metallen und verschiedenen Halbleitermaterialien Betrachtet man die Kontakstelle zweier Metallischer Leiter mit unterschiedlichen
Atom-, Molekül- und Festkörperphysik
Atom-, Molekül- und Festkörperphysik für LAK, SS 2013 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 10. Vorlesung, 27. 6. 2013 Halbleiter, Halbleiter-Bauelemente Diode, Solarzelle,
Halbleiter. Das Herz unserer multimedialen Welt. Bastian Inselmann - LK Physik
Halbleiter Das Herz unserer multimedialen Welt Inhalt Bisherig Bekanntes Das Bändermodell Halbleiter und ihre Eigenschaften Dotierung Anwendungsbeispiel: Funktion der Diode Bisher Bekanntes: Leiter Isolatoren
Physik und Technologie der Halbleiterbauelemente
Name, Vorname: Punkte(20): Matr.Nr.: Note: Physik und Technologie der Halbleiterbauelemente 1. Technologie (6 Punkte) 1.1 Zeichnen Sie einen planaren n-kanal-mos-transistor im Querschnitt. a) Bezeichnen
Hausaufgaben zum Praktikum Halbleiterbauelemente der Hochleistungselektronik
Hausaufgaben zum Praktikum Halbleiterbauelemente der Hochleistungselektronik Die folgenden Aufgaben dienen der Vorbereitung auf das Praktikum Halbleiterbauelemente der Hochleistungselektronik. Bitte bearbeiten
4. Dioden Der pn-übergang
4.1. Der pn-übergang Die Diode ist ein Halbleiterbauelement mit zwei Anschlüssen: Eine Diode besteht aus einem Halbleiterkristall, der auf der einen Seite p- und auf der anderen Seite n-dotiert ist. Die
11. Elektronen im Festkörper
11. Elektronen im Festkörper 11.1 Elektrische Leitung in Festkörpern 11.2 Freies Elektronengas im Sommerfeld- Modell 11.3 Bändermodell des Festkörpers 11.4 Metalle, Isolatoren und Halbleiter WS 2013/14
Inhaltsverzeichnis. Inhaltsverzeichnis...VII. 1 Besonderheiten leistungselektronischer Halbleiterbauelemente...1
VII Inhaltsverzeichnis Inhaltsverzeichnis...VII 1 Besonderheiten leistungselektronischer Halbleiterbauelemente...1 2 Halbleiterphysikalische Grundlagen...5 2.1 Eigenschaften der Halbleiter, physikalische
TRANSISTORKENNLINIEN 1 (TRA 1) DANIEL DOLINSKY UND JOHANNES VRANA
TRANSISTORKENNLINIEN 1 (TRA 1) DANIEL DOLINSKY UND JOHANNES VRANA Inhaltsverzeichnis 1. Einleitung... 1 2. Messverfahren... 1 3. Bemerkung zur Fehlerrechnung... 1 4. Stromverstärkungsfaktor... 2 5. Eingangskennlinie...
Halbleiter und Transistoren - Prinzip und Funktionsweise
Halbleiter und Transistoren - Prinzip und Funktionsweise Reine Halbleitermaterialien, wie Silizium (Si) oder Germanium (Ge) sind bei Zimmertemperatur fast Isolatoren: bzw. bei sinkender Temperatur HL Isolator
= e kt. 2. Halbleiter-Bauelemente. 2.1 Reine und dotierte Halbleiter 2.2 der pn-übergang 2.3 Die Diode 2.4 Schaltungen mit Dioden
2. Halbleiter-Bauelemente 2.1 Reine und dotierte Halbleiter 2.2 der pn-übergang 2.3 Die Diode 2.4 Schaltungen mit Dioden Zu 2.1: Fermi-Energie Fermi-Energie E F : das am absoluten Nullpunkt oberste besetzte
Halbleiter, Dioden. wyrs, Halbleiter, 1
Halbleiter, Dioden Halbleiter, 1 Inhaltsverzeichnis Aufbau & physikalische Eigenschaften von Halbleitern Veränderung der Eigenschaften mittels Dotierung Vorgänge am Übergang von dotierten Materialen Verhalten
Halbleiter. pn-übergang Solarzelle Leuchtdiode
Halbleiter pn-übergang Solarzelle Leuchtdiode Energie der Elektronenzustände von Natrium als Funktion des Abstandes a der Natriumatome a 0 ist der Abstand im festen Natrium 3.1a Spezifischer elektrischer
Charakteristikum: Leitfähigkeit nimmt in der Regel mit wachsender Temperatur zu (d. h. Widerstand nimmt ab) - im Gegensatz zu Metallen!
Prof. Dr. R. Heilmann, Halbleiterphysik für Elektroingenieure, Seite 1 5. Halbleiterphysik 5.1. Einführung Halbleiter (HL) = Grundmaterialien der modernen Elektronik = Festkörper mit elektrischer Leitfähigkeit
11. Elektronen im Festkörper
11. Elektronen im Festkörper 11.1 Elektrische Leitung in Festkörpern 11.2 Freies Elektronengas im Sommerfeld- Modell 11.3 Bändermodell des Festkörpers 11.4 Metalle, Isolatoren und Halbleiter 1 11.4 Metalle,
Grundlagen zum Versuch Aufbau einer Messkette für den Nachweis kleinster Ladungsmengen
Grundlagen zum Versuch Aufbau einer Messkette für den Nachweis kleinster Ladungsmengen III.1 Halbleiter: Einzelne Atome eines chemischen Elements besitzen nach dem Bohrschen Atommodell einen positiv geladenen
Halbleiterdioden. Grundlagen und Anwendung. Von Reinhold Paul. ü VEB VERLAG TECHNIK BERLIN
Halbleiterdioden Grundlagen und Anwendung Von Reinhold Paul ü VEB VERLAG TECHNIK BERLIN INHALTSVERZEICHNIS Schreibweise und Formelzeichen der wichtigsten Größen 15 1. Grundeigenschaften von Festkörperbauelementen
Aufgabensammlung Halbleiterbauelemente I
Aufgabensammlung Halbleiterbauelemente I 1. Berechnen Sie die Elektronen- und Löcherkonzentrationen und ihr Verhältnis bei einer Temperatur von T = 300K für: (a) eine p-leitende Si-Probe mit dem spezifischen
Detektoren in der Kern- und Teilchenphysik Szintillationsdetektoren Ionisationsdetektoren Halbleiterdetektoren
Wechselwirkung geladener Teilchen in Materie Physik VI Sommersemester 2008 Detektoren in der Kern- und Teilchenphysik Szintillationsdetektoren Ionisationsdetektoren Halbleiterdetektoren Szintillationsdetektoren
Elektronische Bauelemente
Elektronische Bauelemente Potenzial durch Elementarladungen 0 2-2 4-4 6-6 8-8 10-10 12-12 14-14 -4-4 } } U[eV] Potenzial in Volt 0 } -3-3 -2-2 -1-1 0 0 1 1 Abstand zum Rand in nm 2 2 33 frei Strom leitend
Abb. 1 Solarzellen PHOTOVOLTAIK. Stefan Hartmann
Abb. 1 Solarzellen PHOTOVOLTAIK Stefan Hartmann 1 Gliederung Einführung Grundlegendes zu Halbleitern Generation und Rekombination pn-übergang Zusammenfassung: Was läuft ab? Technisches 2 Einführung Abb.
Leistungsbauelemente
II (Kurs-Nr. 21646), apl. Prof. Dr. rer. nat. Fakultät für Mathematik und Informatik Fachgebiet Elektrotechnik und Informationstechnik ( ) D-58084 Hagen 1 Gliederung Einleitung Physikalische Grundlagen
Halbleiter-Leistungsbauelemente
Halbleiter-Leistungsbauelemente Physik, Eigenschaften, Zuverlässigkeit Bearbeitet von Josef Lutz 1. Auflage 2012. Buch. xxii, 383 S. Hardcover ISBN 978 3 642 29795 3 Format (B x L): 16,8 x 24 cm Gewicht:
Lage des Ferminiveaus beim intrinsischen HL
9.1 Lage des Ferminiveaus beim intrinsischen HL n W L W F = NL exp exp kt B kt B W V W F = p = NV exp exp kt B kt B Auflösen nach der exp-funktion: Mit Auflösen nach W F : 3 * N 2 V m h = * NL me 2W F
Transistorkennlinien 1 (TRA 1) Gruppe 8
Transistorkennlinien 1 (TRA 1) Gruppe 8 1 Einführung Dieser Versuch beschäftigt sich mit Transistoren und ihren Kennlinien. Ein Transistor besteht aus drei aufeinanderfolgenden Schichten, wobei die äußeren
Versuchsprotokoll. Diodenkennlinien und Diodenschaltungen. Dennis S. Weiß & Christian Niederhöfer. SS 98 / Platz 1. zu Versuch 2
Dienstag, 5.5.1998 SS 98 / Platz 1 Dennis S. Weiß & Christian Niederhöfer Versuchsprotokoll (Elektronik-Praktikum) zu Versuch 2 Diodenkennlinien und Diodenschaltungen 1 Inhaltsverzeichnis 1 Problemstellung
Silizium- Planartechnologie
Hans Günther Wagemann, Tim Schönauer Silizium- Planartechnologie Grundprozesse, Physik und Bauelemente Teubner B. G.Teubner Stuttgart Leipzig Wiesbaden Vorwort V Übersicht über den Stoff des Buches V Inhaltsverzeichnis
Transistorkennlinien 1 (TRA 1)
Physikalisches Praktikum Transistorkennlinien 1 (TRA 1) Ausarbeitung von: Manuel Staebel 2236632 Michael Wack 2234088 1. Messungen, Diagramme und Auswertungen Der Versuch TRA 1 soll uns durch das Aufstellen
Fototransistor. Der Fototransistor. von Philip Jastrzebski. Betreuer: Christian Brose Philip Jastrzebski 1
Der Fototransistor von Philip Jastrzebski Betreuer: Christian Brose 17.11.2008 Philip Jastrzebski 1 Gliederung: I. Aufbau & Funktionsweise Fotodiode Fototransistor V. Vor- und Nachteile VII. Bsp: Reflexkoppler
Beispielklausur 3 - Halbleiterbauelemente. Aufgabe 1: Halbleiterphysik I Punkte
Aufgabe 1: Halbleiterphysik I Punkte 1.1) Skizzieren Sie das Bändermodell eines mit Bor (dritte Hauptgruppe) dotierten Halbleiters. Zeichnen Sie das Störstellenniveau (ca. 100meV oberhalb der Valenzbandenergie),
Mikroprozessor - und Chiptechnologie
Mikroprozessor - und Chiptechnologie I 1 1 Halbleiterfunktionen 2 8 Halbleiterbauelemente 8 Halbleiterbauelemente 8.1 Grundlagen 8.2 Dioden 8.3 Transistoren 8.4 Einfache Grundschaltungen Als halbleitend
Peter Iskra (Autor) Entwicklung von siliziumbasierten Transistoren für den Einsatz bei hohen Temperaturen in der Gassensorik
Peter Iskra (Autor) Entwicklung von siliziumbasierten Transistoren für den Einsatz bei hohen Temperaturen in der Gassensorik https://cuvillier.de/de/shop/publications/89 Copyright: Cuvillier Verlag, Inhaberin
Inhaltsverzeichnis. Formelzeichen und Naturkonstanten... XIII
Formelzeichen und Naturkonstanten... XIII 1 Halbleiter-Grundlagen...1 1.1 Halbleitermaterialien...1 1.2 Bindungsmodell...3 1.2.1 Gitterstruktur...3 1.2.2 Eigenleitung...4 1.2.3 Störstellenleitung...7 1.3
Strom und Spannungsmessung, Addition von Widerständen, Kirchhoffsche Regeln, Halbleiter, p-n-übergang, Dioden, fotovoltaischer Effekt
Versuch 27: Solarzellen Seite 1 Aufgaben: Vorkenntnisse: Lehrinhalt: Literatur: Messung von Kurzschlussstrom und Leerlaufspannung von Solarzellen, Messung der I-U-Kennlinien von Solarzellen, Bestimmung
Leistungsbauelemente
I (Kurs-Nr. 21645), apl. Prof. Dr. rer. nat. Fakultät für Mathematik und Informatik Fachgebiet Elektrotechnik und Informationstechnik ( ) D-58084 Hagen 1 Gliederung Einleitung Physikalische Grundlagen
4.2 Halbleiter-Dioden und -Solarzellen
4.2 Halbleiter-Dioden und -Solarzellen Vorausgesetzt werden Kenntnisse über: Grundbegriffe der Halbleiterphysik, pn-übergang, Raumladungszone, Sperrschichtkapazität, Gleichrichterkennlinie, Aufbau und
Einführung in die optische Nachrichtentechnik. Photodioden (PH)
M E F K M PH/1 Photodioden (PH) Zur Detektion des optischen Signals werden in der optischen Nachrichtentechnik vorwiegend Halbleiterphotodioden eingesetzt und zwar insbesondere pin-dioden sowie Lawinenphotodioden.
Wir wünschen Ihnen bei der Bearbeitung viel Erfolg!
Semesterabschlussklausur Wintersemester 200/2007: WERKSTOFFE UND BAUELEMENTE DER ELEKTROTECHNIK I (Bauelemente) Name: Matrikelnummer: Es sind außer Ihrem Schreibzeug, einfachem Zeichenmaterial, einem nicht
Beispielklausur 1 - Halbleiterbauelemente. Aufgabe 1: Halbleiterphysik I Punkte
Aufgabe 1: Halbleiterphysik I 1.1) Skizzieren Sie das Bändermodell eines p-halbleiters. Zeichnen Sie das Störstellenniveau, das intrinsische Ferminiveau und das Ferminiveau bei Raumtemperatur, sowie die
Halbleiterbauelemente
Halbleiterbauelemente Martin Adam 9. November 2005 Inhaltsverzeichnis 1 Versuchsbeschreibung 2 1.1 Ziel................................... 2 1.2 Aufgaben............................... 2 2 Vorbetrachtungen
Stromdichten in Halbleitermaterialien
Stromdichten in Halbleitermaterialien Berechnung der Leitfähigkeit: j = qnµ E ρ(w), ρ(w), Mögliche Sprachverwirrungen und Fallstricke: Energien: E bzw. W Bandindizies: C bzw. L Zustandsdichten: N(W), ρ(w),
8. Halbleiter-Bauelemente
8. Halbleiter-Bauelemente 8.1 Reine und dotierte Halbleiter 8.2 der pn-übergang 8.3 Die Diode 8.4 Schaltungen mit Dioden 8.5 Der bipolare Transistor 8.6 Transistorschaltungen Zweidimensionale Veranschaulichung
Elektromagnetische Feldtheorie 1
Diplom-Vorprüfung Elektrotechnik und Informationstechnik Termin Wintersemester 08/09 Elektromagnetische Feldtheorie 1 Mittwoch, 04. 03. 2009, 9:00 10:00 Uhr Zur Beachtung: Zugelassene Hilfsmittel: Originalskript
Übersicht über die Vorlesung Solarenergie
Übersicht über die Vorlesung Solarenergie 5.1 1. Einleitung 2. Die Sonne als Energiequelle 3. Halbleiterhysikalische Grundlagen 4. Kristalline n-solarzellen 5. Elektrische Eigenschaften 5.1 Kennlinie n-übergang
Kapitel 7 Halbleiter/Bauelemente
Kapitel 7 Halbleiter/Bauelemente Bändermodel, Durch Wechselwirkung der Elektronen über mehrere Atomabstände kommt es zur Ausbildung von Energiebändern (vgl. diskrete Energien Bohr sche Atommodell) Valenzband=leicht
Versuch 33: Photovoltaik - Optische und elektrische Charakterisierung von Solarzellen Institut für Technische Physik II
Versuch 33: Photovoltaik - Optische und elektrische Charakterisierung von Solarzellen Institut für Technische Physik II Photovoltaik:Direkte Umwandlung von Strahlungsenergie in elektrische Energie Anregung
Die Potentialbarriere. Bardeen - Shockley - Brattain (Bell Labs.)
Die Bardeen - Shockley - Brattain (Bell Labs.) Wiederholung Bsp.: Si: E F =560meV-12meV Übersicht Generation und Rekombination Direkte Rekombination Kontinuitätsgleichung Haynes Shockley Experiment Der
Grundlagen der Technischen Informatik
Grundlagen der Technischen Informatik Dr. Wolfgang Koch Friedrich Schiller Universität Jena Fakultät für Mathematik und Informatik Rechnerarchitektur [email protected] Inhalt Grundlagen der Techn.
AFu-Kurs nach DJ4UF. Technik Klasse A 05: Die Diode und ihre Anwendungen. Amateurfunkgruppe der TU Berlin. WiSe 2017/18 SoSe 2018
Technik Klasse A 05: Die und ihre Anwendungen Amateurfunkgruppe der TU Berlin http://www.dk0tu.de WiSe 2017/18 SoSe 2018 cbea This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike
32. n oder p? (Ü) Sie müssen die Dotierung in einem unbekannten Halbleiterplättchen bestimmen.
Lichttechnisches Institut Universität Karlsruhe Prof. Dr. rer. nat. Uli Lemmer / Dipl.-Ing. Felix Glöckler Kaiserstrasse 12 76131 Karlsruhe Festkörperelektronik 6. Übungsblatt 13. Juli 2006 Möglicher Abgabetermin:
Sonnenenergie: Photovoltaik. Physik und Technologie der Solarzelle
Sonnenenergie: Photovoltaik Physik und Technologie der Solarzelle Von Prof. Dr. rer. nat. Adolf Goetzberger Dipl.-Phys. Bernhard Voß und Dr. rer. nat. Joachim Knobloch Fraunhofer-Institut für Solare Energiesysteme
Originaldokument enthält an dieser Stelle eine Grafik! Original document contains a graphic at this position!
FUNKTIONSWEISE Thema : HALBLEITERDIODEN Die Eigenschaften des PN-Überganges werden in Halbleiterdioden genutzt. Die p- und n- Schicht befinden sich einem verschlossenen Gehäuse mit zwei Anschlussbeinen.
12. Vorlesung. Logix Schaltungsanalyse Elektrische Schaltelemente Logikschaltungen Diode Transistor Multiplexer Aufbau Schaltungsrealisierung
2. Vorlesung Logix Schaltungsanalyse Elektrische Schaltelemente Logikschaltungen Diode Transistor Multiplexer Aufbau Schaltungsrealisierung Campus-Version Logix. Vollversion Software und Lizenz Laboringenieur
Halbleiterlaser. Seminar Laserphysik
Halbleiterlaser Seminar Laserphysik 17.06.15 Gliederung a) Halbleiter Eigenschaften Dotierung pn Übergang LED b) Diodenlaser Ladungsinversion Bauformen Strahlprofil Leistungsangaben c) Anwendungsgebiete
2 Diode. 2.1 Formelsammlung. Diffusionsspannung Φ i = kt q ln N AN D n 2 i (2.1) Überschussladungsträgerdichten an den Rändern der Raumladungszone
2 Diode 2.1 Formelsammlung Diffusionsspannung Φ i = kt q ln N AN D n 2 i (2.1) Überschussladungsträgerdichten an den Rändern der Raumladungszone ( q ) ] p n( n )=p n0 [ep kt U pn 1 bzw. (2.2) ( q ) ] n
Halbleitergrundlagen
Halbleitergrundlagen Energie W Leiter Halbleiter Isolator Leitungsband Verbotenes Band bzw. Bandlücke VB und LB überlappen sich oder LB nur teilweise mit Elektronen gefüllt Anzahl der Elektronen im LB
8.5. Störstellenleitung
8.5. Störstellenleitung Hochreiner HL ist auch bei Zimmertemperatur schlecht leitfähig geringste Verunreinigungen ändern das dramatisch Frühe Forschung an HL gab widersprüchliche Ergebnisse, HL galten
Praktikum Materialwissenschaft II. Solarzellen
Praktikum Materialwissenschaft II Solarzellen Gruppe 4: Anja Habereder Rebecca Hentschel Jonathan Griebel Betreuer: Eduard Gunnesch 22.01.2009 Inhaltsverzeichnis 1 Einleitung 2 2 Grundlagen 2 2.1 Halbleiter...............................
Welche Zustände sind denn eigentlich besetzt?
elche Zustände sind denn eigentlich besetzt? elche Zustände sind denn eigentlich besetzt? ( 0 ) 12 9 -im Prinzip sollte das Ganze ähnlich wie beim Atom erfolgen 6 - Besetzung von unten nach oben 3 -...wie
Warum Halbleiter verstehen?
7.1 Warum Halbleiter verstehen? In der Vorlesung Elektronische Schaltungen haben Sie die Kennlinien verschiedener Halbleiterbauelemente kennen gelernt: Dioden, Bipolare Transistoren, Feldeffekttransistoren
Physikalisches Grundpraktikum E7 Diodenkennlinie und PLANCK-Konstante
E7 Diodenkennlinie und PLANCK-Konstante Aufgabenstellung: Bestimmen e die Schleusenspannungen verschiedenfarbiger Leuchtdioden aus den Strom- Spannungs-Kennlinien. Bestimmen e anhand der Emissionswellenlängen
Geschichte der Halbleitertechnik
Geschichte der Halbleitertechnik Die Geschichte der Halbleitertechnik beginnt im Jahr 1823 als ein Mann namens v. J. J. Berzellus das Silizium entdeckte. Silizium ist heute das bestimmende Halbleitermaterial
Friedrich-Alexander-Universität Erlangen-Nürnberg. Lehrstuhl für Elektronische Bauelemente. Prof. Dr.-Ing. H. Ryssel. vhb-kurs Halbleiterbauelemente
Friedrich-Alexander-Universität Prof. Dr.-Ing. H. Ryssel vhb-kurs Halbleiterbauelemente Übungsaufgaben Teil 3: Feldeffekttransistoren Übung zum vhb-kurs Halbleiterbauelemente Seite 15 Feldeffekttransistoren
Grundlagen der Rechnerarchitektur
Grundlagen der Rechnerarchitektur [CS3100.010] Wintersemester 2014/15 Tobias Scheinert / (Heiko Falk) Institut für Eingebettete Systeme/Echtzeitsysteme Ingenieurwissenschaften und Informatik Universität
Skriptum zur Vorlesung Elektronik 1
Skriptum zur Vorlesung Elektronik 1 Inhalte Modul 1 (Januar März) Dr.-Ing. Jens Timmermann Ausgabe: Januar 2012, Version 2.0 Elektronik 1; Dr. Ing. Jens Timmermann - 1 Vorbemerkungen Dieses Skript richtet
Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik
Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik Versuch 5 Untersuchungen an Halbleiterdioden Teilnehmer: Name Vorname Matr.-Nr. Datum der
1. Übung: Diffusionsverfahren
Physik und Technologie der Halbleiterbauelemente WS 4/5 1 Übung: Diffusionsverfahren 1) Diffusionsgleichung a) Welche zwei physikalischen Ursachen hat die Diffusion? b) Leite die eindimensionale Diffusionsgleichung
Hall Effekt und Bandstruktur
Hall Effekt und Bandstruktur Themen zur Vorbereitung (relevant im Kolloquium zu Beginn des Versuchstages und für den Theorieteil des Protokolls): Entstehung von Bandstruktur. Halbleiter Bandstruktur. Dotierung
15. Vom Atom zum Festkörper
15. Vom Atom zum Festkörper 15.1 Das Bohr sche Atommodell 15.2 Quantenmechanische Atommodell 15.2.1 Die Hauptquantenzahl n 15.2.2 Die Nebenquantenzahl l 15.2.3 Die Magnetquantenzahl m l 15.2.4 Die Spinquantenzahl
Elektrische Eigenschaften von Festkörpern
Elektrische Eigenschaften von n Quellennachweis zu den Abbildungen R. Müller, Grundlagen der Halbleiter-Elektronik. C.R. Bolognesi, Vorlesungsunterlagen. W.C. Dash, R. Newman, Phys. Rev., 99, 1955, 1151.
Für alle Rechnungen aller Aufgabenteile gilt: T = 300 K und n i = 1 10 10 cm 3 sofern nicht anders angegeben.
Für alle Rechnungen aller Aufgabenteile gilt: T = 300 K und n i = 1 10 10 cm 3 sofern nicht anders angegeben. Aufgabe 1: Halbleiterphysik I Punkte 1.1) Skizzieren Sie das Bändermodell eines p-halbleiters.
Analoge und digitale Signale
Analoge und digitale Signale Binär Erster binärer Zustand Zweiter binärer Zustand Schalter geschlossen Schalter geöffnet Impuls vorhanden Impuls nicht vorhanden Transistor leitend Transistor sperrt Spannung
