Technikseminar SS2012
|
|
|
- Mareke Kaufman
- vor 9 Jahren
- Abrufe
Transkript
1 Technikseminar SS2012 ECC - Elliptic Curve Cryptography Kryptosysteme basierend auf elliptischen Kurven
2 Gliederung Was ist ECC? ECC und andere Verfahren Diffie-Hellman-Schlüsselaustausch Funktionsweise Protokoll Elliptische Kurven Was ist eine elliptische Kurve Punkt Addition/Multiplikation Endliche Gruppen DL-Problem an ECC Sicherheit ECC (Vergleich mit RSA) 2
3 Was ist ECC? Modernes, asymmetrisches Kryptographieverfahren Basiert auf dem Problem des diskreten Logarithmus Einwegfunktionen Anfänge in den 1980er Jahren Vorgeschlagen von Victor Miller und Neal Koblitz Unterschied zu anderen Kryptosystemen: Zur Verschlüsselung werden Punkte genutzt anstatt einfache Zahlen! 3
4 ECC und andere Verfahren DH Protokolle werden mit ECC modifiziert ECDH zum Schlüsselaustausch ECDSA als Variante der Digitalen Signatur Vorteil: Keine effektiven Algorithmen zur Überwindung der Einwegfunktion des ECC bekannt 4
5 Diffie-Hellman-Schlüsselaustausch (mit natürlichen Zahlen) Bildung endlicher Gruppen über Primzahlen durch Restwertberechnung Wählen einer Primzahl p Gruppe G(p) ist endlich und sich wiederholend Wählen eines Elements α α a r mod p für a=1... Beispiel Gruppe 5
6 Vorgehensweise Wählen einer öffentlichen Primzahl p Wählen eines öffentlichen Generators α Wählen des privaten Schlüssels a und erzeugen des Restwertes A in α a A mod p A stellt den öffentlichen Schlüssel dar Beide Parteien tauschen ihre öffentlichen Schlüssel A (für Alice) und B (für Bob) aus Alice' Rechenoperation: B a K mod p Bobs Rechenoperation: A b K mod p Gemeinsamer Schlüssel K bestimmt Für beide Parteien gleich 6
7 Elliptische Kurven Grundform der elliptischen Kurve: E: y²=x³+ax+b Є R² Kurve über endlichem Körper: G f (F p )= y²=x³+ax+b mod p -Hinweis: a,b Є F p Nur eine endliche Menge Punkte auf der Kurve lösen die Gleichung Wie finde ich die Punkte auf der Kurve? 7
8 Punktverdoppelung Mit nur einem bekannten Punkt einen weiteren Punkt auf der Kurve erzeugen Graphisch: Schnittpunkt der Tangente an P mit Kurve an x-achse spiegeln Rechnerisch: x 3 =s²-x 1 -x 2 mod p y 3 =s(x 1 -x 3 )-y 1 mod p Bei Punktverdoppelung: S= (3x 1 2 +a) / 2y 1 8
9 Punktaddition Mit 2 bekannten Punkten einen weiteren erzeugen Graphisch: Schnittpunkt der Geraden durch P u. Q mit Kurve an der x-achse spiegeln Rechnerisch: x 3 =s²-x 1 -x 2 mod p y 3 =s(x 1 -x 3 )-y 1 mod p Bei Punktaddition: S=(y 2 -y 1 ) / (x 2 -x 1 ) Steigung der Geraden 9
10 G f (F p ) Ermitteln aller Punkte auf der Kurve wiederholtes Anwenden der Operationen Zusätzliche neutrales Element: Abstrakter Punkt bei y=+/- So dass P+(-P)=Ϭ Zusammen mit den Punkten der Kurve ergibt sich eine endliche, wiederkehrende Gruppe Beispiel 10
11 DL-Problem bei ECC Wahl des geheimen Schlüssels d Punkt P(x,y) mit d multiplizieren dp= P+P+P+P+...+P= T Erzeugtes Element T kann als öffentlich Schlüssel genutzt werden Unmöglich von T auf d zu schließen ohne alle Elemente der Kurve auszurechnen 11
12 Verschlüsselung Zu verschlüsselnde Nachricht M ist eine ganze Zahl Erzeugen eines Kurvenpunktes für M x=mk+i K so wählen, dass sie p nicht teilt und nicht zu klein ist i variieren bis Kurvenpunkt gefunden ist (i < k) Wahrscheinlichkeit keinen Punkt zu finden ist 2 -k Anschließend kann der Punkt verschlüsselt werden (dp=t) 12
13 Beispiel ECDH Parameter E, P und p festgelegt und öffentlich E: y²=x³+2x+2 mod 17 P=(5,1) 13
14 Beispiel ECDH Gemeinsamer Schlüssel T kann als Sitzungsschlüssel genutzt werden I.d.R. Wird der Hash-Wert von x genutzt 14
15 Sicherheit ECC (Vergleich RSA) Kompliziertere Rechnungen als RSA aber kürzere Schlüssel erforderlich Keine effektiven Algorithmen zur Lösung des DL-Problems in ECC Der beste Algorithmus hat exponentielle Laufzeit 15
16 16
17 Zusammenfassung Effizientes Verfahren Basiert auf DL-Problem: Punkte auf Kurve Asymmetrische Kryptographie Hält mit der Entwicklung der Computerindustrie mit Kombinierbar mit anderen Verfahren 17
18 Quellenverzeichnis Cristof Paar, Jan Pelzl, 2010 Understanding Cryptography, Springer Verlag Anette Werner, 2002 Elliptische Kurven in der Kryptographie, Springer Verlag Albrecht Beutelspacher, Jörg Schwenk, Klaus-Dieter Wolfenstetter, 2006 Moderne Verfahren der Kryptographie, vieweg Verlag 18
Elliptic Curve Cryptography
Elliptic Curve Cryptography Institut für Informatik Humboldt-Universität zu Berlin 10. November 2013 ECC 1 Aufbau 1 Asymmetrische Verschlüsselung im Allgemeinen 2 Elliptische Kurven über den reellen Zahlen
Kryptographie mit elliptischen Kurven
Kryptographie mit elliptischen Kurven Dr. Dirk Feldhusen SRC Security Research & Consulting GmbH Bonn - Wiesbaden Inhalt Elliptische Kurven! Grafik! Punktaddition! Implementation Kryptographie! Asymmetrische
Kryptographie und Komplexität
Kryptographie und Komplexität Einheit 5 Kryptosysteme auf der Basis diskreter Logarithmen 1. Diffie Hellman Schlüsselaustausch 2. El Gamal Systeme 3. Angriffe auf Diskrete Logarithmen 4. Elliptische Kurven
Kryptographie und elliptische Kurven - oder: Wie macht man Mathematikern das Leben schwer?
Kryptographie und elliptische Kurven - oder: Wie macht man Mathematikern das Leben schwer? Harold Gutch [email protected] KNF Kongress 2007, 25. 11. 2007 Outline Worum geht es überhaupt? Zusammenhang
Einführung in die asymmetrische Kryptographie
!"#$$% Einführung in die asymmetrische Kryptographie Dipl.-Inform. Mel Wahl Prof. Dr. Christoph Ruland Universität Siegen Institut für digitale Kommunikationssysteme Grundlagen Verschlüsselung Digitale
Proseminar Schlüsselaustausch (Diffie - Hellman)
Proseminar Schlüsselaustausch (Diffie - Hellman) Schlüsselaustausch Mathematische Grundlagen Das DH Protokoll Sicherheit Anwendung 23.06.2009 Proseminar Kryptographische Protokolle SS 2009 : Diffie Hellman
Asymmetrische Kryptographie u
Asymmetrische Kryptographie u23 2015 Simon, Florob e.v. https://koeln.ccc.de Cologne 2015-10-05 1 Zahlentheorie Modulare Arithmetik Algebraische Strukturen Referenzprobleme 2 Diffie-Hellman Diffie-Hellman-Schlüsselaustausch
Public-Key-Verschlüsselung und Diskrete Logarithmen
Public-Key-Verschlüsselung und Diskrete Logarithmen Carsten Baum Institut für Informatik Universität Potsdam 10. Juni 2009 1 / 30 Inhaltsverzeichnis 1 Mathematische Grundlagen Gruppen, Ordnung, Primitivwurzeln
VI.4 Elgamal. - vorgestellt 1985 von Taher Elgamal. - nach RSA das wichtigste Public-Key Verfahren
VI.4 Elgamal - vorgestellt 1985 von Taher Elgamal - nach RSA das wichtigste Public-Key Verfahren - besitzt viele unterschiedliche Varianten, abhängig von zugrunde liegender zyklischer Gruppe - Elgamal
Kryptographie - eine mathematische Einführung
Kryptographie - eine mathematische Einführung Rosa Freund 28. Dezember 2004 Überblick Grundlegende Fragestellungen Symmetrische Verschlüsselung: Blockchiffren, Hashfunktionen
Elliptische Kurven und ihre Anwendung in der Kryptographie
Elliptische Kurven und ihre Anwendung in der Kryptographie Carsten Baum Institut für Informatik Universität Potsdam 17. Juni 2009 1 / 29 Inhaltsverzeichnis 1 Mathematische Grundlagen Charakteristik eines
Elliptische Kurven in der Kryptographie. Prusoth Vijayakumar / 16
1 / 16 06. 06. 2011 2 / 16 Übersicht Motivation Verfahren 3 / 16 Motivation Relativ sicher, da auf der Schwierigkeit mathematischer Probleme beruhend (z.b. Diskreter Logarithmus, Faktorisieren) Schnellere
Kryptographie und Komplexität
Kryptographie und Komplexität Einheit 5.2 ElGamal Systeme 1. Verschlüsselungsverfahren 2. Korrektheit und Komplexität 3. Sicherheitsaspekte Das ElGamal Verschlüsselungsverfahren Public-Key Verfahren von
Rechnen mit Punkten auf einer elliptischen Kurve und das Elliptische Kurven Kryptosytem (ECC)
Seminararbeit Wahlbereich IT SoSe 2018 Rechnen mit Punkten auf einer elliptischen Kurve und das Elliptische Kurven Kryptosytem (ECC) Erarbeitet von: Nino Sziedell (WIng101527) im 7. Semester Wirtschaftsingenieurwesen
Grundlagen der Elliptic Curve Cryptography
Grundlagen der Elliptic Curve Crptograph Mathias Schmalisch Dirk Timmermann Institut für Angewandte Mikroelektronik und Datentechnik, Universität Rostock Richard-Wagner-Str., 89 Rostock Tel.: +49 (8) 498
Elliptische Kurven in der Kryptographie
Elliptische Kurven in der Kryptographie Sandro Schugk und Günther Nieß 25. Januar 2007 Inhalt Motivation Elliptische Kurven über R Elliptische Kurven über Z p Elliptische Kurven über K Kryptoanalyse Fazit
Literatur. ISM SS 2017 Teil 8/Asymmetrische Verschlüsselung
Literatur [8-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg 2001 [8-2] Schmeh, Klaus: Kryptografie. dpunkt, 4. Auflage, 2009 [8-3] Schneier,
Public-Key-Kryptographie
Kapitel 2 Public-Key-Kryptographie In diesem Kapitel soll eine kurze Einführung in die Kryptographie des 20. Jahrhunderts und die damit verbundene Entstehung von Public-Key Verfahren gegeben werden. Es
6: Public-Key Kryptographie (Grundidee)
6: Public-Key Kryptographie (Grundidee) Ein Teil des Schlüssels ist nur dem Empfänger bekannt. Der auch dem Sender bekannte Teil kann sogar veröffentlicht werden. Man spricht dann von einem Schlüsselpaar.
Public Key Kryptographie
4. Dezember 2007 Outline 1 Einführung 2 3 4 Einführung 1976 Whitefield Diffie und Martin Hellman 2 Schlüsselprinzip Asymmetrische Verschlüsselungsverfahren public Key private Key Anwendung E-Mail PGP openpgp
Kryptographie Reine Mathematik in den Geheimdiensten
Kryptographie Reine Mathematik in den Geheimdiensten Priska Jahnke 10. Juli 2006 Kryptographie Reine Mathematik in den Geheimdiensten Kryptographie (Kryptologie) = Lehre von den Geheimschriften Kaufleute,
Kryptologie. Bernd Borchert. Univ. Tübingen SS Vorlesung. Teil 12. Elliptische Kurven
Kryptologie Bernd Borchert Univ. Tübingen SS 2017 Vorlesung Teil 12 Elliptische Kurven Elliptische Kurven im Reellen Punktmengen in R 2 Elliptische Kurve y 2 = x 3 + ax + b Kreis y 2 = b - x 2 Ellipse
Public Key Kryptographie
Public Key Kryptographie Georg Stütz 4. Dezember 2007 Inhaltsverzeichnis 1 Einführung 2 1.1 Anwendungsbeispiel................................ 2 1.2 Unterschiede zwischen symmetrischen und asymmetrischen
Einführung in. Elliptische Kurven. Seminarvortrag im Rahmen des Proseminars. Public-Key Kryptographie. Björn Mühlenfeld
Einführung in Elliptische Kurven Seminarvortrag im Rahmen des Proseminars Public-Key Kryptographie Björn Mühlenfeld 10.01.2006 Übersicht 1/15 Definition Addition auf elliptischen Kurven Elliptische Kurven
Digitale Unterschriften mit ElGamal
Digitale Unterschriften mit ElGamal Seminar Kryptographie und Datensicherheit Institut für Informatik Andreas Havenstein Inhalt Einführung RSA Angriffe auf Signaturen und Verschlüsselung ElGamal Ausblick
Diffie-Hellman, ElGamal und DSS. Vortrag von David Gümbel am 28.05.2002
Diffie-Hellman, ElGamal und DSS Vortrag von David Gümbel am 28.05.2002 Übersicht Prinzipielle Probleme der sicheren Nachrichtenübermittlung 'Diskreter Logarithmus'-Problem Diffie-Hellman ElGamal DSS /
4 Der diskrete Logarithmus mit Anwendungen
4 Der diskrete Logarithmus mit Anwendungen 62 4.1 Der diskrete Logarithmus Für eine ganze Zahl a Z mit ggt(a, n) = 1 hat die Exponentialfunktion mod n zur Basis a exp a : Z M n, x a x mod n, die Periode
Was ist eine Cipher Suite?
Eine Cipher-Suite ist im Grunde ein vollständiger Satz von Methoden (technisch als Algorithmen bekannt), die benötigt werden, um eine Netzwerkverbindung durch SSL/TLS ab zu sichern. Jedes Satz ist repräsentativ
Diskreter Logarithmus und Primkörper
Diskreter Logarithmus und Primkörper Neben dem RSA-Verfahren ist die ElGamal-Verschlüsselung 8 ein weiteres klassische Public-Key-Verfahren, welches von Taher ElGamal auf der Konferenz CRYPTO 84 vorgestellt
Übungen zur Vorlesung Systemsicherheit
Übungen zur Vorlesung Systemsicherheit Asymmetrische Kryptographie Tilo Müller, Reinhard Tartler, Michael Gernoth Lehrstuhl Informatik 1 + 4 24. November 2010 c (Lehrstuhl Informatik 1 + 4) Übungen zur
El Gamal Verschlüsselung und seine Anwendungen
El Gamal Verschlüsselung und seine Anwendungen Andrés Guevara July 11, 2005 1 Kurze Einführung in die Kryptographie Situation: Absender will Empfänger eine Nachricht schicken. Einige Ziele der Kryptographie
Kurzskript MfI:AGS WS 2018/19 Teil II: Gruppen / Teil III: Ringe 34
Kurzskript MfI:AGS WS 2018/19 Teil II: Gruppen / Teil III: Ringe 34 Satz 4.2.11 (Chinesischer Restsatz, Ring-Version) Sind N teilerfremd (d.h. ggt( ) =1), so ist die Abbildung ein Ring-Isomorphismus. :
Post-Quanten Kryptografie. Chancen und Risiken in der IT-Sicherheit. Stefan Schubert Institut für IT-Sicherheitsforschung
Post-Quanten Kryptografie Chancen und Risiken in der IT-Sicherheit Stefan Schubert Institut für IT-Sicherheitsforschung 5. Semester IT-Security Stefan Schubert Research Assistant Institut für IT-Security
Hintergründe zur Kryptographie
3. Januar 2009 Creative Commons by 3.0 http://creativecommons.org/licenses/by/3.0/ CAESAR-Chiffre Vigenère CAESAR-Chiffre Vigenère Einfache Verschiebung des Alphabets Schlüsselraum: 26 Schlüssel Einfaches
Public Key Kryptographie
3. Juni 2006 1 Algorithmen für Langzahlen 1 RSA 1 Das Rabin-Kryptosystem 1 Diskrete Logarithmen Grundlagen der PK Kryptographie Bisher: Ein Schlüssel für Sender und Empfänger ( Secret-Key oder symmetrische
Kryptographische Protokolle
Kryptographische Protokolle Lerneinheit 4: Schlüsselvereinbarung Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2017 8.5.2017 Einleitung Einleitung In dieser Lerneinheit
Kryptologie. Bernd Borchert. Univ. Tübingen SS Vorlesung. Teil 10. Signaturen, Diffie-Hellman
Kryptologie Bernd Borchert Univ. Tübingen SS 2017 Vorlesung Teil 10 Signaturen, Diffie-Hellman Signatur Signatur s(m) einer Nachricht m Alice m, s(m) Bob K priv K pub K pub Signatur Signatur (Thema Integrity
Kryptographie. Nachricht
Kryptographie Kryptographie Sender Nachricht Angreifer Empfänger Ziele: Vertraulichkeit Angreifer kann die Nachricht nicht lesen (Flüstern). Integrität Angreifer kann die Nachricht nicht ändern ohne dass
IT-Sicherheit Kapitel 3 Public Key Kryptographie
IT-Sicherheit Kapitel 3 Public Key Kryptographie Dr. Christian Rathgeb Sommersemester 2013 1 Einführung In der symmetrischen Kryptographie verwenden Sender und Empfänger den selben Schlüssel die Teilnehmer
Elliptische Kurven in der Kryptographie
Elliptische Kurven in der Kryptographie 1 Gliederung Einleitung Elliptische Kurven Elliptische Kurven über Körper Public-Key Verfahren mittels elliptischer Kurven Elliptische Kurven Vergleich ECC und RSA
7.3 Unizitätslänge. 8 Schlüsselaustausch und öffentliche Schlüssel
7.3 Unizitätslänge ein Chiffrierverfahren sei über Z verschiedene Schlüssel parametrierbar also könnte ein Geheimtext zu (höchstens) Z verschiedenen Klartexten entschlüsselt werden wie viele davon sind
Der Diskrete Logarithmus [DLOG] Autoren: Christof Paar Jan Pelzl. Ruhr - Universität Bochum
Der Diskrete Logarithmus [DLOG] Autoren: Christof Paar Jan Pelzl Ruhr - Universität Bochum Der Diskrete Logarithmus [DLOG] Autoren: Christof Paar Jan Pelzl 1. Auflage Ruhr - Universität Bochum 2017 Christof
EINIGE GRUNDLAGEN DER KRYPTOGRAPHIE
EINIGE GRUNDLAGEN DER KRYPTOGRAPHIE Steffen Reith [email protected] 22. April 2005 Download: http://www.thi.uni-hannover.de/lehre/ss05/kry/folien/einleitung.pdf WAS IST KRYPTOGRAPHIE? Kryptographie
Diffie-Hellman, RSA, etc.
,, etc. mathematische asymmetrischer Verschlüsselungsverfahren Chaos Computer Club Hamburg SIGINT 09, 22. 24. Mai 2009,, etc. Gliederung,, etc. Gliederung,, etc. Gliederung,, etc. Gliederung,, etc. Gliederung,,
Wiederholung. Symmetrische Verfahren: klassische Verfahren / grundlegende Prinzipien: Substitution, Transposition, One-Time-Pad DES AES
Wiederholung Symmetrische Verfahren: klassische Verfahren / grundlegende Prinzipien: Substitution, Transposition, One-Time-Pad DES AES Mathematische Grundlagen: algebraische Strukturen: Halbgruppe, Monoid,
Public-Key Kryptographie und elliptische Kurven
INFORMATIONSTECHNIK UND ARMEE Vorlesungen an der Eidgenössischen Technischen Hochschule in Zürich im Wintersemester 2000/2001 Leitung: Untergruppe Führungsunterstützung - Generalstab Divisionär E. Ebert,
Satz von Euler. Satz von Euler. Korollar 1. Korollar 2 Kleiner Fermat. Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G.
Satz von Euler Satz von Euler Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G. Beweis: Sei G = {g 1,..., g n } und a G. Betrachte die Abbildung f : G G, g ag. Da a G, besitzt a ein
Satz von Euler. Satz von Euler. Korollar 1. Korollar 2 Kleiner Fermat. Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G.
Satz von Euler Satz von Euler Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G. Beweis: Sei G = {g 1,..., g n } und a G. Betrachte die Abbildung f : G G, g ag. Da a G, besitzt a ein
VI. Public-Key Kryptographie
VI. Public-Key Kryptographie Definition 2.1 Ein Verschlüsselungsverfahren ist ein 5-Tupel (P,C,K,E,D), wobei 1. P die Menge der Klartexte ist. 2. C die Menge der Chiffretexte ist. 3. K die Menge der Schlüssel
IT-Sicherheitsmanagement. Teil 12: Asymmetrische Verschlüsselung
IT-Sicherheitsmanagement Teil 12: Asymmetrische Verschlüsselung 10.12.15 1 Literatur [12-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg
Kryptograhie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik
Kryptograhie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Übersicht Zwecke der Krytographie Techniken Symmetrische Verschlüsselung( One-time Pad,
Abschnitt 5: Kryptographie. j (p j 1). 1 (p 1 1)p α 2
Abschnitt 5: Kryptographie. Zunächst wollen wir die Struktur von (Z/mZ) untersuchen. 5.1 Definition: Die Eulersche ϕ-funktion: ϕ : N N; ϕ(m) := (Z/mZ) 5.2 Bemerkung: (Z/mZ) {a {1,..., m 1} ggt(a, m) =
Verschlüsselung durch Exponentiation (Pohlig, Hellman, 1976)
Verschlüsselung durch Exponentiation (Pohlig, Hellman, 1976) p : eine (grosse) Primzahl e : Zahl 0 < e < p mit ggt(e, p 1) = 1 d Inverses von e in Z p 1, dh d e 1 mod p 1 (= φ(p)) M : numerisch codierter
4 Der diskrete Logarithmus mit Anwendungen
4 Der diskrete Logarithmus mit Anwendungen 53 4.1 Der diskrete Logarithmus Sei G eine Gruppe (multiplikativ geschrieben) und a G ein Element der Ordnung s (die auch sein kann). Dann ist die Exponentialfunktion
Quantenkryptographie Vortrag von Georg Krause im Quantenmechanik-Seminar WS 2014/15 an der Universität Heidelberg/G.Wolschin
Quantenkryptographie Inhalt Anforderungen an Verschlüsselung Klassische Verfahren Theoretische Quantenkryptografie Ein Teilchen Verfahren (BB84) 2 Teilchen Verfahren (E91) Experimentelle Realisierung und
6.2 Asymmetrische Verschlüsselung
6.2 Asymmetrische Verschlüsselung (asymmetric encryption, public-key encryption) Prinzip (Diffie, Hellman, Merkle 1976-78): Statt eines Schlüssels K gibt es ein Schlüsselpaar K E, K D zum Verschlüsseln
Elliptische Kurven. Definition Elliptische Kurve nach Willems Sei K ein Körper der Charakteristik ungleich 2 und 3. Eine Polynomgleichung der Form
Elliptische Kurven Einstieg: - Elliptische Kurven sind spezielle algebraische Kurven, auf denen geometrisch eine Addition definiert ist. - Diese Addition spielt in der Kryptographie eine wichtige Rolle,
Public-Key Kryptographie mit dem RSA Schema. Torsten Büchner
Public-Key Kryptographie mit dem RSA Schema Torsten Büchner 7.12.2004 1.Einleitung 1. symmetrische-, asymmetrische Verschlüsselung 2. RSA als asymmetrisches Verfahren 2.Definition von Begriffen 1. Einwegfunktionen
Das RSA-Verfahren. Proseminar Kryptographische Protokolle SS Armin Litzel
in der Praxis Proseminar Kryptographische Protokolle SS 2009 5.5.2009 in der Praxis Gliederung 1 Grundlegendes über RSA 2 in der Praxis Allgemeine Vorgehensweise zur Verschlüsselung Signieren mit RSA 3
IT-Sicherheit: Kryptographie. Asymmetrische Kryptographie
IT-Sicherheit: Kryptographie Asymmetrische Kryptographie Fragen zur Übung 5 C oder Java? Ja (gerne auch Python); Tips waren allerdings nur für C Wie ist das mit der nonce? Genau! (Die Erkennung und geeignete
Vorlesung Sicherheit
Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 12.05.2014 1 / 26 Überblick 1 Hashfunktionen Erinnerung Angriffe auf Hashfunktionen Zusammenfassung Hashfunktionen 2 Asymmetrische Verschlüsselung Idee Beispiel:
Übung GSS Blatt 6. SVS Sicherheit in Verteilten Systemen
Übung GSS Blatt 6 SVS Sicherheit in Verteilten Systemen 1 Einladung zum SVS-Sommerfest SVS-Sommerfest am 12.07.16 ab 17 Uhr Ihr seid eingeladen! :-) Es gibt Thüringer Bratwürste im Brötchen oder Grillkäse
10. Woche: Elliptische Kurven Skalarmultiplikation und Anwendungen. 10. Woche: Elliptische Kurven - Skalarmultiplikation und Anwendungen 212/ 238
10 Woche: Elliptische Kurven Skalarmultiplikation und Anwendungen 10 Woche: Elliptische Kurven - Skalarmultiplikation und Anwendungen 212/ 238 Skalarmultiplikation Eine wichtige Fundamentaloperation in
Kryptographie. ein erprobter Lehrgang. AG-Tagung Informatik, April 2011 Alfred Nussbaumer, LSR für NÖ. LSR für NÖ, 28. April 2011 Alfred Nussbaumer
Kryptographie ein erprobter Lehrgang AG-Tagung Informatik, April 2011 Alfred Nussbaumer, LSR für NÖ 1 Variante: Kryptographie in 5 Tagen Ein kleiner Ausflug in die Mathematik (Primzahlen, Restklassen,
Aufgabe der Kryptografie
Aufgabe der Kryptografie Eve möchte die Unterhaltung mithören und/oder ausgetauschte Informationen ändern. Alice & Bob kommunzieren über einen unsicheren Kanal. Alice & Bob nutzen Verschlüsselung und digitale
Vorlesung Sicherheit
Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 15.05.2017 1 / 25 Überblick 1 Hashfunktionen Angriffe auf Hashfunktionen Zusammenfassung Hashfunktionen 2 Asymmetrische Verschlüsselung Idee Beispiel: RSA
Kryptographie und Komplexität
Kryptographie und Komplexität Einheit 6.2 Digitale Signaturen 1. Sicherheitsanforderungen 2. RSA Signaturen 3. ElGamal Signaturen Wozu Unterschriften? Verbindliche Urheberschaft von Dokumenten Unterschrift
SSL/TLS Sicherheit Warum es sich lohnt, sich mit Ciphersuites zu beschäftigen
SSL/TLS Sicherheit Warum es sich lohnt, sich mit Ciphersuites zu beschäftigen Immo FaUl Wehrenberg [email protected] Chaostreff Dortmund 16. Juli 2009 Immo FaUl Wehrenberg [email protected] (CTDO) SSL/TLS Sicherheit
Elliptische Kurven und ihre Anwendungen in der Kryptographie
Elliptische Kurven und ihre Anwendungen in der Kryptographie Heiko Knospe Fachhochschule Köln [email protected] 29. März 2014 1 / 25 Weierstraß-Gleichung Elliptische Kurven sind nicht-singuläre
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
Digitale Signaturen. Einführung und das Schnorr Signatur Schema. 1 Digitale Signaturen Einführung & das Schnorr Signatur Schema.
Digitale Signaturen Einführung und das Schnorr Signatur Schema 1 Übersicht 1. Prinzip der digitalen Signatur 2. Grundlagen Hash Funktionen Diskreter Logarithmus 3. ElGamal Signatur Schema 4. Schnorr Signatur
Kurs 1866 Sicherheit im Internet
Fachbereich Informatik Lehrgebiet Technische Informatik II Kurs 1866 Sicherheit im Internet Lösungsvorschläge zur Hauptklausur im SS 2003 am 20.09.2003 Aufgabe 1 (7 Punkte) Warum sollen Passwörter auch
Inhaltsverzeichnis. Wolfgang Ertel. Angewandte Kryptographie. ISBN (Buch): ISBN (E-Book):
Inhaltsverzeichnis Wolfgang Ertel Angewandte Kryptographie ISBN (Buch): 978-3-446-42756-3 ISBN (E-Book): 978-3-446-43196-6 Weitere Informationen oder Bestellungen unter http://www.hanser-fachbuch.de/978-3-446-42756-3
3: Zahlentheorie / Primzahlen
Stefan Lucks Diskrete Strukturen (WS 2009/10) 96 3: Zahlentheorie / Primzahlen 3: Zahlentheorie / Primzahlen Stefan Lucks Diskrete Strukturen (WS 2009/10) 97 Definition 37 (Teiler, Vielfache, Primzahlen,
IT-Sicherheit Kapitel 7 Schlüsseletablierung
IT-Sicherheit Kapitel 7 Schlüsseletablierung Dr. Christian Rathgeb Sommersemester 2013 1 Einführung Protokoll: Wenn mehrere Instanzen miteinander kommunizieren, um ein gemeinsames Ziel zu erreichen, dann
2.4 Diskussion und Literaturempfehlungen Lessons Learned A ufgaben Literatur... 62
Inhaltsverzeichnis 1 Einführung in die Kryptografie und Datensicherheit... 1 1.1 Überblick über die Kryptografie (und dieses Buch)... 1 1.2 Symmetrische Kryptografie... 4 1.2.1 Grundlagen... 4 1.2.2 Die
