3: Zahlentheorie / Primzahlen

Größe: px
Ab Seite anzeigen:

Download "3: Zahlentheorie / Primzahlen"

Transkript

1 Stefan Lucks Diskrete Strukturen (WS 2009/10) 96 3: Zahlentheorie / Primzahlen 3: Zahlentheorie / Primzahlen

2 Stefan Lucks Diskrete Strukturen (WS 2009/10) 97 Definition 37 (Teiler, Vielfache, Primzahlen, zusammengesetzte Zahlen) Seien a, b N. a ist ein Teiler von b ( a b ), falls es ein k N gibt mit a k = b. Die trivialen Teiler von b sind 1 und b. Ist a ein Teiler von b, dann ist b ein Vielfaches von a. X N heisst Primzahl, wenn X durch genau zwei natürliche Zahlen teilbar ist, nämlich die trivialen Teiler. Die Zahl X N heist zusammengesetzt, wenn X durch mehr als zwei natürliche Zahlen teilbar ist. Die 1 ist keine Primzahl. Für alle a, b, c N gilt: a b a bc. Transitivität: a b und b c a c. 3: Zahlentheorie / Primzahlen

3 Stefan Lucks Diskrete Strukturen (WS 2009/10) : Wichtige Ergebnisse der Zahlentheorie Chinesischer Restsatz (ohne Beweis) Seien m 1,..., m k : paarweise teilerfremde natürliche Zahlen, m = m 1 m k und a 1,... a k : ganze Zahlen. Für 1 i k gelte M i = m/m i und y i = M 1 i mod m i. Dann gilt für ( ) x a i y i M i mod m : 1 i k x a 1 mod m 1, x a 2 mod m 2,..., und x a k mod m k. 3: Zahlentheorie / Primzahlen 3.1: Wichtige Ergebnisse der Zahlentheorie

4 Stefan Lucks Diskrete Strukturen (WS 2009/10) 99 Folgerung 38 (Fingerabdrucksatz) Seien p, q teilerfremd, x p Z p, x q Z q. Dann gibt es genau ein x Z pq mit x x p (mod p) und x x q (mod q). (Folgt aus dem Chinesischen Restsatz) Satz 39 (Kleiner Satz von Fermat) Sind p eine Primzahl und a eine natürliche Zahl, dann gilt a p a (mod p). Ist p kein Teiler von a, gilt insbesondere a p 1 1 (mod p). 3: Zahlentheorie / Primzahlen 3.1: Wichtige Ergebnisse der Zahlentheorie

5 Stefan Lucks Diskrete Strukturen (WS 2009/10) : Anwendung: RSA (Public-Key Kryptographie und Digitale Unterschriften) Briefkasten Schaufenster Schloss mit zwei Schlüsseln In der modernen Kryptographie: Erzeuge Gesamt-Schlüssel, bestehend aus einem öffentlichen und einem geheimen Schlüssel(-teil) Verschicken einer vertraulichen Nachricht: öffentliche Operation zum Verschlüsseln geheime Operation zum Entschlüsseln Digitales Unterschreiben einer Nachricht: geheime Operation zum Erzeugen einer Signatur öffentliche Operation zum Verifizieren der Signatur 3: Zahlentheorie / Primzahlen 3.2: Anwendung: RSA

6 Stefan Lucks Diskrete Strukturen (WS 2009/10) 101 PK Kryptographie (Geschichte) ca Ein Mitarbeiter des britischen Geheimdienstes erfindet die non-secret Kryptographie (wurde bis Ende der 90-er Jahre geheim gehalten) 1974 Merkle Puzzles 1976 Diffie und Hellman 1977 Rivest, Shamir, Adleman (RSA) seit 1990 zunehmende kommerzielle Bedeutung der asymmetrischen Kryptographie 3: Zahlentheorie / Primzahlen 3.2: Anwendung: RSA

7 Stefan Lucks Diskrete Strukturen (WS 2009/10) 102 Das RSA Kryptosystem Schlüsselerzeugung: 1. Wähle zufällig große Primzahlen p und q; 2. berechne n = pq und ϕ(n) = (p 1)(q 1); 3. wähle e Z ϕ(n), d.h., ggt(e, ϕ(n)) = 1; berechne d mit ed 1 mod ϕ(n); 4. Schlüssel: Tripel (e, d, n); davon öffentlich: (e, n). Öffentliche Operation E ( encrypt ): (Z.B. Verschlüsseln einer Nachricht: x Z n ) E (e,n) (x) = x e mod n. Geheime Operation D ( decrypt ): D (e,d,n) (y) = y d mod n 3: Zahlentheorie / Primzahlen 3.2: Anwendung: RSA

8 Stefan Lucks Diskrete Strukturen (WS 2009/10) 103 Ein Beispiel in kleinen Zahlen Wir wählen p = 13, q = 11 und berechnen n = pq = 143. Es ist ϕ(n) = (p 1)(q 1) = 120. Wir wählen e = 7; insbesondere: ggt(7, 120) = 1. Für d = 103 gilt: ed = 721 = mod 120. (Man kann d mit Hilfe des Erweiterten Euklidischen Algorithmus berechnen.) Verschlüsseln des Klartextes 5: Entschlüsseln von 47: E(5) mod 143. D(47) mod : Zahlentheorie / Primzahlen 3.2: Anwendung: RSA

9 Stefan Lucks Diskrete Strukturen (WS 2009/10) 104 Die Korrektheit des RSA Kryptosystems Wenn ich eine Nachricht verschlüssele und dann wieder entschlüssele, erwarte ich, dass ich wieder die gleiche Nachricht erhalte. Signieren analog: Sei S = D(M) die Unterschrift unter eine Nachricht M. Wir verifizieren eine unterschriebene Nachricht (M, S), indem wir E(S) = M überprüfen. Satz 40 (Korrektheit von RSA) Für alle x Z n gilt: D (e,d,n) (E (e,n) (x)) = x und E (e,n) (D (e,d,n) (x)) = x. (Mit Hilfe des kleinen Satzes von Fermat.) 3: Zahlentheorie / Primzahlen 3.2: Anwendung: RSA

10 Stefan Lucks Diskrete Strukturen (WS 2009/10) 105 Effizienz und Sicherheit von RSA Sicherheit: Man kennt keinen effizienten Algorithmus, um geeignet gewählte große zusammengesetzte Zahlen zu faktorisieren. Effizienz: Man kennt effiziente Algorithmen, um zufällig große Primzahlen zu erzeugen. 3: Zahlentheorie / Primzahlen 3.2: Anwendung: RSA

11 Stefan Lucks Diskrete Strukturen (WS 2009/10) : Faktorisieren & Primzahlen finden Primzahl testen: Gegeben eine Zahl n. Ist n prim? Primzahlen finden: Gegeben Werte a und B mit a < B 1. Finde eine zufällige Primzahl p mit p a und p < B. (Typisch: a = 2 n, B = 2a = 2 n+1.) Faktorisieren: Gegeben eine Zahl n, die nicht prim ist. Finde einen Teiler a n, 1 < a < n. Vollständiges Faktorisieren: Gegeben eine Zahl n. Finde alle Primteiler von n.

12 Stefan Lucks Diskrete Strukturen (WS 2009/10) 107 Faktorisierung großer ganzer Zahlen Das Faktorisieren großer ganzer Zahlen gilt als extrem schwierig. Dies überrascht, da die Multiplikation und sogar der Primzahltest vergleichsweise einfach sind. Anekdote: Frank Cole widerlegt 1903 eine fast 200 Jahre alte Vermutung von Mersenne: Obwohl er die Sonntage dreier Jahre benötigte, um die Faktoren von zu finden, konnte er innerhalb weniger Minuten, ohne weitere Worte darüber zu verlieren, ein großes Publikum davon überzeugen, dass diese Zahl keine Primzahl war, indem er einfach die Arithmetik der Berechnungen aufschrieb: = Stand der Forschung: Ist n das Produkt zweier zufälliger 1000-bit Primzahlen, kennt man keinen Algorithmus, um n innerhalb einiger Jahrhunderte zu faktorisieren.

13 Stefan Lucks Diskrete Strukturen (WS 2009/10) 108 Primzahlen finden Aufgabe: Gegeben Werte a und B mit a < B 1. Finde eine zufällige Primzahl p mit p a und p < B. (Typisch: a = 2 n, B = 2a = 2 n+1.) Lösung: Wiederhole: 1. wähle eine Zufallszahl z {a,... B 1}, 2. teste, ob z prim ist oder zusammengesetzt, bis z eine Primzahl ist. Gib z aus. Frage: Wie effizient ist dieses Verfahren? Wie oft wird die Schleife durchlaufen? (Häufigkeit der Primzahlen) Kann man effizient testen, ob z eine Primzahl ist?

14 Stefan Lucks Diskrete Strukturen (WS 2009/10) 109 Wie viele Primzahlen gibt es? Satz Es gibt unendlich viele Primzahlen. (Haben wir bewiesen!) Das reicht uns nicht! Wir wollen das genauer wissen! Wir schreiben π(x) für die Anzahl der Primzahlen x. Bsp.: π(1) = 0, π(3) = 2 = π(4) = 2,..., π(124) = 30.

15 Stefan Lucks Diskrete Strukturen (WS 2009/10) 110 Wie viele Primzahlen gibt es? (Genauer) Satz 41 (Primzahlsatz (Ohne Beweis)) Sei π(x) die Anzahl Primzahlen x. Für alle x 17 gilt: x ln x <π(x)< x ln x. Für Informatiker, die gerne zur Basis 2 logarithmieren, folgt 0.69 x log 2 x <π(x)<0.88 x log 2 x.

16 Stefan Lucks Diskrete Strukturen (WS 2009/10) 111 Primzahlen testen Schön, dass es genug Primzahlen gibt. Aber wenn wir nicht effizient faktorisieren können, wie können wir dann effizient feststellen, ob eine Zahl prim ist? Es gibt effiziente probabilistische Primzahltests (z.b. Miller-Rabin ), die wir in dieser Vorlesung aber nicht genauer analysieren werden. Das Grundidee können wir aber einem alten Bekannten abschauen, dem kleinen Satz von Fermat.

17 Stefan Lucks Diskrete Strukturen (WS 2009/10) 112 Primzahl-Test mit dem Kleinen Fermat Fermat-Zeugen und Lügner Sei ein ungerader Primzahlkandidat n gegeben. Wir bezeichnen eine natürliche Zahl a < n als Zeugen dafür, dass n nicht prim ist, wenn die folgende Ungleichung gilt: a n 1 1 (mod n) Ist n zusammengesetzt und gilt trotzdem a n 1 1 (mod n), dann nennen wir a einen Fermat-Lügner. Ist n > 1, dann sind 1 und n 1 triviale Fermat-Lügner. (1 ist klar aber warum eigentlich lügt n 1?)

18 Stefan Lucks Diskrete Strukturen (WS 2009/10) 113 Der Fermat-Test Fermat-Test mit k Wiederholungen Eingabe n > wähle zufällig a 1,... a k {2,... n 2} 2. und berechne b i := a n 1 i mod n. Ist eines der b i 1, dann gib ganz sicher zusammengesetzt aus. Sonst gib vermutlich prim aus.

19 Stefan Lucks Diskrete Strukturen (WS 2009/10) 114 Teilerfremdheit und Fermat-Zeugen Ist a n 1 1 (mod n), dann ist a a n 2 1, also ist a n 2 das multiplikative Inverse von a mod n. Folgerung: Wenn a < n und n nicht teilerfremd sind, dann 1. ist n nicht prim und 2. kann a kein Fermat-Lügner sein. Anders ausgedrückt: Es gibt Kronzeugen a < n mit ggt(a, n) > 1. Alle Kronzeugen sind Fermat-Zeugen. Aber wenn man einen Kronzeugen hat, kann man n auch ohne Fermat-Test als zusammengesetzt entlarven.... Die Berechnung des ggt reicht vollkommen... Definition 42 Sei n eine zusammengesetzte Zahl. Wir nennen einen Zeugen a < n normal, wenn ggt(a, n) = 1 gilt.

20 Stefan Lucks Diskrete Strukturen (WS 2009/10) 115 Erfolgswahrscheinlichkeit Satz 43 (Ohne Beweis) Ist n 3 ungerade und zusammengesetzt, und gibt es mindestens einen normalen Fermat-Zeugen für n, dann sind mehr als die Hälfte aller Zahlen in {2,..., n 2} Fermat-Zeugen. (Der Beweis ist nicht schwierig, braucht aber doch mehr mathematische Werkzeuge, als wir im Moment kennen.) Folgerung 44 Ist n 3 ungerade und zusammengesetzt, und gibt es mindestens einen normalen Fermat-Zeugen für n, dann ist die Wahrscheinlichkeit, dass der Fermat-Test mit k Wiederholungen fälschlich vermutlich prim ausgibt, < 1/2 k.

21 Stefan Lucks Diskrete Strukturen (WS 2009/10) 116 Beispiele (k = 2, a 1 = 2 und a 2 = 3) Es ist (mod 15), also ist 15 keine Primzahl. Es ist (mod 13). Und es ist (mod 13). Vermutlich ist 13 prim. Es ist (mod 1105). Und es ist (mod 1105). Vermutlich ist 1105 prim. Falsch! Die Zahl ist nicht prim: 1105 =

22 Stefan Lucks Diskrete Strukturen (WS 2009/10) 117 Gibt es perfekte Verbrecher? Gibt es ungerade zusammengesetzte Zahlen, für die keine normalen Fermat-Zeugen existieren? Leider ja: Definition 45 Eine Carmichael-Zahl ist eine zusammengesetzte natürliche Zahl c, wenn für alle zu c teilerfremden a < n gilt: a c 1 1 (mod c). Die kleinste Carmichael-Zahl ist 561 = (Sie wurde 1910 von R. D. Carmichael gefunden.) Es gibt unendlich viele Carmichael-Zahlen. (Das wurde lange vermutet, aber erst nach 1990 bewiesen.) (Wir verzichten auf den Beweis.)

23 Stefan Lucks Diskrete Strukturen (WS 2009/10) 118 Primzahlsuche in der Praxis Statt des Fermat-Tests verwendet man meistens eine Weiterentwicklung, den Primzahltest von Miller und Rabin. Ein Durchlauf des Miller-Rabin-Tests kann jede zusammengesetzte Zahl n mit mindestens der Wahrscheinlichkeit 3/4 entlarven selbst wenn n eine Carmichael-Zahl sein sollte. Um die Primzahl-Suche effizienter zu gestalten: Teste zuerst Teilbarkeit durch kleine Primzahlen (z.b., durch alle Primzahlen < 1000). Wende den eigentlichen Primzahltest nur auf die übriggebliebenen Primzahlkandidaten an.

24 Stefan Lucks Diskrete Strukturen (WS 2009/10) 119 Eine besondere Klasse von Algorithmen Ein randomisierter Algorithmus (auch stochastischer oder probabilistischer Algorithmus) verwendet im Gegensatz zu einem deterministischen Algorithmus Zufallsbits um seinen Ablauf zu steuern. Es wird nicht verlangt, dass ein randomisierter Algorithmus immer effizient eine richtige Lösung findet. Randomisierte Algorithmen sind in vielen Fällen einfacher zu verstehen, einfacher zu implementieren und effizienter als deterministische Algorithmen für dasselbe Problem. Sind der Fermat- bzw. der Miller-Rabin-Test Las-Vegas oder Monte-Carlo Algorithmen? Lesen Sie nach bei Wikipedia!

3: Primzahlen. 111 S. Lucks Diskr Strukt. (WS 18/19) 3: Primzahlen

3: Primzahlen. 111 S. Lucks Diskr Strukt. (WS 18/19) 3: Primzahlen 3: Primzahlen 111 S. Lucks Diskr Strukt. (WS 18/19) 3: Primzahlen Definition 40 (Teiler, Vielfache, Primzahlen, zusammengesetzte Zahlen) Seien a, b N. a ist ein Teiler von b ( a b ), falls es ein k N gibt

Mehr

Public Key Kryptographie

Public Key Kryptographie 3. Juni 2006 1 Algorithmen für Langzahlen 1 RSA 1 Das Rabin-Kryptosystem 1 Diskrete Logarithmen Grundlagen der PK Kryptographie Bisher: Ein Schlüssel für Sender und Empfänger ( Secret-Key oder symmetrische

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 11 Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität

Mehr

6: Public-Key Kryptographie (Grundidee)

6: Public-Key Kryptographie (Grundidee) 6: Public-Key Kryptographie (Grundidee) Ein Teil des Schlüssels ist nur dem Empfänger bekannt. Der auch dem Sender bekannte Teil kann sogar veröffentlicht werden. Man spricht dann von einem Schlüsselpaar.

Mehr

7: Grundlagen der Public-Key-Kryptographie

7: Grundlagen der Public-Key-Kryptographie 7: Grundlagen der Public-Key-Kryptographie 214 7: Public-Key-Kryptographie 7: Grundlagen der Public-Key-Kryptographie Wiederholung: Symmetrische Kryptographie 1 Schlüssel für Sender und Empfänger Benötigt

Mehr

RSA-Verfahren Schnelle Ver- / Entschlüsselung Zusammenhang mit dem Faktorisierungsproblem. RSA-Verfahren. Herwig Stütz

RSA-Verfahren Schnelle Ver- / Entschlüsselung Zusammenhang mit dem Faktorisierungsproblem. RSA-Verfahren. Herwig Stütz 2007-11-23 Überblick 1 2 Schnelle modulare Exponentiation Chinesischer Restsatz 3 Allgemeines Public-Key Methode Rivest, Shamir und Adleman 1977 Sicherheit des Verfahrens beruht auf Schwierigkeit der Primfaktorenzerlegung

Mehr

Aufgabe der Kryptografie

Aufgabe der Kryptografie Aufgabe der Kryptografie Eve möchte die Unterhaltung mithören und/oder ausgetauschte Informationen ändern. Alice & Bob kommunzieren über einen unsicheren Kanal. Alice & Bob nutzen Verschlüsselung und digitale

Mehr

Bsp: Die kleinsten Carmichael-Zahlen sind 561, 1105, 1729, Es gibt unendlich viele Carmichael-Zahlen (Beweis 1994).

Bsp: Die kleinsten Carmichael-Zahlen sind 561, 1105, 1729, Es gibt unendlich viele Carmichael-Zahlen (Beweis 1994). Primzahltest Wir wollen testen, ob eine gegebene Zahl n eine Primzahl ist Effizienter Algorithmus zum Faktorisieren ist unbekannt Kontraposition des Kleinen Satzes von Fermat liefert: Falls a n 1 1 mod

Mehr

Übungen zur Vorlesung Systemsicherheit

Übungen zur Vorlesung Systemsicherheit Übungen zur Vorlesung Systemsicherheit Asymmetrische Kryptographie Tilo Müller, Reinhard Tartler, Michael Gernoth Lehrstuhl Informatik 1 + 4 24. November 2010 c (Lehrstuhl Informatik 1 + 4) Übungen zur

Mehr

VI.3 RSA. - RSA benannt nach seinen Erfindern R. Rivest, A. Shamir und L. Adleman. - vorgestellt erstes Public-Key Verschlüsselungsverfahren

VI.3 RSA. - RSA benannt nach seinen Erfindern R. Rivest, A. Shamir und L. Adleman. - vorgestellt erstes Public-Key Verschlüsselungsverfahren VI.3 RSA - RSA benannt nach seinen Erfindern R. Rivest, A. Shamir und L. Adleman - vorgestellt 1977 - erstes Public-Key Verschlüsselungsverfahren - auch heute noch das wichtigste Public-Key Verfahren 1

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Verschlüsselung durch Exponentiation (Pohlig, Hellman, 1976)

Verschlüsselung durch Exponentiation (Pohlig, Hellman, 1976) Verschlüsselung durch Exponentiation (Pohlig, Hellman, 1976) p : eine (grosse) Primzahl e : Zahl 0 < e < p mit ggt(e, p 1) = 1 d Inverses von e in Z p 1, dh d e 1 mod p 1 (= φ(p)) M : numerisch codierter

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Algorithmentheorie Randomisierung

Algorithmentheorie Randomisierung Algorithmentheorie 03 - Randomisierung Prof. Dr. S. Albers Randomisierung Klassen von randomisierten Algorithmen Randomisierter Quicksort Randomisierter Primzahltest Kryptographie 2 1. Klassen von randomisierten

Mehr

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (RSA-Verfahren)

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (RSA-Verfahren) WS 2016/17 Diskrete Strukturen Kapitel 5: Algebraische Strukturen (RSA-Verfahren) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Asymmetrische Algorithmen

Asymmetrische Algorithmen Asymmetrische Algorithmen Abbildung 9. Leonhard Euler Leonhard Euler, geboren am 15. April 1707 in Basel, gestorben am 18. September 1783 in Sankt Petersburg, war einer der produktivsten Mathematiker aller

Mehr

Zufallsprimzahlen und eine Revolution in der Kryptographie Stefan Edelkamp

Zufallsprimzahlen und eine Revolution in der Kryptographie Stefan Edelkamp Zufallsprimzahlen und eine Revolution in der Kryptographie Stefan Edelkamp Fakultät für Mathematik und Informatik Universität of Bremen Übersicht des Vortrags 1 Einfache Kryptosysteme 2 Einmalschlüssel

Mehr

Klausurtermin. Klausur Diskrete Mathematik I Do stündig

Klausurtermin. Klausur Diskrete Mathematik I Do stündig Klausurtermin Klausur Diskrete Mathematik I Do. 28.02.2008 3-stündig 07.12.2007 1 Wiederholung Komplexität modularer Arithmetik Addition: O(n) Multiplikation: O(n 2 ) bzw. O(n log 2 3 ) Exponentiation:

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 12.05.2014 1 / 26 Überblick 1 Hashfunktionen Erinnerung Angriffe auf Hashfunktionen Zusammenfassung Hashfunktionen 2 Asymmetrische Verschlüsselung Idee Beispiel:

Mehr

Das RSA-Verfahren. Proseminar Kryptographische Protokolle SS Armin Litzel

Das RSA-Verfahren. Proseminar Kryptographische Protokolle SS Armin Litzel in der Praxis Proseminar Kryptographische Protokolle SS 2009 5.5.2009 in der Praxis Gliederung 1 Grundlegendes über RSA 2 in der Praxis Allgemeine Vorgehensweise zur Verschlüsselung Signieren mit RSA 3

Mehr

Kryptographie: Verteidigung gegen die dunklen Künste in der digitalen Welt

Kryptographie: Verteidigung gegen die dunklen Künste in der digitalen Welt Kryptographie: Verteidigung gegen die dunklen Künste in der digitalen Welt Prof. Dr. Rüdiger Weis Beuth Hochschule für Technik Berlin Tag der Mathematik 2015 Flächendeckendes Abhören Regierungen scheitern

Mehr

Hybride Verschlüsselungsverfahren

Hybride Verschlüsselungsverfahren Hybride Verschlüsselungsverfahren Ziel: Flexibilität von asym. Verfahren und Effizienz von sym. Verfahren. Szenario: Sei Π = (Gen, Enc, Dec) ein PK-Verschlüsselungsverfahren und Π = (Gen, Enc, Dec ) ein

Mehr

Kryptographische Protokolle

Kryptographische Protokolle Kryptographische Protokolle Lerneinheit 2: Generierung von Primzahlen Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Wintersemester 2018/2019 15.11.2018 Einleitung Einleitung Diese Lerneinheit

Mehr

Public-Key Kryptographie mit dem RSA Schema. Torsten Büchner

Public-Key Kryptographie mit dem RSA Schema. Torsten Büchner Public-Key Kryptographie mit dem RSA Schema Torsten Büchner 7.12.2004 1.Einleitung 1. symmetrische-, asymmetrische Verschlüsselung 2. RSA als asymmetrisches Verfahren 2.Definition von Begriffen 1. Einwegfunktionen

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 15.05.2017 1 / 25 Überblick 1 Hashfunktionen Angriffe auf Hashfunktionen Zusammenfassung Hashfunktionen 2 Asymmetrische Verschlüsselung Idee Beispiel: RSA

Mehr

Probabilistische Primzahltests

Probabilistische Primzahltests 23.01.2006 Motivation und Überblick Grundsätzliches Vorgehen Motivation und Überblick Als Primzahltest bezeichnet man ein mathematisches Verfahren, mit dem ermittelt wird, ob eine gegebene Zahl eine Primzahl

Mehr

Proseminar Datensicherheit & Versicherungsmathematik RSA-Verfahren

Proseminar Datensicherheit & Versicherungsmathematik RSA-Verfahren Proseminar Datensicherheit & Versicherungsmathematik RSA-Verfahren Herwig Stütz 2007-11-23 1 Inhaltsverzeichnis 1 Einführung 2 2 Das RSA-Verfahren 2 2.1 Schlüsselerzeugung.................................

Mehr

Primzahltest für Mersenne-Primzahlen

Primzahltest für Mersenne-Primzahlen Primzahltest für Mersenne-Primzahlen Satz Lucas-Lehmer Test Sei n = 2 p 1 N für p P\{2}. Wir definieren die Folge S k durch S 1 = 4 und S k = S 2 k 1 2. Falls n S p 1, dann ist n prim. Beweis: Seien ω

Mehr

Einführung in die Kryptographie. 20.6.2011, www.privacyfoundation.ch

Einführung in die Kryptographie. 20.6.2011, www.privacyfoundation.ch Einführung in die Kryptographie 20.6.2011, www.privacyfoundation.ch Kryptographie Name kryptós: verborgen, geheim gráphein: schreiben Verschlüsselung Text so umwandeln, dass man ihn nur noch entziffern/lesen

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz IKS, KIT 06.05.2013 1 / 25 Überblick 1 Hashfunktionen Erinnerung Angriffe auf Hashfunktionen Zusammenfassung Hashfunktionen 2 Asymmetrische Verschlüsselung Idee Beispiel:

Mehr

IT-Sicherheit Kapitel 4 Public Key Algorithmen

IT-Sicherheit Kapitel 4 Public Key Algorithmen IT-Sicherheit Kapitel 4 Public Key Algorithmen Dr. Christian Rathgeb Sommersemester 2014 1 Einführung Der private Schlüssel kann nicht effizient aus dem öffentlichen Schlüssel bestimmt werden bzw. die

Mehr

Attacken auf RSA und Das Rabin Kryptosystem

Attacken auf RSA und Das Rabin Kryptosystem Attacken auf RSA und Das Rabin Kryptosystem Institut für Informatik Universität Potsdam 4. Januar 2005 Überblick Wiederholung: RSA Das RSA Kryptosystem Attacken auf RSA RSA-FACTOR Wieners Algorithmus Das

Mehr

Betriebssysteme und Sicherheit

Betriebssysteme und Sicherheit Betriebssysteme und Sicherheit Asymmetrische Kryptographie WS 2012/2012 Dr.-Ing. Elke Franz Elke.Franz@tu-dresden.de 1 Überblick 1 Prinzip asymmetrischer (Konzelations-)Systeme 2 Mathematische Grundlagen

Mehr

3 Public-Key-Kryptosysteme

3 Public-Key-Kryptosysteme Stand: 05.11.2013 Vorlesung Grundlagen und Methoden der Kryptographie Dietzfelbinger 3 Public-Key-Kryptosysteme 3.1 Verschlüsselung von Nachrichten Wir betrachten ganz einfache Kommunikationsszenarien.

Mehr

Mathematische Grundlagen der Kryptografie (1321) SoSe 06

Mathematische Grundlagen der Kryptografie (1321) SoSe 06 Mathematische Grundlagen der Kryptografie (1321) SoSe 06 Klausur am 19.08.2006: Lösungsvorschläge zu den Aufgaben zu Aufgabe I.1 (a) Das numerische Äquivalent zu KLAUSUR ist die Folge [10, 11, 0, 20, 18,

Mehr

Algorithmentheorie Randomisierung. Robert Elsässer

Algorithmentheorie Randomisierung. Robert Elsässer Algorithmentheorie 03 - Randomisierung Robert Elsässer Randomisierung Klassen von randomisierten Algorithmen Randomisierter Quicksort Randomisierter Primzahltest Kryptographie 2 1. Klassen von randomisierten

Mehr

SCHRIFTLICHE ZUSAMMENFASSUNG ZUM VORTRAG DIE GRUNDLAGEN DER RSA-VERSCHLÜSSELUNG VON DANIEL METZSCH

SCHRIFTLICHE ZUSAMMENFASSUNG ZUM VORTRAG DIE GRUNDLAGEN DER RSA-VERSCHLÜSSELUNG VON DANIEL METZSCH SCHRIFTLICHE ZUSAMMENFASSUNG ZUM VORTRAG DIE GRUNDLAGEN DER RSA-VERSCHLÜSSELUNG VON DANIEL METZSCH Freie Universität Berlin Fachbereich für Mathematik & Informatik Institut für Mathematik II Seminar über

Mehr

Algorithmische Kryptographie

Algorithmische Kryptographie Algorithmische Kryptographie Walter Unger Lehrstuhl für Informatik I 16. Februar 2007 Public-Key-Systeme: Rabin 1 Das System nach Rabin 2 Grundlagen Körper Endliche Körper F(q) Definitionen Quadratwurzel

Mehr

RSA Parameter öffentlich: N = pq mit p, q prim und e Z RSA Parameter geheim: d Z φ(n)

RSA Parameter öffentlich: N = pq mit p, q prim und e Z RSA Parameter geheim: d Z φ(n) RSA Parameter { öffentlich: N = pq mit p, q prim und e Z RSA Parameter φ(n) geheim: d Z φ(n) mit ed = 1 mod φ(n). Satz RSA Parameter Generierung RSA-Parameter (N, e, d) können in Zeit O(log 4 N) generiert

Mehr

Kurzskript MfI:AGS WS 2018/19 Teil II: Gruppen / Teil III: Ringe 34

Kurzskript MfI:AGS WS 2018/19 Teil II: Gruppen / Teil III: Ringe 34 Kurzskript MfI:AGS WS 2018/19 Teil II: Gruppen / Teil III: Ringe 34 Satz 4.2.11 (Chinesischer Restsatz, Ring-Version) Sind N teilerfremd (d.h. ggt( ) =1), so ist die Abbildung ein Ring-Isomorphismus. :

Mehr

7 Asymmetrische Kryptosysteme

7 Asymmetrische Kryptosysteme 10 7 Asymmetrische Kryptosysteme 7 Asymmetrische Kryptosysteme Diffie und Hellman kamen 1976 auf die Idee, dass die Geheimhaltung des Chiffrierschlüssels keine notwendige Voraussetzung für die Sicherheit

Mehr

Satz von Euler. Satz von Euler. Korollar 1. Korollar 2 Kleiner Fermat. Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G.

Satz von Euler. Satz von Euler. Korollar 1. Korollar 2 Kleiner Fermat. Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G. Satz von Euler Satz von Euler Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G. Beweis: Sei G = {g 1,..., g n } und a G. Betrachte die Abbildung f : G G, g ag. Da a G, besitzt a ein

Mehr

Satz von Euler. Satz von Euler. Korollar 1. Korollar 2 Kleiner Fermat. Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G.

Satz von Euler. Satz von Euler. Korollar 1. Korollar 2 Kleiner Fermat. Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G. Satz von Euler Satz von Euler Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G. Beweis: Sei G = {g 1,..., g n } und a G. Betrachte die Abbildung f : G G, g ag. Da a G, besitzt a ein

Mehr

Public Key Kryptographie

Public Key Kryptographie 4. Dezember 2007 Outline 1 Einführung 2 3 4 Einführung 1976 Whitefield Diffie und Martin Hellman 2 Schlüsselprinzip Asymmetrische Verschlüsselungsverfahren public Key private Key Anwendung E-Mail PGP openpgp

Mehr

Zahlentheorie, Arithmetik und Algebra

Zahlentheorie, Arithmetik und Algebra Zahlentheorie, Arithmetik und Algebra Seminar Hallo Welt für Fortgeschrittene 2008 Matthias Niessner June 20, 2008 Erlangen 1 von 29 Matthias Niessner Zahlentheorie, Arithmetik und Algebra Übersicht 1

Mehr

KRYPTOSYSTEME & RSA IM SPEZIELLEN

KRYPTOSYSTEME & RSA IM SPEZIELLEN KRYPTOSYSTEME & RSA IM SPEZIELLEN Kryptosysteme allgemein Ein Kryptosystem ist eine Vorrichtung oder ein Verfahren, bei dem ein Klartext mithilfe eines Schlüssels in einen Geheimtext umgewandelt wird (Verschlüsselung)

Mehr

Trim Size: 176mm x 240mm Lang ftoc.tex V1-5.Juli :54 P.M. Page 9

Trim Size: 176mm x 240mm Lang ftoc.tex V1-5.Juli :54 P.M. Page 9 Trim Size: 176mm x 240mm Lang ftoc.tex V1-5.Juli 2018 7:54 P.M. Page 9 Auf einen Blick Über den Autor... 7 Einleitung... 19 Teil I: Verschlüsseln... 25 Kapitel 1: Sicherheit in Zeiten des Internet... 27

Mehr

6.2 Asymmetrische Verschlüsselung

6.2 Asymmetrische Verschlüsselung 6.2 Asymmetrische Verschlüsselung (asymmetric encryption, public-key encryption) Prinzip (Diffie, Hellman, Merkle 1976-78): Statt eines Schlüssels K gibt es ein Schlüsselpaar K E, K D zum Verschlüsseln

Mehr

Kryptographie - eine mathematische Einführung

Kryptographie - eine mathematische Einführung Kryptographie - eine mathematische Einführung Rosa Freund 28. Dezember 2004 Überblick Grundlegende Fragestellungen Symmetrische Verschlüsselung: Blockchiffren, Hashfunktionen

Mehr

Kapitel 2. Elementare Zahlentheorie Primfaktorzerlegung

Kapitel 2. Elementare Zahlentheorie Primfaktorzerlegung Kapitel 2. Elementare Zahlentheorie 2.1. Primfaktorzerlegung Menge der ganzen Zahlen Z = {..., 3, 2, 1, 0, 1, 2, 3,...} Addition Inverse Multiplikation Z Z Z, Z Z, Z Z Z, (a, b) a + b a a (a, b) a b Ausgezeichnete

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 5.2 ElGamal Systeme 1. Verschlüsselungsverfahren 2. Korrektheit und Komplexität 3. Sicherheitsaspekte Das ElGamal Verschlüsselungsverfahren Public-Key Verfahren von

Mehr

Primzahltests und Faktorisierung. Primzahltests. Nuria Brede Universität Potsdam - Kryptographie SoSe 2005 Seite 1

Primzahltests und Faktorisierung. Primzahltests. Nuria Brede Universität Potsdam - Kryptographie SoSe 2005 Seite 1 Primzahltests und Faktorisierung Primzahltests Primzahltests Nuria Brede 16.06.2005 16.06.2005 Universität Potsdam - Kryptographie SoSe 2005 Seite 1 Primzahltests und Faktorisierung Primzahltests Inhalt

Mehr

RSA Äquivalenz der Parameter

RSA Äquivalenz der Parameter RSA Kryptosystem Wurde 1977 von Rivest, Shamir und Adleman erfunden. Genaue Beschreibung im PKCS #1. De-facto Standard für asymmetrische Kryptosysteme. Schlüsselerzeugung: Seien p, q zwei verschiedene,

Mehr

Zahlentheorieseminar: Einführung in die Public-Key-Kryptographie

Zahlentheorieseminar: Einführung in die Public-Key-Kryptographie Dozent: Dr. Ralf Gerkmann Referenten: Jonathan Paulsteiner (10939570) und Roman Lämmel ( ) Zahlentheorieseminar: Einführung in die Public-Key-Kryptographie 0. Inhalt 1. Einführung in die Kryptographie

Mehr

Carmichael-Zahlen und Miller-Rabin-Test

Carmichael-Zahlen und Miller-Rabin-Test Institut für Mathematik Universität Hannover Proseminar: Zahlentheorie und Kryptographie Prof. Dr. C. Bessenrodt Carmichael-Zahlen und Miller-Rabin-Test Felix Pape 15. Mai 2003 1 Carmichael-Zahlen 1.1

Mehr

Zahlentheorie I. Christoph Egger. 18. Juni Christoph Egger Zahlentheorie I 18. Juni / 32

Zahlentheorie I. Christoph Egger. 18. Juni Christoph Egger Zahlentheorie I 18. Juni / 32 Zahlentheorie I Christoph Egger 18. Juni 2010 Christoph Egger Zahlentheorie I 18. Juni 2010 1 / 32 Übersicht 1 Modulare Arithmetik Addition & Subtraktion Multiplikation schnelles Potenzieren 2 Teiler Definition

Mehr

4 Kryptologie. Übersicht

4 Kryptologie. Übersicht 4 Kryptologie Übersicht 4.1 Der erweiterte euklidische Algorithmus................................ 38 4.2 Rechnen mit Restklassen modulo p................................... 39 4.3 Der kleine Satz von

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 4.4 Semantische Sicherheit 1. Sicherheit partieller Informationen 2. Das Verfahren von Rabin 3. Sicherheit durch Randomisierung Semantische Sicherheit Mehr als nur

Mehr

Literatur. ISM SS 2017 Teil 8/Asymmetrische Verschlüsselung

Literatur. ISM SS 2017 Teil 8/Asymmetrische Verschlüsselung Literatur [8-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg 2001 [8-2] Schmeh, Klaus: Kryptografie. dpunkt, 4. Auflage, 2009 [8-3] Schneier,

Mehr

Kapitel 3 Elementare Zahletheorie

Kapitel 3 Elementare Zahletheorie Kapitel 3 Elementare Zahletheorie 89 Kapitel 3.1 Ganze Zahlen, Gruppen und Ringe 90 Die ganzen Zahlen Menge der ganzen Zahlen Z={..., 3, 2, 1,0,1,2,3,...} Es gibt zwei Operationen Addition: Z Z Z, (a,b)

Mehr

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck Gesamtpunktzahl: 114 Punkte, 100 Punkte= 100 %, keine Abgabe 1. Es seien m = 1155 und n = 1280.

Mehr

Abschnitt 5: Kryptographie. j (p j 1). 1 (p 1 1)p α 2

Abschnitt 5: Kryptographie. j (p j 1). 1 (p 1 1)p α 2 Abschnitt 5: Kryptographie. Zunächst wollen wir die Struktur von (Z/mZ) untersuchen. 5.1 Definition: Die Eulersche ϕ-funktion: ϕ : N N; ϕ(m) := (Z/mZ) 5.2 Bemerkung: (Z/mZ) {a {1,..., m 1} ggt(a, m) =

Mehr

MGI Exkurs: RSA-Kryptography

MGI Exkurs: RSA-Kryptography MGI Exkurs: RSA-Kryptography Prof. Dr. Wolfram Conen WS 05/06, 14.+17.10.2005 Version 1.0 Version 1.0 1 Angenommen, Sie heißen ALICE...... haben Geheimnisse......und wollen mit einem Bekannten namens BOB

Mehr

Kryptologie. Bernd Borchert. Univ. Tübingen SS Vorlesung. Teil 11. Primzahltests: Fermat, Miller-Rabin

Kryptologie. Bernd Borchert. Univ. Tübingen SS Vorlesung. Teil 11. Primzahltests: Fermat, Miller-Rabin Kryptologie Bernd Borchert Univ. Tübingen SS 2017 Vorlesung Teil 11 Primzahltests: Fermat, Miller-Rabin Primzahltests Problem: Gegeben n. Ist n Primzahl? Naive Methoden: Ausprobieren: gehe der Reihe nach

Mehr

Public Key Kryptographie mit dem RSA Schema. Karsten Fischer, Sven Kauer

Public Key Kryptographie mit dem RSA Schema. Karsten Fischer, Sven Kauer Public Key Kryptographie mit dem RSA Schema Karsten Fischer, Sven Kauer Gliederung I. Historischer Hintergrund II. Public Key Kryptographie III. Beispielszenario IV. Einweg-Funktion V. RSA Verfahren VI.

Mehr

Literatur. [8-9] ISM WS 2018/19 Teil 8/Asymmetrische Verschlüsselung

Literatur. [8-9]   ISM WS 2018/19 Teil 8/Asymmetrische Verschlüsselung Literatur [8-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg 2001 [8-2] Schmeh, Klaus: Kryptografie. dpunkt, 6. Auflage, 2017 [8-3] Schneier,

Mehr

11. Das RSA Verfahren

11. Das RSA Verfahren Chr.Nelius: Zahlentheorie (SoSe 2017) 53 11. Das RSA Verfahren Bei einer asymmetrischen Verschlüsselung lässt sich der Schlüssel zum Entschlüsseln nicht aus dem Schlüssel zum Verschlüsseln bestimmen und

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 4 Public Key Kryptographie mit RSA 1. Ver- und Entschlüsselung 2. Schlüsselerzeugung und Primzahltests 3. Angriffe auf das RSA Verfahren 4. Sicherheit von RSA Probleme

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 4.2 Primzahltests 1. Deterministische Primzahltests 2. Der Primzahltest von Solovay-Strassen 3. Der Milner-Rabin Test Wozu Primzahltests? RSA Schlüssel benötigen sehr

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 4.2 Primzahltests 1. Deterministische Primzahltests 2. Der Primzahltest von Solovay-Strassen 3. Der Milner-Rabin Test Wozu Primzahltests? RSA Schlüssel benötigen sehr

Mehr

Übung GSS Blatt 6. SVS Sicherheit in Verteilten Systemen

Übung GSS Blatt 6. SVS Sicherheit in Verteilten Systemen Übung GSS Blatt 6 SVS Sicherheit in Verteilten Systemen 1 Einladung zum SVS-Sommerfest SVS-Sommerfest am 12.07.16 ab 17 Uhr Ihr seid eingeladen! :-) Es gibt Thüringer Bratwürste im Brötchen oder Grillkäse

Mehr

Gewinnung und Test großer Primzahlen

Gewinnung und Test großer Primzahlen 16. Mai 2007 1 Einführung 2 Primzahlgewinnung 3 Primzahlentest 4 Aktuelles 5 Appendix 1 Einführung Anwendung Notation und Grundlagen Ordnung Eulersche φ-funktion Kleiner Satz von Fermat Anwendung Verwendung

Mehr

Elementare Zahlentheorie II

Elementare Zahlentheorie II Schülerzirel Mathemati Faultät für Mathemati. Universität Regensburg Elementare Zahlentheorie II Der Satz von Euler-Fermat und die RSA-Verschlüsselung Die Mathemati ist die Königin der Wissenschaften,

Mehr

Asymmetrische Kryptographie u

Asymmetrische Kryptographie u Asymmetrische Kryptographie u23 2015 Simon, Florob e.v. https://koeln.ccc.de Cologne 2015-10-05 1 Zahlentheorie Modulare Arithmetik Algebraische Strukturen Referenzprobleme 2 Diffie-Hellman Diffie-Hellman-Schlüsselaustausch

Mehr

Universität Tübingen WS 2015/16. Kryptologie. Klausur

Universität Tübingen WS 2015/16. Kryptologie. Klausur Universität Tübingen WS 2015/16 Kryptologie Klausur 31.3.2016 Name: Matrikel-Nr.: 1 2 3 4 5 6 7 8 9 10 Summe 10 15 10 10 8 10 12 5 10 10 100 Aufgabe 1 a) (8P) Testen Sie mit Miller-Rabin, ob 13 eine Primzahl

Mehr

Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche '-Funktion, RSA

Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche '-Funktion, RSA Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche '-Funktion, RSA Manfred Gruber http://www.lrz-muenchen.de/~gruber SS 2009, KW 15 Kleiner Fermatscher Satz Satz 1. Sei p prim und a 2 Z p. Dann

Mehr

Einleitung. Wir schauen uns einige Probleme an, die wir im Laufe der Vorlesung genauer untersuchen werden.

Einleitung. Wir schauen uns einige Probleme an, die wir im Laufe der Vorlesung genauer untersuchen werden. Chr.Nelius: Zahlentheorie (SoSe 2018) 1 Einleitung Wir schauen uns einige Probleme an, die wir im Laufe der Vorlesung genauer untersuchen werden. (1) Zahlbereiche Unsere Zahlentheorie spielt sich im Bereich

Mehr

4: Algebraische Strukturen / Gruppen

4: Algebraische Strukturen / Gruppen Stefan Lucks Diskrete Strukturen (WS 2009/10) 120 4: Algebraische Strukturen / Gruppen Definition 46 Sei G eine nichtleere Menge. Eine Funktion : G G G bezeichnen wir als Verknüpfung auf G. Das Paar (G,

Mehr

$Id: ring.tex,v /05/03 15:13:26 hk Exp $

$Id: ring.tex,v /05/03 15:13:26 hk Exp $ $Id: ring.tex,v 1.13 2012/05/03 15:13:26 hk Exp $ 3 Ringe 3.1 Der Ring Z m In der letzten Sitzung hatten wir die sogenannten Ringe eingeführt, dies waren Mengen A versehen mit einer Addition + und einer

Mehr

Das RSA Kryptosystem

Das RSA Kryptosystem Kryptografie Grundlagen RSA Institut für Mathematik Technische Universität Berlin Kryptografie Grundlagen RSA mit geheimem mit öffentlichem Schlüssel Realisierung Kryptografie mit geheimem Schlüssel Alice

Mehr

VI.4 Elgamal. - vorgestellt 1985 von Taher Elgamal. - nach RSA das wichtigste Public-Key Verfahren

VI.4 Elgamal. - vorgestellt 1985 von Taher Elgamal. - nach RSA das wichtigste Public-Key Verfahren VI.4 Elgamal - vorgestellt 1985 von Taher Elgamal - nach RSA das wichtigste Public-Key Verfahren - besitzt viele unterschiedliche Varianten, abhängig von zugrunde liegender zyklischer Gruppe - Elgamal

Mehr

Zahlentheorie. Alexander May. Fakultät für Mathematik Ruhr-Universität Bochum. Sommersemester 2015

Zahlentheorie. Alexander May. Fakultät für Mathematik Ruhr-Universität Bochum. Sommersemester 2015 Zahlentheorie Alexander May Fakultät für Mathematik Ruhr-Universität Bochum Sommersemester 2015 Zahlentheorie - V01 Primzahlen, Landau-Notation, Fermat Primzahl, Mersenne Primzahl 1 / 230 Organisatorisches

Mehr

Vortrag zum Proseminar: Kryptographie

Vortrag zum Proseminar: Kryptographie Vortrag zum Proseminar: Kryptographie Thema: Oliver Czernik 6.12.2005 Historie Michael Rabin Professor für Computerwissenschaft Miller-Rabin-Primzahltest Januar 1979 April 1977: RSA Asymmetrisches Verschlüsselungssystem

Mehr

Kommunikationsalgorithmus RSA

Kommunikationsalgorithmus RSA Kommunikationsalgorithmus RSA Herr Maue Ergänzungsfach Informatik Neue Kantonsschule Aarau Früjahrsemester 2015 24.04.2015 EFI (Hr. Maue) Kryptographie 24.04.2015 1 / 26 Programm heute 1. Verschlüsselungsverfahren

Mehr

Lösungen der Aufgaben

Lösungen der Aufgaben Lösungen der Aufgaben Aufgabe 1.3.1 Es gibt 42 mögliche Verschlüsselungen. Aufgabe 2.3.4 Ergebnisse sind 0, 4 und 4 1 = 4. Aufgabe 2.3.6 Da in Z 9 10 = 1 ist, erhalten wir x = c 0 + + c m = c 0 + + c m.

Mehr

IT-Sicherheitsmanagement. Teil 8: Asymmetrische Verschlüsselung

IT-Sicherheitsmanagement. Teil 8: Asymmetrische Verschlüsselung IT-Sicherheitsmanagement Teil 8: Asymmetrische Verschlüsselung 02.01.18 1 Literatur [8-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg 2001

Mehr

Probabilistische Algorithmen

Probabilistische Algorithmen Probabilistische Algorithmen Michal Švancar Gerardo Balderas Hochschule Zittau/Görlitz 21. Dezember 2014 Michal Švancar, Gerardo Balderas (HSZG) Probabilistische Algorithmen 21. Dezember 2014 1 / 40 Inhaltsverzeichnis

Mehr

Übungen zu Zahlentheorie, SS 2017

Übungen zu Zahlentheorie, SS 2017 Übungen zu Zahlentheorie, SS 017 Christoph Baxa 1) Finde alle positiven Teiler von a) 1799 b) 997. ) Zeige (a b) (a n b n ) für alle a, b Z und alle n N. 3) Zeige: Wenn m n dann (a m b m ) (a n b n ) (mit

Mehr

Kryptographie. Nachricht

Kryptographie. Nachricht Kryptographie Kryptographie Sender Nachricht Angreifer Empfänger Ziele: Vertraulichkeit Angreifer kann die Nachricht nicht lesen (Flüstern). Integrität Angreifer kann die Nachricht nicht ändern ohne dass

Mehr

Angewandte Kryptographie

Angewandte Kryptographie Angewandte Kryptographie 3. Asymmetrische Verfahren Netzwerksicherheit WS 2001/2002 Jean-Marc Piveteau 1. Die Public Key -Revolution Angewandte Kryptographie Kapitel 2 2 Symmetrische Kryptographie: Die

Mehr

Beispiel für simultane Kongruenz

Beispiel für simultane Kongruenz Beispiel für simultane Kongruenz Jetzt wollen wir das Lemma der letzten Einheit anwenden. Wenn man eine Zahl sucht, die kongruent zu y modulo m und kongruent zu z modulo n ist, so nehme man zam + ybn wobei

Mehr

Diskrete Mathematik 1

Diskrete Mathematik 1 Ruhr-Universität Bochum Lehrstuhl für Kryptologie und IT-Sicherheit Prof. Dr. Alexander May M. Ritzenhofen, M. Mansour Al Sawadi, A. Meurer Lösungsblatt zur Vorlesung Diskrete Mathematik 1 WS 008/09 Blatt

Mehr

Vorlesung Theoretische Informatik (Info III)

Vorlesung Theoretische Informatik (Info III) 1 Vorlesung Theoretische Informatik (Info III) Prof. Dr. Dorothea Wagner Dipl.-Math. Martin Holzer 20. Dezember 2007 Einleitung Motivation 2 Thema heute Relative Approximation (Forts.) Approximationsschemata

Mehr

Einführung in die Kryptographie

Einführung in die Kryptographie Einführung in die Kryptographie Stefan Katzenbeisser Institut für Informatik Technische Universität München skatzenbeisser@acm.org Kryptographie p.1/54 Vom Zeichen zum Code Älteste Form: Codes repräsentieren

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 4 Public Key Kryptographie mit RSA 1. Ver- und Entschlüsselung 2. Schlüsselerzeugung und Primzahltests 3. Angriffe auf das RSA Verfahren 4. Sicherheit von RSA Probleme

Mehr

3.5 Kryptographie - eine Anwendung der Kongruenzrechnung

3.5 Kryptographie - eine Anwendung der Kongruenzrechnung 1 3.5 Kryptographie - eine Anwendung der Kongruenzrechnung Das Wort Kryptographie leitet sich aus der griechischen Sprache ab, nämlich aus den beiden Worten κρυπτ oς(kryptos)=versteckt, geheim und γραϕɛιν(grafein)=schreiben.

Mehr

Vorlesung 7. Tilman Bauer. 25. September 2007

Vorlesung 7. Tilman Bauer. 25. September 2007 Vorlesung 7 Universität Münster 25. September 2007 El. In Vorlesung 4 haben wir Modulo-Arithmetik behandelt. Definition Sei n N 1. Auf Z ist eine Äquivalenzrelation Kongruenz modulo n definiert durch x

Mehr

El. Zahlentheorie I: Der kleine Satz von Fermat

El. Zahlentheorie I: Der kleine Satz von Fermat Vorlesung 7 Universität Münster 25. September 2007 El. In Vorlesung 4 haben wir Modulo-Arithmetik behandelt. Definition Sei n N 1. Auf Z ist eine Äquivalenzrelation Kongruenz modulo n definiert durch x

Mehr