KRYPTOSYSTEME & RSA IM SPEZIELLEN
|
|
|
- Paula Ziegler
- vor 9 Jahren
- Abrufe
Transkript
1 KRYPTOSYSTEME & RSA IM SPEZIELLEN Kryptosysteme allgemein Ein Kryptosystem ist eine Vorrichtung oder ein Verfahren, bei dem ein Klartext mithilfe eines Schlüssels in einen Geheimtext umgewandelt wird (Verschlüsselung) und umgekehrt, der Geheimtext wieder in den Klartext rückgewandelt werden kann (Entschlüsselung). Bei einem Verschlüsselungsverfahren wird eine Nachricht N mit Hilfe einer Funktion E und eines Schlüssels e verschlüsselt: K = Ee(N) Die Dekodierung erfolgt mit der (zugehörigen) Funktion D und dem Schlüssel d: Dd (K) = Dd (Ee(N)) = N. Die Funktionen E und D sollten effizient berechnet werden können. Grundsätzlich wird unterschieden zwischen symmetrischer( Private Key Kryptoverfahren ) und asymmetrischer Kryptographie ( Public Key Kryptoverfahren ). Symmetrische Kryptographie Dieses System verwendet für die Ver und Entschlüsselung die gleichen Schlüssel, was auch zugleich als Nachteil gesehen wird. Da bei der Übermittlung der verschlüsselten Information auch der Schlüssel selbst mit übermittelt werden muss. Somit muss der Schlüssel über einen sicheren Kanal übertragen werden, da die Sicherheit des Verfahrens logischerweise von der Geheimhaltung des Schlüssels abhängt. Beispiele für dieses Verfahren wären: DES (Data Encryption Standard) AES (Advanced Encryption Standard), Nachfolger des DES heute Verschlüsselungsstandard der USA Daher wurde als Alternative die asymmetrische Kryptographie entwickelt, um den symmetrischen Schlüssel selbst zu verschlüsseln und ihn so über einen unsicheren Kanal übertragen zu können. [vgl. Swoboda et al. 2008, S. 2f; S. 43] Asymmetrische Kryptographie Solche Verfahren wurden 1976 von Diffie und Hellman eingeführt. Das RSA Verfahren ist ein Beispiel eines asymmetrischen Verschlüsselungsverfahrens. Es wurde 1977 von Ronald L. Rivest, Adi Shamir und Leonard Adleman am MIT entwickelt. Der
2 Name RSA steht für die Anfangsbuchstaben ihrer Familiennamen. Es galt damals als das erste asymmetrische Verschlüsselungsverfahren. Hierbei verwenden Sender und Empfänger jeweils eigene Schlüssel e und d. Der Schlüssel e wird jeweils öffentlich bekannt gegeben, während der Schlüssel d geheim bleibt. Ein Schlüsselaustausch des jeweils persönlichen Dekodierungsschlüssels d ist demnach nicht erforderlich. Demnach ermöglich der öffentliche Schlüssel jedermann, Daten für den Inhaber des privaten Schlüssels zu verschlüsseln, dessen digitale Signaturen zu prüfen oder ihn zu authentifizieren. Der private Schlüssel ermöglicht es seinem Inhaber, mit dem öffentlichen Schlüssel verschlüsselte Daten zu entschlüsseln, digitale Signaturen zu erzeugen oder sich zu authentisieren. Sicherheit? Es ist bis heute auch keine Formel bekannt, die es gestattet, schnell beliebig große Primzahlen zu berechnen, oder aus einer gegebenen Primzahl eine noch größere Primzahl herzustellen. Nach wie vor stehen hier nur Probiermethoden zur Verfügung. Angesichts der riesigen Anzahl der durchzuprobierenden Zahlenwerte führen diese Probiermethoden bei entsprechend langen Schlüsselwerten nicht in vernünftiger Zeit zum gewünschten Ergebnis. (Nach den Abschätzungen der Mathematik gibt es vermutlich 10 mal mehr Primzahlen mit 512 bit Länge, als Atome im Universum.) [vgl. Swoboda et al. 2008, S. 125ff] Wo wird das RSA Verfahren eingesetzt? Wo wird das RSA Verfahren eingesetzt? bei der sicheren Anmeldung auf einem entfernten Computer: secure shell (ssh) beim Verkehr o Verfahren PGP (Pretty Good Privacy) auch bei elektronischer Unterschrift o S/MIME (Secure / Multipurpose Internet Mail Extensions) Standard für die Verschlüsselung und Signatur von MIME gekapselter E Mail Digitale Signaturen, die u. a. zur sicheren Abwicklung von Geschäften im Internet eingesetzt werden beim sicheren Datentransfer auf sicheren Webseiten (https), beispielsweise beim Online Banking, Internetkauf, Zahlung mit Kreditkarte, etc. bei kryptografischen Protokollen wie SSL/TLS
3 Beispiel p, q als zwei große Primzahlen öffentlicher Schlüssel zum Chiffrieren (e : encrypt): (e; n) wobei n = p * q und e teilerfremd zu (p 1) * (q 1) privater Schlüssel zum Dechiffrieren (d : decrypt) mit d * e = 1 mod((p 1) * (q 1)) Um einen Text zu verschlüsseln, müssen zunächst Buchstaben in Zahlen umgewandelt werden. Dazu verwendet man in der Praxis zum Beispiel den ASCII Code oder ISO Werte. einfaches Beispiel: Klartext: H A L L O ISO Wert: Chiffrieren: Dechiffrieren: c' = c e mod n c = c' d mod n 1. Man wählt zwei Primzahlen p und q Wir nehmen 11 und p und q werden miteinander multipliziert, um n zu erhalten 3. Man berechnet die eulersche Phi Funktion phi(n) = (p 1)(q 1) 4. Man wählt eine zu phi teilerfremde Zahl e, für die gilt 1<e<phi(n) 5. Man berechnet den Entschlüsselungsexponenten d als Multiplikativ Inverses von e mod phi(n). Es gilt: e*d + k*phi(n) = 1 = ggt (e, phi(n)) Im konkreten Bsp.: 7*d + k*160 = 1 Mit dem euklidischen Algorithmus ggt(a,b) = s*a + t*b 6. Der Wert e wird zusammen mit n als öffentlicher Schlüssel definiert, der Wert d als privater Schlüssel. Der öffentliche Schlüssel, mit dem verschlüsselt wird, kann nun allgemein bekannt gemacht werden. n = 11 x 17 = 187 phi(n) = (11 1)(17 1) = 160 Wir wählen e = 7 für den public key d = 23 für den private key der ganze public key besteht also aus zwei Zahlen, nämlich ( e; n), hier also (7; 187) der ganze private key
4 Der private Schlüssel, muss geheim gehalten werden [vgl. Buchmann 2003, S. 137ff; Wiener 1990] z ISO Wert Chiffrieren c' = c e mod n H (72) 72 7 mod 187 = 30 Dechiffrieren c = c' d mod n mod 187 = 72 ( H ) besteht dann dem entsprechend aus den Zahlen (d; n), hier also (23; 187) A (65) 65 7 mod 187 = 142 L (76) 76 7 mod 187 = 32 L (76) 76 7 mod 187 = 32 O (79) 79 7 mod 187 = mod 187 = 65 ( A ) mod 187 = 76 ( L ) mod 187 = 76 ( L ) mod 187 = 79 ( O )
5 Literaturverzeichnis Buchmann, J. (2003): Einführung in die Kryptographie. 3. Auflage, Springer Verlag, Berlin. Swoboda, J.; Spitz, S.; Pramateftakis, M. (2008):Kryptographie und IT sicherheit: Grundlagen und Anwendungen. 1. Auflage, Vieweg & Teubner Verlag, Wiesbaden Wiener, M.J.: Cryptanalysis of short RSA secret exponents. Information Theory, IEEE Transactions on Volume 36, Issue 3, May 1990 Page(s):
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
Einführung in die Kryptographie. 20.6.2011, www.privacyfoundation.ch
Einführung in die Kryptographie 20.6.2011, www.privacyfoundation.ch Kryptographie Name kryptós: verborgen, geheim gráphein: schreiben Verschlüsselung Text so umwandeln, dass man ihn nur noch entziffern/lesen
Facharbeit. Public-Key-Verfahren(PGP) Stephan Larws Informatik 02
Facharbeit Public-Key-Verfahren(PGP) Stephan Larws Informatik 02 1 Inhaltsverzeichnis 1.) DES 2.) Das Problem der Schlüsselverteilung - Lösung von Diffie, Hellman und Merkle 3.) Die Idee der asymmetrischen
Das RSA-Verfahren. Proseminar Kryptographische Protokolle SS Armin Litzel
in der Praxis Proseminar Kryptographische Protokolle SS 2009 5.5.2009 in der Praxis Gliederung 1 Grundlegendes über RSA 2 in der Praxis Allgemeine Vorgehensweise zur Verschlüsselung Signieren mit RSA 3
Diskrete Strukturen Kapitel 5: Algebraische Strukturen (RSA-Verfahren)
WS 2016/17 Diskrete Strukturen Kapitel 5: Algebraische Strukturen (RSA-Verfahren) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16
3: Primzahlen. 111 S. Lucks Diskr Strukt. (WS 18/19) 3: Primzahlen
3: Primzahlen 111 S. Lucks Diskr Strukt. (WS 18/19) 3: Primzahlen Definition 40 (Teiler, Vielfache, Primzahlen, zusammengesetzte Zahlen) Seien a, b N. a ist ein Teiler von b ( a b ), falls es ein k N gibt
3: Zahlentheorie / Primzahlen
Stefan Lucks Diskrete Strukturen (WS 2009/10) 96 3: Zahlentheorie / Primzahlen 3: Zahlentheorie / Primzahlen Stefan Lucks Diskrete Strukturen (WS 2009/10) 97 Definition 37 (Teiler, Vielfache, Primzahlen,
Public-Key Kryptographie mit dem RSA Schema. Torsten Büchner
Public-Key Kryptographie mit dem RSA Schema Torsten Büchner 7.12.2004 1.Einleitung 1. symmetrische-, asymmetrische Verschlüsselung 2. RSA als asymmetrisches Verfahren 2.Definition von Begriffen 1. Einwegfunktionen
Inhaltsverzeichnis. Wolfgang Ertel. Angewandte Kryptographie. ISBN (Buch): ISBN (E-Book):
Inhaltsverzeichnis Wolfgang Ertel Angewandte Kryptographie ISBN (Buch): 978-3-446-42756-3 ISBN (E-Book): 978-3-446-43196-6 Weitere Informationen oder Bestellungen unter http://www.hanser-fachbuch.de/978-3-446-42756-3
Übungen zur Vorlesung Systemsicherheit
Übungen zur Vorlesung Systemsicherheit Asymmetrische Kryptographie Tilo Müller, Reinhard Tartler, Michael Gernoth Lehrstuhl Informatik 1 + 4 24. November 2010 c (Lehrstuhl Informatik 1 + 4) Übungen zur
SCHRIFTLICHE ZUSAMMENFASSUNG ZUM VORTRAG DIE GRUNDLAGEN DER RSA-VERSCHLÜSSELUNG VON DANIEL METZSCH
SCHRIFTLICHE ZUSAMMENFASSUNG ZUM VORTRAG DIE GRUNDLAGEN DER RSA-VERSCHLÜSSELUNG VON DANIEL METZSCH Freie Universität Berlin Fachbereich für Mathematik & Informatik Institut für Mathematik II Seminar über
VON. Kryptographie. 07. März 2013. Powerpoint-Präsentation
VON 07. März 2013 & Kryptographie Powerpoint-Präsentation 1 Allgemeines über die Kryptographie kryptós= griechisch verborgen, geheim gráphein= griechisch schreiben Kryptographie + Kryptoanalyse= Kryptologie
Denn es geh t um ihr Geld: Kryptographie
Denn es geht um ihr Geld: Kryptographie Ilja Donhauser Inhalt Allgemeines Symmetrisch Asymmetrisch Hybridverfahren Brute Force Primzahlen Hashing Zertifikate Seite 2 Allgemeines Allgemeines Wissenschaft
Angewandte Kryptographie
Angewandte Kryptographie 3. Asymmetrische Verfahren Netzwerksicherheit WS 2001/2002 Jean-Marc Piveteau 1. Die Public Key -Revolution Angewandte Kryptographie Kapitel 2 2 Symmetrische Kryptographie: Die
Verschlüsselung durch Exponentiation (Pohlig, Hellman, 1976)
Verschlüsselung durch Exponentiation (Pohlig, Hellman, 1976) p : eine (grosse) Primzahl e : Zahl 0 < e < p mit ggt(e, p 1) = 1 d Inverses von e in Z p 1, dh d e 1 mod p 1 (= φ(p)) M : numerisch codierter
Regine Schreier
Regine Schreier 20.04.2016 Kryptographie Verschlüsselungsverfahren Private-Key-Verfahren und Public-Key-Verfahren RSA-Verfahren Schlüsselerzeugung Verschlüsselung Entschlüsselung Digitale Signatur mit
IT-Sicherheitsmanagement. Teil 12: Asymmetrische Verschlüsselung
IT-Sicherheitsmanagement Teil 12: Asymmetrische Verschlüsselung 10.12.15 1 Literatur [12-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg
RSA-Verfahren Schnelle Ver- / Entschlüsselung Zusammenhang mit dem Faktorisierungsproblem. RSA-Verfahren. Herwig Stütz
2007-11-23 Überblick 1 2 Schnelle modulare Exponentiation Chinesischer Restsatz 3 Allgemeines Public-Key Methode Rivest, Shamir und Adleman 1977 Sicherheit des Verfahrens beruht auf Schwierigkeit der Primfaktorenzerlegung
Kommunikationsalgorithmus RSA
Kommunikationsalgorithmus RSA Herr Maue Ergänzungsfach Informatik Neue Kantonsschule Aarau Früjahrsemester 2015 24.04.2015 EFI (Hr. Maue) Kryptographie 24.04.2015 1 / 26 Programm heute 1. Verschlüsselungsverfahren
VI.3 RSA. - RSA benannt nach seinen Erfindern R. Rivest, A. Shamir und L. Adleman. - vorgestellt erstes Public-Key Verschlüsselungsverfahren
VI.3 RSA - RSA benannt nach seinen Erfindern R. Rivest, A. Shamir und L. Adleman - vorgestellt 1977 - erstes Public-Key Verschlüsselungsverfahren - auch heute noch das wichtigste Public-Key Verfahren 1
6.2 Asymmetrische Verschlüsselung
6.2 Asymmetrische Verschlüsselung (asymmetric encryption, public-key encryption) Prinzip (Diffie, Hellman, Merkle 1976-78): Statt eines Schlüssels K gibt es ein Schlüsselpaar K E, K D zum Verschlüsseln
Anwendungen der Linearen Algebra: Kryptologie
Anwendungen der Linearen Algebra: Kryptologie Philip Herrmann Universität Hamburg 5.12.2012 Philip Herrmann (Universität Hamburg) AnwLA: Kryptologie 1 / 28 No one has yet discovered any warlike purpose
Übung GSS Blatt 6. SVS Sicherheit in Verteilten Systemen
Übung GSS Blatt 6 SVS Sicherheit in Verteilten Systemen 1 Einladung zum SVS-Sommerfest SVS-Sommerfest am 12.07.16 ab 17 Uhr Ihr seid eingeladen! :-) Es gibt Thüringer Bratwürste im Brötchen oder Grillkäse
Kryptograhie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik
Kryptograhie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Übersicht Zwecke der Krytographie Techniken Symmetrische Verschlüsselung( One-time Pad,
Das Verschlüsselungsverfahren RSA
Das Verschlüsselungsverfahren RSA von Nora Schweppe Humboldt-Oberschule Berlin Grundkurs Informatik 3 Herr Dietz Inhaltsverzeichnis 1. Einleitung... 1-2 1.1 Symmetrische und asymmetrische Verschlüsselungsverfahren...1
n ϕ n
1 3. Teiler und teilerfremde Zahlen Euler (1707-1783, Gymnasium und Universität in Basel, Professor für Physik und Mathematik in Petersburg und Berlin) war nicht nur einer der produktivsten Mathematiker
Public Key Kryptographie mit dem RSA Schema. Karsten Fischer, Sven Kauer
Public Key Kryptographie mit dem RSA Schema Karsten Fischer, Sven Kauer Gliederung I. Historischer Hintergrund II. Public Key Kryptographie III. Beispielszenario IV. Einweg-Funktion V. RSA Verfahren VI.
Kryptographie. ein erprobter Lehrgang. AG-Tagung Informatik, April 2011 Alfred Nussbaumer, LSR für NÖ. LSR für NÖ, 28. April 2011 Alfred Nussbaumer
Kryptographie ein erprobter Lehrgang AG-Tagung Informatik, April 2011 Alfred Nussbaumer, LSR für NÖ 1 Variante: Kryptographie in 5 Tagen Ein kleiner Ausflug in die Mathematik (Primzahlen, Restklassen,
Kryptographie und IT-Sicherheit
Joachim Swoboda Stephan Spitz Michael Pramateftakis Kryptographie und IT-Sicherheit Grundlagen und Anwendungen Mit 115 Abbildungen STUDIUM VIEWEG+ TEUBNER 1 Ziele und Wege der Kryptographie 1 1.1 Historische
11. Das RSA Verfahren
Chr.Nelius: Zahlentheorie (SoSe 2017) 53 11. Das RSA Verfahren Bei einer asymmetrischen Verschlüsselung lässt sich der Schlüssel zum Entschlüsseln nicht aus dem Schlüssel zum Verschlüsseln bestimmen und
Public Key Kryptographie
Public Key Kryptographie Georg Stütz 4. Dezember 2007 Inhaltsverzeichnis 1 Einführung 2 1.1 Anwendungsbeispiel................................ 2 1.2 Unterschiede zwischen symmetrischen und asymmetrischen
Diskreter Logarithmus und Primkörper
Diskreter Logarithmus und Primkörper Neben dem RSA-Verfahren ist die ElGamal-Verschlüsselung 8 ein weiteres klassische Public-Key-Verfahren, welches von Taher ElGamal auf der Konferenz CRYPTO 84 vorgestellt
Kryptographie - eine mathematische Einführung
Kryptographie - eine mathematische Einführung Rosa Freund 28. Dezember 2004 Überblick Grundlegende Fragestellungen Symmetrische Verschlüsselung: Blockchiffren, Hashfunktionen
Public Key Kryptographie
4. Dezember 2007 Outline 1 Einführung 2 3 4 Einführung 1976 Whitefield Diffie und Martin Hellman 2 Schlüsselprinzip Asymmetrische Verschlüsselungsverfahren public Key private Key Anwendung E-Mail PGP openpgp
AES und Public-Key-Kryptographie
Jens Kubieziel [email protected] Friedrich-Schiller-Universität Jena Fakultät für Mathem atik und Informatik 22. Juni 2009 Beschreibung des Algorithmus Angriffe gegen AES Wichtige Algorithmen im 20. Jahrhundert
Geheim bleibt geheim: Computeralgebra und Verschlüsselung mit RSA
Geheim bleibt geheim: Computeralgebra und Verschlüsselung mit RSA Prof. Dr. Wolfram Koepf Universität Kassel http://www.mathematik.uni-kassel.de/~koepf Nordhessischer Tag der Mathematik 16. Februar 2007
Kryptografie Die Mathematik hinter den Geheimcodes
Kryptografie Die Mathematik hinter den Geheimcodes Rick Schumann www.math.tu-freiberg.de/~schumann Institut für Diskrete Mathematik und Algebra, TU Bergakademie Freiberg Akademische Woche Sankt Afra /
Literatur. ISM SS 2017 Teil 8/Asymmetrische Verschlüsselung
Literatur [8-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg 2001 [8-2] Schmeh, Klaus: Kryptografie. dpunkt, 4. Auflage, 2009 [8-3] Schneier,
Von Cäsar bis RSA. Chiffrierung von der 1. bis zur 8. Klasse. Dr. Anita Dorfmayr Universität Wien. Lehrerfortbildungstag der ÖMG Wien, 13.
Von Cäsar bis RSA Chiffrierung von der 1. bis zur 8. Klasse Dr. Anita Dorfmayr Universität Wien Lehrerfortbildungstag der ÖMG Wien, 13. April 2007 Gliederung Einführung Geschichte Zielsetzungen der Kryptografie
Kryptographie. Nachricht
Kryptographie Kryptographie Sender Nachricht Angreifer Empfänger Ziele: Vertraulichkeit Angreifer kann die Nachricht nicht lesen (Flüstern). Integrität Angreifer kann die Nachricht nicht ändern ohne dass
11. Das RSA Verfahren und andere Verfahren
Chr.Nelius: Kryptographie (SS 2011) 31 11. Das RSA Verfahren und andere Verfahren Eine konkrete Realisierung eines Public Key Kryptosystems ist das sog. RSA Verfahren, das im Jahre 1978 von den drei Wissenschaftlern
6: Public-Key Kryptographie (Grundidee)
6: Public-Key Kryptographie (Grundidee) Ein Teil des Schlüssels ist nur dem Empfänger bekannt. Der auch dem Sender bekannte Teil kann sogar veröffentlicht werden. Man spricht dann von einem Schlüsselpaar.
3 Public-Key-Kryptosysteme
Stand: 05.11.2013 Vorlesung Grundlagen und Methoden der Kryptographie Dietzfelbinger 3 Public-Key-Kryptosysteme 3.1 Verschlüsselung von Nachrichten Wir betrachten ganz einfache Kommunikationsszenarien.
12 Kryptologie. ... immer wichtiger. Militär (Geheimhaltung) Telebanking, Elektronisches Geld E-Commerce WWW...
12 Kryptologie... immer wichtiger Militär (Geheimhaltung) Telebanking, Elektronisches Geld E-Commerce WWW... Kryptologie = Kryptographie + Kryptoanalyse 12.1 Grundlagen 12-2 es gibt keine einfachen Verfahren,
Diffie-Hellman, RSA, etc.
Diffie-Hellman, RSA, etc. mathematische Grundlagen asymmetrischer Verschlüsselungsverfahren Sven Moritz Hallberg [email protected] SIGINT 09, 22. 24. Mai 2009 Zusammenfassung Inzwischen sind kryptographische
Kryptographie für CTFs
Kryptographie für CTFs Eine Einführung KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kitctf.de Einführung Cryptography is the practice and study of techniques for secure communication
Kurzskript MfI:AGS WS 2018/19 Teil II: Gruppen / Teil III: Ringe 34
Kurzskript MfI:AGS WS 2018/19 Teil II: Gruppen / Teil III: Ringe 34 Satz 4.2.11 (Chinesischer Restsatz, Ring-Version) Sind N teilerfremd (d.h. ggt( ) =1), so ist die Abbildung ein Ring-Isomorphismus. :
Das RSA-Verfahren. Armin Litzel. Proseminar Kryptographische Protokolle SS 2009
Das RSA-Verfahren Armin Litzel Proseminar Kryptographische Protokolle SS 2009 1 Einleitung RSA steht für die drei Namen Ronald L. Rivest, Adi Shamir und Leonard Adleman und bezeichnet ein von diesen Personen
Kryptographische Verfahren. zur Datenübertragung im Internet. Patrick Schmid, Martin Sommer, Elvis Corbo
Kryptographische Verfahren zur Datenübertragung im Internet Patrick Schmid, Martin Sommer, Elvis Corbo 1. Einführung Übersicht Grundlagen Verschlüsselungsarten Symmetrisch DES, AES Asymmetrisch RSA Hybrid
Krypto Präsentation. 15. Februar 2007. Berger, Ehrmann, Kampl, Köchl, Krajoski, Kwak, Müller, Niederklapfer, Ortbauer. Inhalt Klassisch Enigma RSA
Krypto Präsentation 15. Februar 2007 Berger, Ehrmann, Kampl, Köchl, Krajoski, Kwak, Müller, Niederklapfer, Ortbauer Transposition Substitution Definitionen Einführung Schlüssel Transposition Substitution
Kryptographie. Guido Ehlert. LK Informatik 13/Thomae. Einstein-Gymnasium Potsdam. Februar 2002
Kryptographie Guido Ehlert LK Informatik 13/Thomae Einstein-Gymnasium Potsdam Februar 2002 Inhaltsverzeichnis Inhaltsverzeichnis 1 Definition 3 2 Notwendigkeit von Kryptosystemen 3 3 Geschichtliche Entwicklung
Asymmetrische Kryptographie u
Asymmetrische Kryptographie u23 2015 Simon, Florob e.v. https://koeln.ccc.de Cologne 2015-10-05 1 Zahlentheorie Modulare Arithmetik Algebraische Strukturen Referenzprobleme 2 Diffie-Hellman Diffie-Hellman-Schlüsselaustausch
Public Key Kryptographie
3. Juni 2006 1 Algorithmen für Langzahlen 1 RSA 1 Das Rabin-Kryptosystem 1 Diskrete Logarithmen Grundlagen der PK Kryptographie Bisher: Ein Schlüssel für Sender und Empfänger ( Secret-Key oder symmetrische
Asymmetrische Algorithmen
Asymmetrische Algorithmen Abbildung 9. Leonhard Euler Leonhard Euler, geboren am 15. April 1707 in Basel, gestorben am 18. September 1783 in Sankt Petersburg, war einer der produktivsten Mathematiker aller
Public-Key-Kryptographie
Kapitel 2 Public-Key-Kryptographie In diesem Kapitel soll eine kurze Einführung in die Kryptographie des 20. Jahrhunderts und die damit verbundene Entstehung von Public-Key Verfahren gegeben werden. Es
3. Vortrag: Das RSA-Verschlüsselungsverfahren
Westfälische Wilhelms-Universität Münster Mathematik Sommersemester 2017 Seminar: Verschlüsselungs- und Codierungstheorie Leitung: Thomas Timmermann 3. Vortrag: Das RSA-Verschlüsselungsverfahren Hendrik
Datensicherheit durch Kryptographie
Datensicherheit durch Kryptographie Dr. Michael Hortmann Fachbereich Mathematik, Universität Bremen T-Systems [email protected] 1 Kryptographie: Klassisch: Wissenschaft und Praxis der Datenverschlüsselung
Digitale Signaturen. Proseminar Kryptographie und Datensicherheit SoSe Sandra Niemeyer
Digitale Signaturen Proseminar Kryptographie und Datensicherheit SoSe 2009 Sandra Niemeyer 24.06.2009 Inhalt 1. Signaturgesetz 2. Ziele 3. Sicherheitsanforderungen 4. Erzeugung digitaler Signaturen 5.
Verschlüsselung und Entschlüsselung
Verschlüsselung und Entschlüsselung Inhalt Geschichte Verschlüsselungsverfahren Symmetrische Verschlüsselung Asymmetrische Verschlüsselung Hybride Verschlüsselung Entschlüsselung Anwendungsbeispiel Geschichte
ADS: Algorithmen und Datenstrukturen 2
ADS: Algorithmen und Datenstrukturen 2 Teil 11 Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität
Public-Key-Verschlüsselung und Diskrete Logarithmen
Public-Key-Verschlüsselung und Diskrete Logarithmen Carsten Baum Institut für Informatik Universität Potsdam 10. Juni 2009 1 / 30 Inhaltsverzeichnis 1 Mathematische Grundlagen Gruppen, Ordnung, Primitivwurzeln
Zufallsprimzahlen und eine Revolution in der Kryptographie Stefan Edelkamp
Zufallsprimzahlen und eine Revolution in der Kryptographie Stefan Edelkamp Fakultät für Mathematik und Informatik Universität of Bremen Übersicht des Vortrags 1 Einfache Kryptosysteme 2 Einmalschlüssel
IT-Sicherheit: Kryptographie. Asymmetrische Kryptographie
IT-Sicherheit: Kryptographie Asymmetrische Kryptographie Fragen zur Übung 5 C oder Java? Ja (gerne auch Python); Tips waren allerdings nur für C Wie ist das mit der nonce? Genau! (Die Erkennung und geeignete
2.7 Digitale Signatur (3) 2.7 Digitale Signatur (4) Bedeutung der digitalen Signatur. Bedeutung der digitalen Signatur (fortges.)
2.7 Digitale Signatur (3) Bedeutung der digitalen Signatur wie Unterschrift Subjekt verknüpft Objekt mit einer höchst individuellen Marke (Unterschrift) Unterschrift darf nicht vom Dokument loslösbar sein
Mathematik ist überall
Mathematik ist überall Prof. Dr. Wolfram Koepf Universität Kassel http://www.mathematik.uni-kassel.de/~koepf Tag der Mathematik 15. Februar 2008 Universität Kassel Inhaltsangabe Sichere Verschlüsselung
Public-Key-Infrastrukturen
Public-Key-Infrastrukturen Wiederholung asymmetrische Verfahren mit Schlüsselpaar: öffentlicher Schlüssel geheimer Schlüssel Übermittlung der nachricht m von A an B A erfährt Bs öffentlichen Schlüssel
2.4 Diskussion und Literaturempfehlungen Lessons Learned A ufgaben Literatur... 62
Inhaltsverzeichnis 1 Einführung in die Kryptografie und Datensicherheit... 1 1.1 Überblick über die Kryptografie (und dieses Buch)... 1 1.2 Symmetrische Kryptografie... 4 1.2.1 Grundlagen... 4 1.2.2 Die
RSA (Rivest, Shamir, Adleman)
Juli 2012 LB 3 Kryptographie F. Kaden 1/11 1977 von Rivest, Shamir, Adleman am MIT (Massachusetts Institut of Technology) entwickelt asymmetrisches Verschlüsselungsverfahren Ziel: email-verschlüsselung,
Kryptographie und Komplexität
Kryptographie und Komplexität Einheit 5 Kryptosysteme auf der Basis diskreter Logarithmen 1. Diffie Hellman Schlüsselaustausch 2. El Gamal Systeme 3. Angriffe auf Diskrete Logarithmen 4. Elliptische Kurven
Einführung Verschlüsselung Mag. Dr. Klaus Coufal
Einführung Verschlüsselung Mag. Dr. Klaus Coufal Verschlüsselung Symmetrisch Asymmetrisch Rechenleistung Primzahlenzerlegung Quantenkryptographie Schlüsselverwaltung Dr. Klaus Coufal 4.9.2014 Einführung
Das RSA Kryptosystem
Kryptografie Grundlagen RSA Institut für Mathematik Technische Universität Berlin Kryptografie Grundlagen RSA mit geheimem mit öffentlichem Schlüssel Realisierung Kryptografie mit geheimem Schlüssel Alice
Verschlüsselungs. sselungs- verfahren. Mario Leimgruber. AMREIN EN GIN EERIN G Messaging & Gr oupwar e Solutions
Verschlüsselungs sselungs- verfahren Mario Leimgruber AMREIN EN GIN EERIN G Messaging & Gr oupwar e Solutions Varianten - Symetrisches Verfahren - Asymetrische Verfahren - Hybrid Verfahren Symmetrische
Diffie-Hellman, ElGamal und DSS. Vortrag von David Gümbel am 28.05.2002
Diffie-Hellman, ElGamal und DSS Vortrag von David Gümbel am 28.05.2002 Übersicht Prinzipielle Probleme der sicheren Nachrichtenübermittlung 'Diskreter Logarithmus'-Problem Diffie-Hellman ElGamal DSS /
5 Codierung nach RSA (Lösung)
Kapitel 5 Codierung nach RSA (Lösung) Seite 1/17 5 Codierung nach RSA (Lösung) 5.1 Einführung Die drei Mathematiker Rivest, Shamir und Adleman entwickelten 1977 das nach ihnen benannte RSA-Verfahren. Es
Kryptographische Algorithmen
Kryptographische Algorithmen Stand: 11.05.2007 Ausgegeben von: Rechenzentrum Hochschule Harz Sandra Thielert Hochschule Harz Friedrichstr. 57 59 38855 Wernigerode 03943 / 659 900 Inhalt 1 Einleitung 4
Kryptographie und Komplexität
Kryptographie und Komplexität Einheit 5.2 ElGamal Systeme 1. Verschlüsselungsverfahren 2. Korrektheit und Komplexität 3. Sicherheitsaspekte Das ElGamal Verschlüsselungsverfahren Public-Key Verfahren von
Kryptografie und Public-Key-lnfrastrukturen im Internet
Klaus Schmeh Kryptografie und Public-Key-lnfrastrukturen im Internet 2., aktualisierte und erweiterte Auflage Пп dpunkt.verlag xv I Inhaltsverzeichnis Teil 1 Wozu Kryptografie im Internet? 1 Einleitung
Ein RSA verwandtes, randomisiertes Public Key Kryptosystem
Seminar Codes und Kryptographie WS 2003 Ein RSA verwandtes, randomisiertes Public Key Kryptosystem Kai Gehrs Übersicht 1. Motivation 2. Das Public Key Kryptosystem 2.1 p-sylow Untergruppen und eine spezielle
Kryptographie. Teilnehmer: Gruppenleiter: Humboldt-Universität zu Berlin.
Kryptographie Teilnehmer: Kevin Huber Philippe Gruse Vera Koldewitz Philipp Jakubahs Julian Zimmert Maximilian Werk Hermann-Hesse-Oberschule Heinrich-Hertz-Oberschule Gruppenleiter: Ulf Kühn Humboldt-Universität
