Zahlentheorie I. Christoph Egger. 18. Juni Christoph Egger Zahlentheorie I 18. Juni / 32

Größe: px
Ab Seite anzeigen:

Download "Zahlentheorie I. Christoph Egger. 18. Juni Christoph Egger Zahlentheorie I 18. Juni / 32"

Transkript

1 Zahlentheorie I Christoph Egger 18. Juni 2010 Christoph Egger Zahlentheorie I 18. Juni / 32

2 Übersicht 1 Modulare Arithmetik Addition & Subtraktion Multiplikation schnelles Potenzieren 2 Teiler Definition (Größter) gemeinsamer Teiler Euclid Lemma von Bezout 3 Diophantische Gleichungen Definition 4 Primzahlen Definition & Eigenschaften Primzahltests Faktorisieren Christoph Egger Zahlentheorie I 18. Juni / 32

3 Modulare Arithmetik 1 Modulare Arithmetik Addition & Subtraktion Multiplikation schnelles Potenzieren 2 Teiler 3 Diophantische Gleichungen 4 Primzahlen Christoph Egger Zahlentheorie I 18. Juni / 32

4 Motivation Rechnen mit Zahlen im Wertebereich eines Wortes deutlich effizienter. Oft ausreichend, wenn nur z. B. die letzten n Stellen des Ergebnisses nötig sind. Anwendbar in Primzahltests BigIntegers in den im ICPC Sprachen nicht vorhanden (C,C++) oder grauenhaft zu bedienen (Java) Christoph Egger Zahlentheorie I 18. Juni / 32

5 Addition 1 d e f add ( a, b, m) : 2 r e t u r n ( ( a % m) + b % m) ) % m Subtraktion 1 d e f sub ( a, b, m) : 2 r e t u r n add ( a, m ( b % m), m) Verwendbar für Werte von m bis WORT 2 Christoph Egger Zahlentheorie I 18. Juni / 32

6 Multiplikation 1 d e f mul ( a, b, m) : 2 r e t u r n ( a % m ( b % m) ) % m Verwendbar für Werte von m bis WORT Potenzieren 1 d e f exp ( a, b, m) : 2 r e t u r n ( ( a % m) b ) % m Verwendbar für Werte von m bis b WORT Geht natürlich besser Christoph Egger Zahlentheorie I 18. Juni / 32

7 Schnelles potenzieren c = 5 21 c = ( ) c = (5 ( ) ( )) c = (5 (( ) ( )) (( ) ( ))) Christoph Egger Zahlentheorie I 18. Juni / 32

8 Schnelles Potenzieren 1 d e f f a s t e x p ( a, b, m) : 2 i f b == 1 : 3 r e t u r n a % m 4 e l i f b == 2 : 5 r e t u r n mul ( a, a, m) 6 e l s e : 7 tmp = f a s t e x p ( a, b /2, m) 8 tmp = mul ( tmp, tmp, m) 9 i f ( b % 2 == 0 ) : 10 r e t u r n tmp 11 e l s e : 12 r e t u r n mul ( tmp, a, m) Potenzieren für Basen bis zu WORT möglich Durch sukzessives Quadrieren Berechnung in O(l) mit l als Länge der Binärcodierung des Exponenten Christoph Egger Zahlentheorie I 18. Juni / 32

9 1 Modulare Arithmetik 2 Teiler Definition (Größter) gemeinsamer Teiler Euclid Lemma von Bezout 3 Diophantische Gleichungen 4 Primzahlen Christoph Egger Zahlentheorie I 18. Juni / 32

10 Definition Teiler a heißt Teiler von b genau dann, wenn es ein k gibt, so dass a dass k-fache von a ist: a b k : b = k a (nicht) triviale Teiler Jede Zahl a besitzt die trivialen Teiler 1 und a. Nichttriviale, also alle weiteren, Teiler von a werden als Faktoren bezeichnet. Christoph Egger Zahlentheorie I 18. Juni / 32

11 Gemeinsame Teiler Gemeinsamer Teiler d heißt gemeinsamer Teiler von a und b, genau dann wenn d ein Teiler von a und d ein Teiler von b ist. größter, gemeinsamer Teiler Der größte gemeinsame Teiler ist das größte Element aus der Menge der gemeinsamen Teiler. Christoph Egger Zahlentheorie I 18. Juni / 32

12 Algorithmus von Euclid Euklid 1 d e f ggt ( a, b ) : 2 i f b == 0 : 3 r e t u r n a 4 i f a > b : 5 r e t u r n ggt ( a b, b ) 6 e l s e : 7 r e t u r n ggt ( b, a ) Euklid 1 d e f ggt ( a, b ) : 2 r e t u r n ( b!= 0)? ggt ( b, a % b ) : a Christoph Egger Zahlentheorie I 18. Juni / 32

13 Exkurs: Rationale Zahlen Kürzen 1 d e f r e d u c e ( a, b ) : 2 g = gcd ( a, b ) 3 r e t u r n ( a/g, b/g ) Multiplikation - Naïv 1 d e f mul ( ( a, b ), ( c, d ) ) : 2 reduce ( a c, b d ) Division 1 d e f f r a c d i v ( ( a, b ), ( c, d ) ) : 2 r e t u r n f r a c m u l ( ( a, b ), ( d, c ) ) Christoph Egger Zahlentheorie I 18. Juni / 32

14 Multiplikation 1 d e f f r a c m u l ( ( a, b ), ( c, d ) ) : 2 g1 = gcd ( a, d ) 3 g2 = gcd ( b, c ) 4 r e t u r n ( ( a/g1 ) ( c /g2 ), ( b/g2 ) ( d/g1 ) ) Christoph Egger Zahlentheorie I 18. Juni / 32

15 Lemma von Bezout Lemma a, b N x, z Z : ggt(a, b) = x a + y b Die Berechnung von x, y ist über eine Erweiterung der Euklid Formel möglich Erweiterter Euklid 1 d e f e u c l i d ( a, b ) : 2 i f b == 0 : 3 r e t u r n ( a, 1, 0) 4 r e c = e x t e u c l i d ( b, a % b ) 5 r e t u r n ( r e c [ 0 ], r e c [ 2 ], r e c [ 1 ] ( a / b ) r e c [ 2 ] ) Christoph Egger Zahlentheorie I 18. Juni / 32

16 Diophanische Gleichungen 1 Modulare Arithmetik 2 Teiler 3 Diophantische Gleichungen Definition 4 Primzahlen Christoph Egger Zahlentheorie I 18. Juni / 32

17 Definition diophantische Gleichungen Diophantische Gleichungen sind Gleichungen der Form f (x 1, x 2, x 3,..., x n ) = 0 mit ganzzahligen Koeffizienten Leider ist die Lösbarkeit einer generellen, diophantischen Gleichung unentscheidbar. lineare diophantische Gleichungen Lineare diophantische Gleichungen lassen sich in der Form a 1 x 1 + a 2 x 2 + a 3 x a n x n + c = 0 darstellen. Lineare diophantische Gleichungen sind genau dann lösbar, wenn ggt (a 1, a 2, a n ) Teiler von c ist. Christoph Egger Zahlentheorie I 18. Juni / 32

18 Lösung für 2 Variablen Partikulärlösung a 1 x 1 + a 2 x 2 = c, g = ggt(a 1, a 2 ) a 1 g x 1 + a 2 g x 2 = c g a 1 g und a 2 g haben jetzt den ggt von 1, für die Gleichung a 1 g x 1 + a 2 g x 2 = 1 lässt sich somit mit dem erweiterten Euklid eine Lösung finden. Mit x 1 = c g x 1, x 2 = c g x 2 haben wir eine Lösung für die Gleichung gefunden. Christoph Egger Zahlentheorie I 18. Juni / 32

19 Weitere Lösungen a 1 x 1 + a 2 x 2 = c a 1 c g x 1 + a 2 c g x 2 = c (a 1 c g x 1 + a 1a 2 k) + (a 2 c g g x 2 a 1a 2 k) = c g a 1 ( c g x 1 + a 2 g k) + a 2( c g x 2 a 1 g k) = c Christoph Egger Zahlentheorie I 18. Juni / 32

20 1 Modulare Arithmetik 2 Teiler 3 Diophantische Gleichungen 4 Primzahlen Definition & Eigenschaften Primzahltests Faktorisieren Christoph Egger Zahlentheorie I 18. Juni / 32

21 Motivation Primzahlen für eine Vielzahl von Anwendungen günstig z. B. Hashtables Kryptographische Sicherheit Abhängig von Zerlegung in Primfaktoren... Christoph Egger Zahlentheorie I 18. Juni / 32

22 Definition Wann ist n eine Primzahl? x, y [2..n) x y = n x < n : ggt (x, n) = 1 Christoph Egger Zahlentheorie I 18. Juni / 32

23 Eigenschaften von Primzahlen Satz von Fermat Für jede Primzahl gilt, a, ggt(a, p) = 1 : a p 1 1 mod p Achtung! der Umkehrschluss ist nicht zulässig, n : a : a n 1 1 mod n. Solche n nennt man auch Pseudoprimzahlen oder Carmichael Zahlen. π Funktion Die π-funktion π(n) gibt die Anzahl der Primzahlen von 2 bis n einschließlich n an. Als nützliche Näherung gilt log n π(n) Christoph Egger Zahlentheorie I 18. Juni / 32

24 Eulersche ϕ Funktion ϕ(n) := {1 a n ggt (a, n) = 1} In anderen Worten: Die Anzahl der zu n Teilerfremden Zahlen (kleiner n). Der Wert von ϕ(n) lässt sich näherungsweise festlegen mit ϕ(n) n 3. π 3 Für Primzahlen ist ϕ(n) = n 1 Christoph Egger Zahlentheorie I 18. Juni / 32

25 einfacher Primzahltest Daraus lässt sich bereits ein einfacher Primtest ableiten: Code 1 d e f prime ( number ) : 2 f o r i i n r a n g e ( 2, s q r t ( number ) ) : 3 i f number % i == 0 : 4 r e t u r n F a l s e 5 r e t u r n True Aber: Der Test läuft in O( n), mit n als zu überprüfende Zahl, in Abhängigkeit von der länge von n somit exponentiell. Christoph Egger Zahlentheorie I 18. Juni / 32

26 Sieb des Eratosthenes Code Wenn n nicht durch eine Zahl x teilbar ist kann auf den Test mit vielfachen von x verzichtet werden. Überprüfung aller Zahlen bis n ( n) um n auf Primzahl zu prüfen Nach Aufbau der Tabelle sind Tests auf Primzahl in O(1) realisierbar 1 d e f prime ( number ) : 2 s i e v e = [ True f o r i i n 3 r a n g e ( 0, number+1) ] 4 f o r i i n range (2, max ) : 5 i f s i e v e [ i ] : 6 f o r j i n range ( i, max, j = j + i ) : 7 s i e v e [ j ] = F a l s e 8 r e t u r n s i e v e [ number ] Christoph Egger Zahlentheorie I 18. Juni / 32

27 Miller-Rabin-Test Diese Tests sind natürlich für große Primzahlen inpraktikabel Bessere Laufzeit kann mit Probabilistischen Algorithmen erreicht werden, allerdings können diese nicht beweisen, dass eine Zahl Prim ist. Idee Sammeln von Beweisen (Zeuge), dass die Zahl zusammengesetzt ist Ein solcher Zeuge lässt sich aus dem Satz von Fermat ableiten Carmichael Zahlen werden jetzt noch nicht erkannt Weiteres Lemma: e N : x 2 1 mod p e x = 1 x = 1, daraus lässt sich ein weiterer Zeuge konstruieren Es lässt sich zeigen, das für jedes zusammengesetzte n gibt es höchstens n 1 2 Zahlen, die nicht als Zeugen fungieren können Christoph Egger Zahlentheorie I 18. Juni / 32

28 Miller-Rabin Test 1 d e f prime ( number ) : 2 t e s t s = 15 3 i f 2 == number or 3 == number : 4 r e t u r n True 5 d = number 1 6 s = 0 7 w h i l e d % 2 == 0 : 8 s += 1 9 d /= 2 10 f o r i i n r a n g e ( 0, t e s t s ) : 11 rnd = randomint ( 2, number 2) 12 x = f a s t e x p ( rnd, d, number ) 13 f o r i i n range ( 1, s +1): 14 n x = mul ( x, x, m) 15 i f 1 == n x and 1!= x and number 1!= x : 16 r e t u r n F a l s e 17 x = n x 18 i f 1!= x : 19 r e t u r n F a l s e 20 r e t u r n True Christoph Egger Zahlentheorie I 18. Juni / 32

29 Faktorenzerlegung Für alle natürlichen Zahlen größer 1 gibt es genau eine Zerlegung der Form pa l pb m pn d mit allen p als Primzahlen. Man nennt diese p primfaktoren. Wie findet man diese p Testdivision 1 d e f f a c t o r ( n ) : 2 f o r i i n r a n g e ( 2, s q r t ( n ) ) : 3 i f n%i == 0 : 4 r e t u r n i Christoph Egger Zahlentheorie I 18. Juni / 32

30 Pollard s Rho Wir mocheten n faktorisieren und wissen, dass n zusammengesetzt ist, einer der Faktoren ist d Gilt für 2 (pseudo)zufällige Zahlen a, b: a b mod d, so ist a b ein Vielfaches von d, ggt(n, a b) ein Faktor von n Sobald der Algorithmus in einen Zyklus läuft kann abgebrochen werden, kein Faktor wurde gefunden. Randomisierter Algorithmus, nicht immer muss ein Faktor gefunden werden, selbst wenn einer Existiert. Die Ergebnisse sind Faktoren von n, nicht zwingendermaßen Primfaktoren Christoph Egger Zahlentheorie I 18. Juni / 32

31 Pollard s Rho 1 d e f p o l l a r d s r h o ( n ) : 2 i = 1 3 y = x = r a n d i n t ( 0, n 1) 4 k = 2 ; 5 w h i l e True : 6 i = i x = mul ( x, x, n ) 8 d = ggt ( y x, n ) 9 i f x == y : 10 r e t u r n 0 11 i f d!= 1 and d!= n : 12 r e t u r n d 13 i f i == k : 14 y = x 15 k = k 2 Beim Ausführen des Tests für (257 * 65537) wurde bei etwa 75 % der Durchläufe ein Faktor gefunden (65537 nur in 0.1 % der Versuche). Christoph Egger Zahlentheorie I 18. Juni / 32

32 Literatur Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms. MIT Press, 2 edition, Volker Heun. Grundlegende Algorithmen. vieweg, 1 edition, Donald E. Knuth. The Art Of Computer Programming, volume 2. Christian Kollee. Zahlentheorie. Hallo Welt für Fortgeschrittene, Christoph Egger Zahlentheorie I 18. Juni / 32

Zahlentheorie, Arithmetik und Algebra I

Zahlentheorie, Arithmetik und Algebra I Zahlentheorie, Arithmetik und Algebra I Ulrich Rabenstein 18.06.2013 Ulrich Rabenstein Zahlentheorie, Arithmetik und Algebra I 18.06.2013 1 / 34 1 Modulare Arithmetik 2 Teiler 3 Primzahlen Ulrich Rabenstein

Mehr

Zahlentheorie, Arithmetik und Algebra I

Zahlentheorie, Arithmetik und Algebra I Zahlentheorie, Arithmetik und Algebra I Viktoria Ronge 04.06.2014 Viktoria Ronge Zahlentheorie, Arithmetik und Algebra I 04.06.2014 1 / 63 Übersicht 1 Modulare Arithmetik 2 Primzahlen 3 Verschiedene Teiler

Mehr

Hallo Welt für Fortgeschrittene

Hallo Welt für Fortgeschrittene Hallo Welt für Fortgeschrittene Zahlentheorie, Arithmetik und Algebra 1 Florian Habur Informatik 2 Programmiersysteme Martensstraße 3 91058 Erlangen Übersicht Modulare Arithmetik Rechenregeln Fast Exponentiation

Mehr

Zahlentheorie, Arithmetik und Algebra

Zahlentheorie, Arithmetik und Algebra Zahlentheorie, Arithmetik und Algebra Seminar Hallo Welt für Fortgeschrittene 2008 Matthias Niessner June 20, 2008 Erlangen 1 von 29 Matthias Niessner Zahlentheorie, Arithmetik und Algebra Übersicht 1

Mehr

. Zahlentheorie, Arithmetik und Algebra I. Tobias Polzer. Tobias Polzer Zahlentheorie, Arithmetik und Algebra I.. /

. Zahlentheorie, Arithmetik und Algebra I. Tobias Polzer. Tobias Polzer Zahlentheorie, Arithmetik und Algebra I.. / Zahlentheorie, Arithmetik und Algebra I Tobias Polzer Tobias Polzer Zahlentheorie, Arithmetik und Algebra I / Modulare Arithmetik Motivation Rechenregeln schnelle Potenzierung Gemeinsame Teiler euklidischer

Mehr

Zahlentheorie, Arithmetik und Algebra I. Felix Teufel Hallo Welt! -Seminar - LS 2

Zahlentheorie, Arithmetik und Algebra I. Felix Teufel Hallo Welt! -Seminar - LS 2 Zahlentheorie, Arithmetik und Algebra I Felix Teufel 26.07.2017 Hallo Welt! -Seminar - LS 2 Überblick Modulare Arithmetik Größter gemeinsamer Teiler Primzahlen Eulersche Φ-Funktion RSA Quellen 26.07.2017

Mehr

Zahlentheorie, Arithmetik und Algebra 1

Zahlentheorie, Arithmetik und Algebra 1 Zahlentheorie, Arithmetik und Algebra 1 Monika Huber 24.6.2015 Monika Huber Zahlentheorie, Arithmetik und Algebra 1 24.6.2015 1 / 52 Übersicht Modulare Arithmetik Größter gemeinsamer Teiler Primzahlen

Mehr

Hallo Welt für Fortgeschrittene

Hallo Welt für Fortgeschrittene Hallo Welt für Fortgeschrittene Zahlentheorie, Arithmetik und Algebra Ibrahim Alagoez 22.06.2009 Informatik 2 Programmiersysteme Martensstraße 3 91058 Erlangen Motivation Eine Bande von 17 Räubern stahl

Mehr

Probabilistische Primzahltests

Probabilistische Primzahltests 23.01.2006 Motivation und Überblick Grundsätzliches Vorgehen Motivation und Überblick Als Primzahltest bezeichnet man ein mathematisches Verfahren, mit dem ermittelt wird, ob eine gegebene Zahl eine Primzahl

Mehr

2008W. Vorlesung im 2008W Institut für Algebra Johannes Kepler Universität Linz

2008W. Vorlesung im 2008W   Institut für Algebra Johannes Kepler Universität Linz Mathematik Institut für Algebra Johannes Kepler Universität Linz Vorlesung im http://www.algebra.uni-linz.ac.at/students/win/ml Inhalt Definierende Eigenschaften Definition 0 ist eine natürliche Zahl;

Mehr

3: Primzahlen. 111 S. Lucks Diskr Strukt. (WS 18/19) 3: Primzahlen

3: Primzahlen. 111 S. Lucks Diskr Strukt. (WS 18/19) 3: Primzahlen 3: Primzahlen 111 S. Lucks Diskr Strukt. (WS 18/19) 3: Primzahlen Definition 40 (Teiler, Vielfache, Primzahlen, zusammengesetzte Zahlen) Seien a, b N. a ist ein Teiler von b ( a b ), falls es ein k N gibt

Mehr

Inhalt 2007W. Vorlesung im 2007W

Inhalt 2007W. Vorlesung im 2007W Institut für Algebra Johannes Kepler Universität Linz Vorlesung im http://www.algebra.uni-linz.ac.at/students/win/ml Inhalt Definierende Eigenschaften 0 ist eine natürliche Zahl; Zu jeder natürlichen Zahl

Mehr

3: Zahlentheorie / Primzahlen

3: Zahlentheorie / Primzahlen Stefan Lucks Diskrete Strukturen (WS 2009/10) 96 3: Zahlentheorie / Primzahlen 3: Zahlentheorie / Primzahlen Stefan Lucks Diskrete Strukturen (WS 2009/10) 97 Definition 37 (Teiler, Vielfache, Primzahlen,

Mehr

Bsp: Die kleinsten Carmichael-Zahlen sind 561, 1105, 1729, Es gibt unendlich viele Carmichael-Zahlen (Beweis 1994).

Bsp: Die kleinsten Carmichael-Zahlen sind 561, 1105, 1729, Es gibt unendlich viele Carmichael-Zahlen (Beweis 1994). Primzahltest Wir wollen testen, ob eine gegebene Zahl n eine Primzahl ist Effizienter Algorithmus zum Faktorisieren ist unbekannt Kontraposition des Kleinen Satzes von Fermat liefert: Falls a n 1 1 mod

Mehr

Kryptographische Protokolle

Kryptographische Protokolle Kryptographische Protokolle Lerneinheit 2: Generierung von Primzahlen Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Wintersemester 2018/2019 15.11.2018 Einleitung Einleitung Diese Lerneinheit

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 11 Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität

Mehr

Gewinnung und Test großer Primzahlen

Gewinnung und Test großer Primzahlen 16. Mai 2007 1 Einführung 2 Primzahlgewinnung 3 Primzahlentest 4 Aktuelles 5 Appendix 1 Einführung Anwendung Notation und Grundlagen Ordnung Eulersche φ-funktion Kleiner Satz von Fermat Anwendung Verwendung

Mehr

3. Diskrete Mathematik

3. Diskrete Mathematik Diophantos von Alexandria um 250 Georg Cantor 1845-1918 Pythagoras um 570 v. Chr Pierre de Fermat 1607/8-1665 Seite 1 Inhalt der Vorlesung Teil 3: Diskrete Mathematik 3.1 Zahlentheorie: Abzählbarkeit,

Mehr

2011W. Vorlesung im 2011W Institut für Algebra Johannes Kepler Universität Linz

2011W. Vorlesung im 2011W  Institut für Algebra Johannes Kepler Universität Linz und Was ist? Mathematik und Institut für Algebra Johannes Kepler Universität Linz Vorlesung im http://www.algebra.uni-linz.ac.at/students/win/ml und Was ist? Inhalt Was ist? und Was ist? Das ist doch logisch!

Mehr

Der Primzahltest von Agrawal, Kayal und Saxena. Dr. Gerold Jäger

Der Primzahltest von Agrawal, Kayal und Saxena. Dr. Gerold Jäger Der Primzahltest von Agrawal, Kayal und Saxena Dr. Gerold Jäger Habilitationsvortrag Christian-Albrechts-Universität zu Kiel Institut für Informatik 19. Januar 2011 Dr. Gerold Jäger Habilitationsvortrag

Mehr

Primzahltest für Mersenne-Primzahlen

Primzahltest für Mersenne-Primzahlen Primzahltest für Mersenne-Primzahlen Satz Lucas-Lehmer Test Sei n = 2 p 1 N für p P\{2}. Wir definieren die Folge S k durch S 1 = 4 und S k = S 2 k 1 2. Falls n S p 1, dann ist n prim. Beweis: Seien ω

Mehr

Primzahlen und Pseudoprimzahlen

Primzahlen und Pseudoprimzahlen 1 Primzahlen und Pseudoprimzahlen Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastik (WIAS), Berlin 20. Tag der Mathematik 9. Mai 2015, Beuth Hochschule für Technik Berlin Primzahlen

Mehr

ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe.

ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe. ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe. Das heißt, um den ggt von zwei 1000-Bit-Zahlen zu ermitteln,

Mehr

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler Kapitel 3: Die Sätze von Euler, Fermat und Wilson In diesem Kapitel wollen wir nun die eulersche -Funktion verwenden, um einen berühmten Satz von Euler zu formulieren, aus dem wir dann mehrere interessante

Mehr

Lösungen der Aufgaben

Lösungen der Aufgaben Lösungen der Aufgaben Aufgabe 1.3.1 Es gibt 42 mögliche Verschlüsselungen. Aufgabe 2.3.4 Ergebnisse sind 0, 4 und 4 1 = 4. Aufgabe 2.3.6 Da in Z 9 10 = 1 ist, erhalten wir x = c 0 + + c m = c 0 + + c m.

Mehr

Carmichael-Zahlen und Miller-Rabin-Test

Carmichael-Zahlen und Miller-Rabin-Test Institut für Mathematik Universität Hannover Proseminar: Zahlentheorie und Kryptographie Prof. Dr. C. Bessenrodt Carmichael-Zahlen und Miller-Rabin-Test Felix Pape 15. Mai 2003 1 Carmichael-Zahlen 1.1

Mehr

RSA-Verfahren Schnelle Ver- / Entschlüsselung Zusammenhang mit dem Faktorisierungsproblem. RSA-Verfahren. Herwig Stütz

RSA-Verfahren Schnelle Ver- / Entschlüsselung Zusammenhang mit dem Faktorisierungsproblem. RSA-Verfahren. Herwig Stütz 2007-11-23 Überblick 1 2 Schnelle modulare Exponentiation Chinesischer Restsatz 3 Allgemeines Public-Key Methode Rivest, Shamir und Adleman 1977 Sicherheit des Verfahrens beruht auf Schwierigkeit der Primfaktorenzerlegung

Mehr

Gewinnung und Test großer Primzahlen

Gewinnung und Test großer Primzahlen Gewinnung und Test großer Primzahlen Martin Heinzerling 16. Mai 2007 Zusammenfassung Dieser Vortrag entstand im Rahmen des Proseminars Kryptographische Grundlagen der Datensicherheit SS-2007 der Technischen

Mehr

p Z >1 ist Primzahl, wenn gilt Euklid:

p Z >1 ist Primzahl, wenn gilt Euklid: Grundlegende Tatsachen über den Ring Z Z; +, ist ein nullteilerfreier Ring Divisionseigenschaft a Z, b Z > q, r Z : a = b q + r, r < b Arithmetik Grundlegende Tatsachen über den Ring Z Euklidischer Algorithmus

Mehr

Erweiterter Euklidischer Algorithmus

Erweiterter Euklidischer Algorithmus Erweiterter Euklidischer Algorithmus Algorithmus ERWEITERTER EUKLIDISCHER ALG. (EEA) EINGABE: a, b N 1 If (b = 0) then return (a, 1, 0); 2 (d, x, y) EEA(b, a mod b); 3 (d, x, y) (d, y, x a b y); AUSGABE:

Mehr

Übungen zu Zahlentheorie, SS 2017

Übungen zu Zahlentheorie, SS 2017 Übungen zu Zahlentheorie, SS 017 Christoph Baxa 1) Finde alle positiven Teiler von a) 1799 b) 997. ) Zeige (a b) (a n b n ) für alle a, b Z und alle n N. 3) Zeige: Wenn m n dann (a m b m ) (a n b n ) (mit

Mehr

Hallo Welt für Fortgeschrittene

Hallo Welt für Fortgeschrittene Hallo Welt für Fortgeschrittene Zahlentheorie, Arithmetik und Algebra II Benjamin Fischer Informatik 2 Programmiersysteme Martensstraße 3 91058 Erlangen Gliederung Lineare Rekursion BigInteger Chinesischer

Mehr

Euklidische Division. Zahlentheorie - V Zusammenfassung 225 / 231

Euklidische Division. Zahlentheorie - V Zusammenfassung 225 / 231 Euklidische Division 1. Euklidische Division: Landau Notation: f(n) = O(g(n)). Definitionen: Gruppe, Ring, Ideal Teilbarkeit und Teilbarkeit mit Rest (euklidisch) Beispiel für euklidische Ringe Z euklidisch

Mehr

1.1.1 Konstruktion der ganzen Zahlen, Vertretersystem (nicht-negative und negative ganze Zahlen)

1.1.1 Konstruktion der ganzen Zahlen, Vertretersystem (nicht-negative und negative ganze Zahlen) Zahlentheorie LVA 405.300 C. Fuchs Inhaltsübersicht 26.06.2013 Inhaltsübersicht Die Zahlentheorie gehört zu den Kerngebieten der Mathematik und steht historisch und thematisch in ihrem Zentrum. Es geht

Mehr

Beispiel: Primelemente in den Gaußschen Zahlen

Beispiel: Primelemente in den Gaußschen Zahlen Beispiel: Primelemente in den Gaußschen Zahlen Satz Primelemente in Z[i] Für die Primelemente π Z[i] gilt bis auf Assoziiertheit 1 N(π) = p für ein p P oder 2 π = p für ein p P mit p x 2 + y 2 für (x,

Mehr

Volker Kaatz. Faktorisierung. Faktorisierung. Problem und Algorithmen. Relevanz in der Kryptographie

Volker Kaatz. Faktorisierung. Faktorisierung. Problem und Algorithmen. Relevanz in der Kryptographie Faktorisierung Problem und Algorithmen Relevanz in der Kryptographie Inhalt Begriff Faktorisierung Algorithmen (Übersicht) Strategie und Komplexität Pollard p-1 Algorithmus Pseudocode, mathematische Basis,

Mehr

n ϕ n

n ϕ n 1 3. Teiler und teilerfremde Zahlen Euler (1707-1783, Gymnasium und Universität in Basel, Professor für Physik und Mathematik in Petersburg und Berlin) war nicht nur einer der produktivsten Mathematiker

Mehr

Zahlentheorie, Arithmetik und Algebra I. Katharina Falk Medizintechnik Master

Zahlentheorie, Arithmetik und Algebra I. Katharina Falk Medizintechnik Master Zahlentheorie, Arithmetik und Algebra I Katharina Falk Medizintechnik Master 13.06.2016 Gliederung Modulare Arithmetik Rechenregeln Schnelle Potenzierung Gemeinsamer Teiler Erweiterter Euklid Primzahlen

Mehr

Kryptologie. Bernd Borchert. Univ. Tübingen SS Vorlesung. Teil 11. Primzahltests: Fermat, Miller-Rabin

Kryptologie. Bernd Borchert. Univ. Tübingen SS Vorlesung. Teil 11. Primzahltests: Fermat, Miller-Rabin Kryptologie Bernd Borchert Univ. Tübingen SS 2017 Vorlesung Teil 11 Primzahltests: Fermat, Miller-Rabin Primzahltests Problem: Gegeben n. Ist n Primzahl? Naive Methoden: Ausprobieren: gehe der Reihe nach

Mehr

Algorithmentheorie Randomisierung

Algorithmentheorie Randomisierung Algorithmentheorie 03 - Randomisierung Prof. Dr. S. Albers Randomisierung Klassen von randomisierten Algorithmen Randomisierter Quicksort Randomisierter Primzahltest Kryptographie 2 1. Klassen von randomisierten

Mehr

Literatur. [9-3] [9-4]

Literatur. [9-3]   [9-4] Literatur [9-1] Willems, Wolfgang: Codierungstheorie und Kryptographie. Mathematik Kompakt, Birkhäuser, 2008 [9-2] Socher, Rolf: Algebra für Informatiker. Hanser, 2012 [9-3] https://de.wikipedia.org/wiki/fermatscher_primzahltest

Mehr

Primes ist in P Der AKS-Primzahltest

Primes ist in P Der AKS-Primzahltest Primes ist in P Der AKS-Primzahltest Hans-Gert Gräbe Institut für Informatik, Universität Leipzig 10. Oktober 2003 1 Anfang August 2002 verbreitete sich die Nachricht, dass einige bis dahin unbekannte

Mehr

Vorbemerkung: Homorphieprinzip für Ringe

Vorbemerkung: Homorphieprinzip für Ringe Vorbemerkung: Homorphieprinzip für Ringe Ringe R, + R, R, 0 R, 1 R und S, + S, S, 0 S, 1 S Abbbildung Φ : R S ist Homomorphismus, falls a, b R Dann gilt Φ(a + R b) = Φ(a) + S Φ(b) Φ(a R b) = Φ(a) S Φ(b)

Mehr

2: Restklassen 2.1: Modulare Arithmetik

2: Restklassen 2.1: Modulare Arithmetik 2: Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32, 64} Prüfziffern mod 10 oder mod 11... 71 S. Lucks Diskr Strukt.

Mehr

Wiederholung. Gruppen. Untergruppen. Gruppenisomorphismen. Ordnung: Gruppe, Element Satz von Euler: a ord(g) = 1 Elementordung teilt Gruppenordnung

Wiederholung. Gruppen. Untergruppen. Gruppenisomorphismen. Ordnung: Gruppe, Element Satz von Euler: a ord(g) = 1 Elementordung teilt Gruppenordnung Wiederholung Gruppen Ordnung: Gruppe, Element Satz von Euler: a ord(g) = 1 Elementordung teilt Gruppenordnung Untergruppen Satz von Lagrange Untergruppenordnung teilt Gruppenordnung Nebenklassen von Untergruppen

Mehr

IT-Security. Teil 14: Primzahltest

IT-Security. Teil 14: Primzahltest IT-Security Teil 14: Primzahltest 08.05.17 1 Literatur [14-1] Willems, Wolfgang: Codierungstheorie und Kryptographie. Mathematik Kompakt, Birkhäuser, 2008 [14-2] Socher, Rolf: Algebra für Informatiker.

Mehr

2. Teilbarkeit. Euklidischer Algorithmus

2. Teilbarkeit. Euklidischer Algorithmus O. Forster: Einführung in die Zahlentheorie 2. Teilbarkeit. Euklidischer Algorithmus 2.1. Wir benutzen die folgenden Bezeichnungen: Z = {0, ±1, ±2, ±3,...} Menge aller ganzen Zahlen N 0 = {0, 1, 2, 3,...}

Mehr

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik UNIVERSITÄT ULM Institut für Zahlentheorie und Wahrscheinlichkeitstheorie Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Prof. Dr. Helmut Maier, Hans- Peter Reck Gesamtpunktzahl: 100

Mehr

Klausurtermin. Klausur Diskrete Mathematik I Do stündig

Klausurtermin. Klausur Diskrete Mathematik I Do stündig Klausurtermin Klausur Diskrete Mathematik I Do. 28.02.2008 3-stündig 07.12.2007 1 Wiederholung Komplexität modularer Arithmetik Addition: O(n) Multiplikation: O(n 2 ) bzw. O(n log 2 3 ) Exponentiation:

Mehr

Zahlen. Vorlesung Mathematische Strukturen. Sommersemester Zahlen. Zahlen

Zahlen. Vorlesung Mathematische Strukturen. Sommersemester Zahlen. Zahlen Vorlesung Mathematische Strukturen Sommersemester 2016 Prof. Barbara König Übungsleitung: Christine Mika & Dennis Nolte Division mit Rest Seien a, b Z zwei ganze mit a 0. Dann gibt es eindeutig bestimmte

Mehr

Zahlentheorie. Alexander May. Fakultät für Mathematik Ruhr-Universität Bochum. Sommersemester 2015

Zahlentheorie. Alexander May. Fakultät für Mathematik Ruhr-Universität Bochum. Sommersemester 2015 Zahlentheorie Alexander May Fakultät für Mathematik Ruhr-Universität Bochum Sommersemester 2015 Zahlentheorie - V01 Primzahlen, Landau-Notation, Fermat Primzahl, Mersenne Primzahl 1 / 230 Organisatorisches

Mehr

Miller-Rabin Test. Primzahl- und Zerlegbarkeitstests. Zeugen für die Zerlegbarkeit ganzer Zahlen

Miller-Rabin Test. Primzahl- und Zerlegbarkeitstests. Zeugen für die Zerlegbarkeit ganzer Zahlen Miller-Rabin Test Primzahl- und Zerlegbarkeitstests Sei N eine positive ganze Zahl. Wie kann man möglichst effizient feststellen, ob N eine Primzahl oder zerlegbar ist? Dies ist die Aufgabe von Primzahlund

Mehr

Beispiel: Primelemente in den Gaußschen Zahlen

Beispiel: Primelemente in den Gaußschen Zahlen Beispiel: Primelemente in den Gaußschen Zahlen Satz Primelemente in Z[i] Für die Primelemente π Z[i] gilt bis auf Assoziiertheit 1 N(π) = p für ein p P oder 2 π = p für ein p P mit p x 2 + y 2 für (x,

Mehr

Von Primzahlen und Pseudoprimzahlen

Von Primzahlen und Pseudoprimzahlen 1 Von Primzahlen und Pseudoprimzahlen Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastik (WIAS), Berlin 23. Tag der Mathematik 21. April 2018, Technische Universität Berlin Primzahlen

Mehr

5 Harte zahlentheoretische Probleme

5 Harte zahlentheoretische Probleme 5 Harte zahlentheoretische Probleme Die folgende Tabelle gibt einen Überblick über kryptologisch relevante zahlentheoretische Berechnungsprobleme. Effizient bedeutet dabei mit polynomialem Aufwand lösbar.

Mehr

Primes ist in P Der AKS-Primzahltest Notizen zum Vortrag auf dem MCAT-6 in Halle/S.

Primes ist in P Der AKS-Primzahltest Notizen zum Vortrag auf dem MCAT-6 in Halle/S. Primes ist in P Der AKS-Primzahltest Notizen zum Vortrag auf dem MCAT-6 in Halle/S. Hans-Gert Gräbe Institut für Informatik, Universität Leipzig 10. Oktober 2003 Anfang August 2002 verbreitete sich die

Mehr

Kapitel 6: Das quadratische Reziprozitätsgesetz

Kapitel 6: Das quadratische Reziprozitätsgesetz Kapitel 6: Das quadratische Reziprozitätsgesetz Ziel dieses Kapitels: die Untersuchung der Lösbarkeit der Kongruenzgleichung X also die Frage, ob die ganze Zahl Z eine Quadratwurzel modulo P besitzt. Im

Mehr

Die Menge C der komplexen Zahlen wird im Kapitel Weitere Themen behandelt.

Die Menge C der komplexen Zahlen wird im Kapitel Weitere Themen behandelt. 1 1 Funktionen 1.1 Grundlegende Zahlenmengen Georg Cantor (1845-1918) hat den Begriff der Menge eingeführt. Man versteht darunter die Zusammenfassung einzelner Dinge, welche Elemente genannt werden, zu

Mehr

Euklidische Algorithmus, Restklassenringe (Z m,, )

Euklidische Algorithmus, Restklassenringe (Z m,, ) Euklidische Algorithmus, Restklassenringe (Z m,, ) Manfred Gruber http://www.cs.hm.edu/~gruber SS 2008, KW 14 Gröÿter gemeinsamer Teiler Denition 1. [Teiler] Eine Zahl m N ist Teiler von n Z, wenn der

Mehr

Bsp. Euklidischer Algorithmus

Bsp. Euklidischer Algorithmus Bsp. Euklidischer Algorithmus Bsp: Berechne ggt(93, 42) mittels EUKLID. 93 2 42 = 9 42 4 9 = 6 9 1 6 = 3 6 2 3 = 0 D.h. ggt(93, 42) = 3. Durch Rücksubstitution erhalten wir die Bézout-Koeffizienten x,

Mehr

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9 Chr.Nelius: Zahlentheorie (SS 2007) 9 4. ggt und kgv (4.1) DEF: Eine ganze Zahl g heißt größter gemeinsamer Teiler (ggt) zweier ganzer Zahlen a und b, wenn gilt: GGT 0 ) g 0 GGT 1 ) g a und g b GGT 2 )

Mehr

Primzahlen. Herbert Koch Mathematisches Institut Universität Bonn Die Primfaktorzerlegung. a = st

Primzahlen. Herbert Koch Mathematisches Institut Universität Bonn Die Primfaktorzerlegung. a = st Primzahlen Herbert Koch Mathematisches Institut Universität Bonn 12.08.2010 1 Die Primfaktorzerlegung Wir kennen die natürlichen Zahlen N = 1, 2,..., die ganzen Zahlen Z, die rationalen Zahlen (Brüche

Mehr

Beispiel für simultane Kongruenz

Beispiel für simultane Kongruenz Beispiel für simultane Kongruenz Jetzt wollen wir das Lemma der letzten Einheit anwenden. Wenn man eine Zahl sucht, die kongruent zu y modulo m und kongruent zu z modulo n ist, so nehme man zam + ybn wobei

Mehr

Ältere Aufgaben (bis 1998)

Ältere Aufgaben (bis 1998) Ältere Aufgaben (bis 1998) Es waren in den 4 Stunden jeweils nur 2 Aufgaben zu bearbeiten, die einzelnen Aufgaben waren umfangreicher. September 1998, Aufgabe 1 Sei p eine ungerade Primzahl. a) Beweise:

Mehr

Probabilistische Algorithmen

Probabilistische Algorithmen Proseminar Theoretische Informatik 02.02.2016 Diane Hanke, Alexander Korzec Probabilistische Algorithmen Wolfgang Mulzer 1 Einführung 1.1 Probabilistischer Algorithmus Definition 1. [Probabilistischer

Mehr

4 Das RSA public-key System der Kryptographie 5

4 Das RSA public-key System der Kryptographie 5 Inhaltsverzeichnis 1 Kurze Einführung 1 2 Teibarkeit,größter gemeinsamer Teiler und der Algorithmus von Euklid 2 2.1 Der euklidische Algorithmus................... 3 2.2 Laufzeit des euklidischen Algorithmus..............

Mehr

Pollards Rho-Methode zur Faktorisierung

Pollards Rho-Methode zur Faktorisierung C A R L V O N O S S I E T Z K Y Pollards Rho-Methode zur Faktorisierung Abschlusspräsentation Bachelorarbeit Janosch Döcker Carl von Ossietzky Universität Oldenburg Department für Informatik Abteilung

Mehr

Interim. Kapitel Einige formale Definitionen

Interim. Kapitel Einige formale Definitionen Kapitel 1 Interim Da ich keine Infos über Titel und Nummerierungen anderer Kapitel dieser Vorlesung habe, nenne ich dies einfach mal Kapitel 1. 17.11.04 1.1 Einige formale Definitionen Wir rekapitulieren

Mehr

RSA Parameter öffentlich: N = pq mit p, q prim und e Z RSA Parameter geheim: d Z φ(n)

RSA Parameter öffentlich: N = pq mit p, q prim und e Z RSA Parameter geheim: d Z φ(n) RSA Parameter { öffentlich: N = pq mit p, q prim und e Z RSA Parameter φ(n) geheim: d Z φ(n) mit ed = 1 mod φ(n). Satz RSA Parameter Generierung RSA-Parameter (N, e, d) können in Zeit O(log 4 N) generiert

Mehr

1 Zahlentheorie. 1.1 Kongruenzen

1 Zahlentheorie. 1.1 Kongruenzen 3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern

Mehr

4 Kryptologie. Übersicht

4 Kryptologie. Übersicht 4 Kryptologie Übersicht 4.1 Der erweiterte euklidische Algorithmus................................ 38 4.2 Rechnen mit Restklassen modulo p................................... 39 4.3 Der kleine Satz von

Mehr

Kapitel III Ringe und Körper

Kapitel III Ringe und Körper Kapitel III Ringe und Körper 1. Definitionen und Beispiele Definition 117 Eine Algebra A = S,,, 0, 1 mit zwei zweistelligen Operatoren und heißt ein Ring, falls R1. S,, 0 eine abelsche Gruppe mit neutralem

Mehr

3.5 Kryptographie - eine Anwendung der Kongruenzrechnung

3.5 Kryptographie - eine Anwendung der Kongruenzrechnung 1 3.5 Kryptographie - eine Anwendung der Kongruenzrechnung Das Wort Kryptographie leitet sich aus der griechischen Sprache ab, nämlich aus den beiden Worten κρυπτ oς(kryptos)=versteckt, geheim und γραϕɛιν(grafein)=schreiben.

Mehr

Stichpunktezettel fürs Tutorium

Stichpunktezettel fürs Tutorium Stichpunktezettel fürs Tutorium Moritz und Dorian 18. November 2009 1 Chomskys Erstschlag 1.1 Reguläre Sprachen und Grammatiken Aufgabe 1. Wie sieht die Sprache zu den folgenden Grammatiken aus? 1. G =

Mehr

Übungen zu Zahlentheorie, SS 2008

Übungen zu Zahlentheorie, SS 2008 Übungen zu Zahlentheorie, SS 2008 Christoph Baxa 1) Finde alle positiven Teiler von a) 1799 b) 997. 2) Zeige (a b) (a n b n )für alle a, b Z und alle n N. 3) Zeige: Wenn m n dann (a m b m ) (a n b n )

Mehr

Beispiel bestimme x Z mit. es gilt also. gilt dann. für x = 1 i k c i (M/m i ) v i gilt. y c i mod m i (1 i k), nämlich y = x mod M

Beispiel bestimme x Z mit. es gilt also. gilt dann. für x = 1 i k c i (M/m i ) v i gilt. y c i mod m i (1 i k), nämlich y = x mod M Chinesischer Restesatz einfachste Form p, q Z >0 mit ggt(p, q) = 1 Bézout-Koeffizienten u, v Z p u + q v = 1 also p u 1 mod q und q v 1 mod p für b, c Z sei x = c p u + b q v, dann gilt für y Z gilt y

Mehr

6 Zahlentheoretische Grundlagen

6 Zahlentheoretische Grundlagen 6 Zahlentheoretische Grundlagen 89 6 Zahlentheoretische Grundlagen In diesem Abschnitt stellen wir die Hilfsmittel aus der Zahlentheorie bereit, die wir zum Verständnis der Public-Key Verfahren, die im

Mehr

2. Primzahlen. 2.1 Definition, Eigenschaften. Definition: Eine natürliche Zahl p heisst Primzahl, wenn p genau zwei Teiler hat.

2. Primzahlen. 2.1 Definition, Eigenschaften. Definition: Eine natürliche Zahl p heisst Primzahl, wenn p genau zwei Teiler hat. 1 2. Primzahlen 2.1 Definition, Eigenschaften Definition: Eine natürliche Zahl p heisst Primzahl, wenn p genau zwei Teiler hat. Die Folge der Primzahlen: 2, 3, 5, 7, 11,13, 17, 19, 23, 29,... Die Suche

Mehr

Algorithmentheorie Randomisierung. Robert Elsässer

Algorithmentheorie Randomisierung. Robert Elsässer Algorithmentheorie 03 - Randomisierung Robert Elsässer Randomisierung Klassen von randomisierten Algorithmen Randomisierter Quicksort Randomisierter Primzahltest Kryptographie 2 1. Klassen von randomisierten

Mehr

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens Mathematische Grundlagen der Kryptographie 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe Stefan Brandstädter Jennifer Karstens 18. Januar 2005 Inhaltsverzeichnis 1 Ganze Zahlen 1 1.1 Grundlagen............................

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 4.2 Primzahltests 1. Deterministische Primzahltests 2. Der Primzahltest von Solovay-Strassen 3. Der Milner-Rabin Test Wozu Primzahltests? RSA Schlüssel benötigen sehr

Mehr

Fibonacci-Zahlen und goldener Schnitt

Fibonacci-Zahlen und goldener Schnitt Fibonacci-Zahlen und goldener Schnitt Suche eine Darstellung der Form F n = x n für reelle Zahl x > 0. Aus der definierenden Gleichung folgt sofort x 2 = x + 1. Dann liefert die p-q-formel: x 1,2 = 1 2

Mehr

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck Gesamtpunktzahl: 114 Punkte, 100 Punkte= 100 %, keine Abgabe 1. Es seien m = 1155 und n = 1280.

Mehr

1 Kryptographie - alt und neu

1 Kryptographie - alt und neu 1 Krytograhie - alt und neu 1.1 Krytograhie - alt [H] S. 9-14 und S. 18:.3.1. (Idee) - olyalhabetische Verschlüsselung, Vigenère (1550) 1. Primzahlen [RS] S. 89-93, wohl im wesenlichen ohne Beweise. Ausnahme

Mehr

Diskrete Mathematik Kongruenzen

Diskrete Mathematik Kongruenzen Diskrete Mathematik Kongruenzen 31. Mai 2006 1 Inhaltsverzeichnis 1. Einleitung 2. Prime Restklassen 3. Die Sätze von Euler und Fermat 4. Lineare Kongruenzen 5. Systeme 2 Einleitung 3 Fragestellung Wie

Mehr

Die Faszination der Primzahlen

Die Faszination der Primzahlen zu Die der Institut für Mathematik Humboldt-Universität zu Berlin 27. April 2015 zu zu zu zu Die natürlichen Zahlen. Die Menge der natürlichen Zahlen: N = {0, 1, 2, 3,... }. zu zu Die natürlichen Zahlen.

Mehr

Miller-Rabin Test. Primzahl- und Zerlegbarkeitstests. Zeugen für die Zerlegbarkeit ganzer Zahlen

Miller-Rabin Test. Primzahl- und Zerlegbarkeitstests. Zeugen für die Zerlegbarkeit ganzer Zahlen Miller-Rabin Test Primzahl- und Zerlegbarkeitstests Sei N eine positive ganze Zahl. Wie kann man möglichst effizient feststellen, ob N eine Primzahl oder zerlegbar ist? Dies ist die Aufgabe von Primzahlund

Mehr

5 Grundlagen der Zahlentheorie

5 Grundlagen der Zahlentheorie 5 Grundlagen der Zahlentheorie 1 Primfaktorzerlegung Seienm, n N + := {k N k > 0} Man schreibt n n, gesprochen m teilt n oder m ist ein Teiler von n, wenn es eine positive natürliche Zahl k gibt mit mk

Mehr

Aufgabe der Kryptografie

Aufgabe der Kryptografie Aufgabe der Kryptografie Eve möchte die Unterhaltung mithören und/oder ausgetauschte Informationen ändern. Alice & Bob kommunzieren über einen unsicheren Kanal. Alice & Bob nutzen Verschlüsselung und digitale

Mehr

Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche '-Funktion, RSA

Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche '-Funktion, RSA Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche '-Funktion, RSA Manfred Gruber http://www.lrz-muenchen.de/~gruber SS 2009, KW 15 Kleiner Fermatscher Satz Satz 1. Sei p prim und a 2 Z p. Dann

Mehr

U. Rausch, 2010 Ganze Zahlen 1

U. Rausch, 2010 Ganze Zahlen 1 U. Rausch, 2010 Ganze Zahlen 1 Ganze Zahlen 1 Einleitung Als ganze Zahlen bezeichnet man die natürlichen Zahlen 1, 2,, 4,..., die Null 0 und die negativen ganzen Zahlen 1, 2,, 4,... Wir verabreden die

Mehr

ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018

ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018 ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018 KARLHEINZ GRÖCHENIG So wie Sport Training erfordert, erfordert Mathematik das selbständige Lösen von Übungsaufgaben. Das wesentliche an den Übungen ist das

Mehr

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 4. Die Restklassenringe Z/(n)

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 4. Die Restklassenringe Z/(n) Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 4 Die Restklassenringe Z/(n) Satz 4.1. (Einheiten modulo n) Genau dann ist a Z eine Einheit modulo n (d.h. a repräsentiert eine Einheit in

Mehr

Prüfungsfragen zur Vorlesung Algebra und Diskrete Mathematik. Sommersemester 2018

Prüfungsfragen zur Vorlesung Algebra und Diskrete Mathematik. Sommersemester 2018 Prüfungsfragen zur Vorlesung Algebra und Diskrete Mathematik Sommersemester 2018 Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper).

Mehr

Hast du auch wirklich versucht, die Aufgaben einmal selbständig zu lösen? Wenn nicht, tue es, bevor du dir die Lösungen anschaust!

Hast du auch wirklich versucht, die Aufgaben einmal selbständig zu lösen? Wenn nicht, tue es, bevor du dir die Lösungen anschaust! Chr.Nelius: Zahlentheorie (SoSe 2016) 1 14. Aufgabenblatt ZAHLENTHEORIE (für Master G und HRG) Lösungen Hast du auch wirklich versucht, die Aufgaben einmal selbständig zu lösen? Wenn nicht, tue es, bevor

Mehr

Prof. S. Krauter Dezimalbruchdarstellung rationaler Zahlen DezDarst.doc. Über die Darstellung von rationalen Zahlen als Dezimalbrüche.

Prof. S. Krauter Dezimalbruchdarstellung rationaler Zahlen DezDarst.doc. Über die Darstellung von rationalen Zahlen als Dezimalbrüche. 1 Prof. S. Krauter Dezimalbruchdarstellung rationaler Zahlen DezDarst.doc Über die Darstellung von rationalen Zahlen als Dezimalbrüche. Anmerkung: Die Beschränkung auf die Dezimaldarstellung ist unnötig.

Mehr