Volker Kaatz. Faktorisierung. Faktorisierung. Problem und Algorithmen. Relevanz in der Kryptographie

Größe: px
Ab Seite anzeigen:

Download "Volker Kaatz. Faktorisierung. Faktorisierung. Problem und Algorithmen. Relevanz in der Kryptographie"

Transkript

1 Faktorisierung Problem und Algorithmen Relevanz in der Kryptographie

2 Inhalt Begriff Faktorisierung Algorithmen (Übersicht) Strategie und Komplexität Pollard p-1 Algorithmus Pseudocode, mathematische Basis, Beispiel Random Square -Verfahren und Quadratisches Sieb Mathematik und Zusammenhang Faktorisierung und Sicherheit von Kryptosystemen Literatur

3 Faktorisierung Definition [1] : Faktorisierung ist die Zerlegung einer natürlichen Zahl n in ihre Primfaktoren, also in die Darstellung wobei p i paarweise unterschiedlich sind und e i 1 gilt. Definition [1] : n=p 1 e 1 p2 e 2 pk e k Nicht-triviale Faktorisierung (splitting) ist die Zerlegung von n in n=ab mit 1<a<n und 1<b<n

4 Algorithmen [5],[2],[1] Probedivision (trial division) Pollard rho-algorithmus Pollard p-1-algorithmus Williams p+1-algorithmus Elliptische Kurven (elliptic curve) Quadratisches Sieb (quadratic sieve) Zahlkörpersieb (number field sieve) Kettenbruchmethode (continued fraction)

5 Algorithmen [1] Spezialalgorithmen vs. Allzweckalgorithmen Einige Algorithmen sind effizient für Faktoren mit bestimmten Eigenschaften, z.b.: Probedivision für kleine Faktoren Pollard p-1, wenn p-1 glatt bezüglich einer Grenze B ist Es gibt Algorithmen, deren Effizienz nur von der Größe der Zahl n abhängt, z.b.: Zahlkörpersieb

6 Faktorisierungsstrategie [1] für n Teste n mit Probedivision auf kleine Faktoren (d.h. p i b 1 ) Teste n mit Pollard rho (um Faktoren b 1 <p i b 2 zu finden) Teste n mit Methode der elliptischen Kurven (um Faktoren b 2 <p i b 3 zu finden) Teste n mit Zahlkörpersieb (ohne Grenze, d.h. alle übrigen Faktoren)

7 Komplexität Exponentiell Probedivision, Pollard rho, Pollard p-1 Subexponentiell [2] Elliptische Kurven Quadratisches Sieb Zahlkörpersieb Polynomiell [3],[5] O e 1 o 1 2ln p lnln p O e 1 o 1 lnnlnlnn O e 1,92 o 1 lnn 3 lnlnn Shor's Algorithmus für Quantencomputer

8 Pollard p-1 Algorithmus [2] Algorithmus (n, B): n: zusammengesetzte Zahl, B: Grenze a 2 for j 2 tob doa a j mod n d ggt a 1,n if 1 d n then return d else return "nicht gefunden"

9 Pollard p-1 Algorithmus [2] Algorithmus: for-schleife berechnet Mathematisches Vorgehen: a 2 B! mod n (a) Voraussetzung: p n und p ist prim (b) Voraussetzung: q p 1 für alle Primpotenzen q B (1) mit p n gilt: a 2 B! mod p (2) Fermat: 2 p 1 1 mod p (aus (a): p ist prim) (3) Aus (a) und (b): p 1 B! (4) Aus (1) bis (3): a 1 mod p,d.h. p a 1 Aus (4) und (a): p d d=ggt a 1, n Für 1 d n ist d ein nichttrivialer Teiler von n

10 Pollard p-1 Algorithmus [2] Beispiel: n = , B = 180 a=2 180! mod = d=ggt , =135979=p n= erfolgreich, da p 1=135978= Komplexität: O B logb logn 2 logn 3 ggt: Multiplikationen für a 2 B! mod n : in der Praxis [1] : 10 5 B 10 6 O logn 3 B 1 2log 2 B

11 Random square -Faktorisierung [1] Idee: x 2 y 2 mod n mit x ±y mod n Dann gilt: n x 2 y 2 = x y x y n x y ; n x y Dann ist ggt x y,n ein nichttrivialer Faktor von n Faktorbasis: S = {p 1,p 2,...,p t } Bestimme Paare b i sei p t -glatt a i,b i mit a i 2 b i mod n

12 Random square -Faktorisierung [1] x 2 a 2 mod n hat 2 k Lösungen, wenn n teilbar durch k ungerade Primzahlen t b = i j=1 p j e ij,eij 0 v i = v i1,v i2,...,v it,v i n =e i n mod 2 Bestimmung linear abhängiger v i liefert Menge T von Indizes i mit: i T b i ist ein Quadrat Setze: x= i T a i ; y= i T b i

13 Quadratisches Sieb [1] Frage: Wie werden die Paare (a i, b i ) bestimmt? 1. Variante: zufällig (Dixon) 2. Variante: Algorithmus mit Sieb Quadratisches Sieb Zahlkörpersieb Frage: Wie wird S gewählt? Größe der Faktorbasis Gibt es nicht benötigte Elemente?

14 Quadratisches Sieb [1] Bestimmung der Paare: n soll faktorisiert werden, m= n q x = x m 2 n=x 2 2mx m 2 n x 2 2mx a i = x m,b i = x m 2 n (teste, ob b i p t -glatt ist) Da a 2 i = x m 2 b i mod n ist n ein quadratischer Rest modulo p, wenn p b i. n p =1 S enthält nur Primzahlen, für die gilt, sowie die Zahl -1.

15 Quadratisches Sieb Größe der Faktorbasis (Schranke) in der Größenordung [6] 1 2 e lnn lnlnn effizient bis etwa Dezimalstellen [1] Verallgemeinerung durch Zahlkörpersieb [2]

16 Faktorisierung und Sicherheit Problem ist schwer zu lösen (NP) Anwendung in Public Key Verfahren RSA-576 (174 Dezimalstellen) am 3. Dezember 2003 als faktorisiert gemeldet [7] Länge von n ist entscheidend Gefahr für kryptografische Verfahren: Quantencomputer (Shor's Polynomialzeitalgorithmus) bisher: Bau ausreichend großer Computer nicht möglich [4]

17 Literatur [1]: A. Menezes, P. Van Oorschot, S. Vanstone: Handbook of Applied Cryptography; 1996 [2]: D. R. Stinson: Cryptography: Theory and Practice, Second Edition; Chapman & Hall/CRC, 2002 [3]: D. Wätjen: Kryptographie: Grundlagen, Algorithmen, Protokolle; Spektrum Akademischer Verlag Heidelberg, Berlin, 2004 [4]: P. W. Shor: Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer; 1996 in: [5]: [6]: [7]:

Kryptographie und Codierungstheorie

Kryptographie und Codierungstheorie Proseminar zur Linearen Algebra Kryptographie und Codierungstheorie Thema: Faktorisierungsalgorithmen (nach der Fermat'schen Faktorisierungsmethode) Kettenbruchalgorithmus (Continued Fraction Method) Quadratisches

Mehr

Ferienakademie 2001: Kryptographie und Sicherheit offener Systeme. Faktorisierung. Stefan Büttcher stefan@buettcher.org

Ferienakademie 2001: Kryptographie und Sicherheit offener Systeme. Faktorisierung. Stefan Büttcher stefan@buettcher.org Ferienakademie 2001: Kryptographie und Sicherheit offener Systeme Faktorisierung Stefan Büttcher stefan@buettcher.org 1 Definition. (RSA-Problem) Gegeben: Ò ÔÕ, ein RSA-Modul mit unbekannten Primfaktoren

Mehr

Ein RSA verwandtes, randomisiertes Public Key Kryptosystem

Ein RSA verwandtes, randomisiertes Public Key Kryptosystem Seminar Codes und Kryptographie WS 2003 Ein RSA verwandtes, randomisiertes Public Key Kryptosystem Kai Gehrs Übersicht 1. Motivation 2. Das Public Key Kryptosystem 2.1 p-sylow Untergruppen und eine spezielle

Mehr

Elliptische Kurven und ihre Anwendung in der Kryptographie

Elliptische Kurven und ihre Anwendung in der Kryptographie Elliptische Kurven und ihre Anwendung in der Kryptographie Carsten Baum Institut für Informatik Universität Potsdam 17. Juni 2009 1 / 29 Inhaltsverzeichnis 1 Mathematische Grundlagen Charakteristik eines

Mehr

Pollards Rho-Methode zur Faktorisierung

Pollards Rho-Methode zur Faktorisierung C A R L V O N O S S I E T Z K Y Pollards Rho-Methode zur Faktorisierung Abschlusspräsentation Bachelorarbeit Janosch Döcker Carl von Ossietzky Universität Oldenburg Department für Informatik Abteilung

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 4.3 Angriffe auf das RSA Verfahren 1. Faktorisierungsangriffe 2. Andere Angriffe 3. Richtlinien für die Schlüsselauswahl Sicherheit des RSA Verfahrens Sicherheit des

Mehr

Algorithmische Kryptographie

Algorithmische Kryptographie Algorithmische Kryptographie Walter Unger Lehrstuhl für Informatik I 16. Februar 2007 Public-Key-Systeme: Rabin 1 Das System nach Rabin 2 Grundlagen Körper Endliche Körper F(q) Definitionen Quadratwurzel

Mehr

Primzahltests und Faktorisierung. Primzahltests. Nuria Brede Universität Potsdam - Kryptographie SoSe 2005 Seite 1

Primzahltests und Faktorisierung. Primzahltests. Nuria Brede Universität Potsdam - Kryptographie SoSe 2005 Seite 1 Primzahltests und Faktorisierung Primzahltests Primzahltests Nuria Brede 16.06.2005 16.06.2005 Universität Potsdam - Kryptographie SoSe 2005 Seite 1 Primzahltests und Faktorisierung Primzahltests Inhalt

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 4.3 Angriffe auf das RSA Verfahren 1. Faktorisierungsangriffe 2. Andere Angriffe 3. Richtlinien für die Schlüsselauswahl Sicherheit des RSA Verfahrens Sicherheit des

Mehr

Aufgabe der Kryptografie

Aufgabe der Kryptografie Aufgabe der Kryptografie Eve möchte die Unterhaltung mithören und/oder ausgetauschte Informationen ändern. Alice & Bob kommunzieren über einen unsicheren Kanal. Alice & Bob nutzen Verschlüsselung und digitale

Mehr

Quadratisches Sieb. Aufgabenstellung

Quadratisches Sieb. Aufgabenstellung Quadratisches Sieb Aufgabenstellung Sei N > 1 eine zerlegbare positive ganze Zahl. Wir wollen ein Verfahren entwickeln, mit dem N in Primfaktoren zerlegt werden kann. Ist N von der Form N = p e mit einer

Mehr

Zahlentheorie I. Christoph Egger. 18. Juni Christoph Egger Zahlentheorie I 18. Juni / 32

Zahlentheorie I. Christoph Egger. 18. Juni Christoph Egger Zahlentheorie I 18. Juni / 32 Zahlentheorie I Christoph Egger 18. Juni 2010 Christoph Egger Zahlentheorie I 18. Juni 2010 1 / 32 Übersicht 1 Modulare Arithmetik Addition & Subtraktion Multiplikation schnelles Potenzieren 2 Teiler Definition

Mehr

Referat Algorithmische Anwendungen WS 06/07

Referat Algorithmische Anwendungen WS 06/07 Referat Algorithmische Anwendungen WS 06/07 Primzahlfaktorisierung Team C_gelb_ALA0607 Inga Feick, 11034165, inga.feick@web.de Marc Kalmes, 11025526, ai233@gm.fh-koeln.de 23.01.2007 Problemstellung Dieses

Mehr

Probabilistische Primzahltests

Probabilistische Primzahltests 23.01.2006 Motivation und Überblick Grundsätzliches Vorgehen Motivation und Überblick Als Primzahltest bezeichnet man ein mathematisches Verfahren, mit dem ermittelt wird, ob eine gegebene Zahl eine Primzahl

Mehr

Diskreter Logarithmus und Primkörper

Diskreter Logarithmus und Primkörper Diskreter Logarithmus und Primkörper Neben dem RSA-Verfahren ist die ElGamal-Verschlüsselung 8 ein weiteres klassische Public-Key-Verfahren, welches von Taher ElGamal auf der Konferenz CRYPTO 84 vorgestellt

Mehr

Kryptographie mit elliptischen Kurven

Kryptographie mit elliptischen Kurven Kryptographie mit elliptischen Kurven Dr. Dirk Feldhusen SRC Security Research & Consulting GmbH Bonn - Wiesbaden Inhalt Elliptische Kurven! Grafik! Punktaddition! Implementation Kryptographie! Asymmetrische

Mehr

Public-Key-Verschlüsselung und Diskrete Logarithmen

Public-Key-Verschlüsselung und Diskrete Logarithmen Public-Key-Verschlüsselung und Diskrete Logarithmen Carsten Baum Institut für Informatik Universität Potsdam 10. Juni 2009 1 / 30 Inhaltsverzeichnis 1 Mathematische Grundlagen Gruppen, Ordnung, Primitivwurzeln

Mehr

. Zahlentheorie, Arithmetik und Algebra I. Tobias Polzer. Tobias Polzer Zahlentheorie, Arithmetik und Algebra I.. /

. Zahlentheorie, Arithmetik und Algebra I. Tobias Polzer. Tobias Polzer Zahlentheorie, Arithmetik und Algebra I.. / Zahlentheorie, Arithmetik und Algebra I Tobias Polzer Tobias Polzer Zahlentheorie, Arithmetik und Algebra I / Modulare Arithmetik Motivation Rechenregeln schnelle Potenzierung Gemeinsame Teiler euklidischer

Mehr

3: Primzahlen. 111 S. Lucks Diskr Strukt. (WS 18/19) 3: Primzahlen

3: Primzahlen. 111 S. Lucks Diskr Strukt. (WS 18/19) 3: Primzahlen 3: Primzahlen 111 S. Lucks Diskr Strukt. (WS 18/19) 3: Primzahlen Definition 40 (Teiler, Vielfache, Primzahlen, zusammengesetzte Zahlen) Seien a, b N. a ist ein Teiler von b ( a b ), falls es ein k N gibt

Mehr

3: Zahlentheorie / Primzahlen

3: Zahlentheorie / Primzahlen Stefan Lucks Diskrete Strukturen (WS 2009/10) 96 3: Zahlentheorie / Primzahlen 3: Zahlentheorie / Primzahlen Stefan Lucks Diskrete Strukturen (WS 2009/10) 97 Definition 37 (Teiler, Vielfache, Primzahlen,

Mehr

Primzahltests und Faktorisierung

Primzahltests und Faktorisierung Christian Ostermeier, Marcel Goehring, Franziska Göbel 07.12.2006 Inhaltsverzeichnis 1 Probabilistische Primzahltests 2 Deterministische Primzahltests 3 Faktorisierung Inhaltsverzeichnis zu den probabilistischen

Mehr

VI.3 RSA. - RSA benannt nach seinen Erfindern R. Rivest, A. Shamir und L. Adleman. - vorgestellt erstes Public-Key Verschlüsselungsverfahren

VI.3 RSA. - RSA benannt nach seinen Erfindern R. Rivest, A. Shamir und L. Adleman. - vorgestellt erstes Public-Key Verschlüsselungsverfahren VI.3 RSA - RSA benannt nach seinen Erfindern R. Rivest, A. Shamir und L. Adleman - vorgestellt 1977 - erstes Public-Key Verschlüsselungsverfahren - auch heute noch das wichtigste Public-Key Verfahren 1

Mehr

Klausurtermin. Klausur Diskrete Mathematik I Do stündig

Klausurtermin. Klausur Diskrete Mathematik I Do stündig Klausurtermin Klausur Diskrete Mathematik I Do. 28.02.2008 3-stündig 07.12.2007 1 Wiederholung Komplexität modularer Arithmetik Addition: O(n) Multiplikation: O(n 2 ) bzw. O(n log 2 3 ) Exponentiation:

Mehr

Digitale Signaturen. Einführung und das Schnorr Signatur Schema. 1 Digitale Signaturen Einführung & das Schnorr Signatur Schema.

Digitale Signaturen. Einführung und das Schnorr Signatur Schema. 1 Digitale Signaturen Einführung & das Schnorr Signatur Schema. Digitale Signaturen Einführung und das Schnorr Signatur Schema 1 Übersicht 1. Prinzip der digitalen Signatur 2. Grundlagen Hash Funktionen Diskreter Logarithmus 3. ElGamal Signatur Schema 4. Schnorr Signatur

Mehr

Proseminar Datensicherheit & Versicherungsmathematik ElGamal-Verfahren

Proseminar Datensicherheit & Versicherungsmathematik ElGamal-Verfahren Proseminar Datensicherheit & Versicherungsmathematik ElGamal-Verfahren Markus Kröll 14. Jänner 2009 Inhaltsverzeichnis 1 Einführung 2 2 Das ElGamal-Verfahren 2 2.1 Schlüsselerzeugung.................................

Mehr

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck Gesamtpunktzahl: 114 Punkte, 100 Punkte= 100 %, keine Abgabe 1. Es seien m = 1155 und n = 1280.

Mehr

VI.4 Elgamal. - vorgestellt 1985 von Taher Elgamal. - nach RSA das wichtigste Public-Key Verfahren

VI.4 Elgamal. - vorgestellt 1985 von Taher Elgamal. - nach RSA das wichtigste Public-Key Verfahren VI.4 Elgamal - vorgestellt 1985 von Taher Elgamal - nach RSA das wichtigste Public-Key Verfahren - besitzt viele unterschiedliche Varianten, abhängig von zugrunde liegender zyklischer Gruppe - Elgamal

Mehr

RSA Äquivalenz der Parameter

RSA Äquivalenz der Parameter RSA Kryptosystem Wurde 1977 von Rivest, Shamir und Adleman erfunden. Genaue Beschreibung im PKCS #1. De-facto Standard für asymmetrische Kryptosysteme. Schlüsselerzeugung: Seien p, q zwei verschiedene,

Mehr

5 Harte zahlentheoretische Probleme

5 Harte zahlentheoretische Probleme 5 Harte zahlentheoretische Probleme Die folgende Tabelle gibt einen Überblick über kryptologisch relevante zahlentheoretische Berechnungsprobleme. Effizient bedeutet dabei mit polynomialem Aufwand lösbar.

Mehr

Primzahlen im Schulunterricht wozu?

Primzahlen im Schulunterricht wozu? Primzahlen im Schulunterricht wozu? Franz Pauer Institut für Fachdidaktik und Institut für Mathematik Universität Innsbruck Tag der Mathematik Graz 6. Februar 2014 Einleitung Eine (positive) Primzahl ist

Mehr

Quadratisches Sieb. Aufgabenstellung

Quadratisches Sieb. Aufgabenstellung Quadratisches Sieb Aufgabenstellung Sei N > 1 eine zerlegbare positive ganze Zahl. Wir wollen ein Verfahren entwickeln, mit dem N in Primfaktoren zerlegt werden kann. Ist N von der Form N = p e mit einer

Mehr

IT-Sicherheit Kapitel 4 Public Key Algorithmen

IT-Sicherheit Kapitel 4 Public Key Algorithmen IT-Sicherheit Kapitel 4 Public Key Algorithmen Dr. Christian Rathgeb Sommersemester 2014 1 Einführung Der private Schlüssel kann nicht effizient aus dem öffentlichen Schlüssel bestimmt werden bzw. die

Mehr

Public-Key Kryptographie und elliptische Kurven

Public-Key Kryptographie und elliptische Kurven INFORMATIONSTECHNIK UND ARMEE Vorlesungen an der Eidgenössischen Technischen Hochschule in Zürich im Wintersemester 2000/2001 Leitung: Untergruppe Führungsunterstützung - Generalstab Divisionär E. Ebert,

Mehr

RSA (Rivest, Shamir, Adleman)

RSA (Rivest, Shamir, Adleman) Juli 2012 LB 3 Kryptographie F. Kaden 1/11 1977 von Rivest, Shamir, Adleman am MIT (Massachusetts Institut of Technology) entwickelt asymmetrisches Verschlüsselungsverfahren Ziel: email-verschlüsselung,

Mehr

Zahlentheorie, Arithmetik und Algebra I

Zahlentheorie, Arithmetik und Algebra I Zahlentheorie, Arithmetik und Algebra I Ulrich Rabenstein 18.06.2013 Ulrich Rabenstein Zahlentheorie, Arithmetik und Algebra I 18.06.2013 1 / 34 1 Modulare Arithmetik 2 Teiler 3 Primzahlen Ulrich Rabenstein

Mehr

Programmieren und Problemlösen

Programmieren und Problemlösen Dennis Komm Programmieren und Problemlösen Komplexität von Algorithmen Frühling 2019 27. Februar 2019 Komplexität von Algorithmen Aufgabe Primzahltest Schreibe ein Programm, das eine ganze Zahl x als Eingabe

Mehr

Hallo Welt für Fortgeschrittene

Hallo Welt für Fortgeschrittene Hallo Welt für Fortgeschrittene Zahlentheorie, Arithmetik und Algebra 1 Florian Habur Informatik 2 Programmiersysteme Martensstraße 3 91058 Erlangen Übersicht Modulare Arithmetik Rechenregeln Fast Exponentiation

Mehr

Der Baby Step, Giant Step Algorithmus

Der Baby Step, Giant Step Algorithmus Der Baby Step, Giant Step Algorithmus Martin Albrecht (malb@informatik.uni-bremen.de) 7. Juni 2007 1 Motivation Sei P E(F q ) Es geht darum die Ordnung von P zu finden, d.h. die kleinste natürlichliche

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 4.2 Primzahltests 1. Deterministische Primzahltests 2. Der Primzahltest von Solovay-Strassen 3. Der Milner-Rabin Test Wozu Primzahltests? RSA Schlüssel benötigen sehr

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 4.2 Primzahltests 1. Deterministische Primzahltests 2. Der Primzahltest von Solovay-Strassen 3. Der Milner-Rabin Test Wozu Primzahltests? RSA Schlüssel benötigen sehr

Mehr

Elliptic Curve Cryptography

Elliptic Curve Cryptography Elliptic Curve Cryptography Institut für Informatik Humboldt-Universität zu Berlin 10. November 2013 ECC 1 Aufbau 1 Asymmetrische Verschlüsselung im Allgemeinen 2 Elliptische Kurven über den reellen Zahlen

Mehr

Quanten Fourier Transformation & Shors Faktorisierungs Algorithmus

Quanten Fourier Transformation & Shors Faktorisierungs Algorithmus Quanten Fourier Transformation & Shors Faktorisierungs Algorithmus Universität Siegen 4. Juli 2006 Inhaltsverzeichnis Quantenfouriertransformation 1 Quantenfouriertransformation Rechnen mit Qubits diskrete

Mehr

Kryptographische Protokolle

Kryptographische Protokolle Kryptographische Protokolle Lerneinheit 2: Generierung von Primzahlen Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Wintersemester 2018/2019 15.11.2018 Einleitung Einleitung Diese Lerneinheit

Mehr

Der Primzahltest von Agrawal, Kayal und Saxena. Dr. Gerold Jäger

Der Primzahltest von Agrawal, Kayal und Saxena. Dr. Gerold Jäger Der Primzahltest von Agrawal, Kayal und Saxena Dr. Gerold Jäger Habilitationsvortrag Christian-Albrechts-Universität zu Kiel Institut für Informatik 19. Januar 2011 Dr. Gerold Jäger Habilitationsvortrag

Mehr

PRIMES is in P. Ein Vortrag von Holger Szillat.

PRIMES is in P. Ein Vortrag von Holger Szillat. PRIMES is in P Ein Vortrag von Holger Szillat szillat@informatik.uni-tuebingen.de Übersicht Geschichte Notationen und Definitionen Der Agrawal-Kayal-Saxena-Algorithmus Korrektheit und Aufwand Fazit Geschichte

Mehr

Algorithmentheorie Randomisierung

Algorithmentheorie Randomisierung Algorithmentheorie 03 - Randomisierung Prof. Dr. S. Albers Randomisierung Klassen von randomisierten Algorithmen Randomisierter Quicksort Randomisierter Primzahltest Kryptographie 2 1. Klassen von randomisierten

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 11 Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität

Mehr

IT-Security. Teil 14: Primzahltest

IT-Security. Teil 14: Primzahltest IT-Security Teil 14: Primzahltest 08.05.17 1 Literatur [14-1] Willems, Wolfgang: Codierungstheorie und Kryptographie. Mathematik Kompakt, Birkhäuser, 2008 [14-2] Socher, Rolf: Algebra für Informatiker.

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 4.4 Semantische Sicherheit 1. Sicherheit partieller Informationen 2. Das Verfahren von Rabin 3. Sicherheit durch Randomisierung Semantische Sicherheit Mehr als nur

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 5 Kryptosysteme auf der Basis diskreter Logarithmen 1. Diffie Hellman Schlüsselaustausch 2. El Gamal Systeme 3. Angriffe auf Diskrete Logarithmen 4. Elliptische Kurven

Mehr

Public Key Kryptographie mit dem RSA Schema. Karsten Fischer, Sven Kauer

Public Key Kryptographie mit dem RSA Schema. Karsten Fischer, Sven Kauer Public Key Kryptographie mit dem RSA Schema Karsten Fischer, Sven Kauer Gliederung I. Historischer Hintergrund II. Public Key Kryptographie III. Beispielszenario IV. Einweg-Funktion V. RSA Verfahren VI.

Mehr

Prima Zahlen? Primzahlen

Prima Zahlen? Primzahlen Prima Zahlen? Primzahlen 10. Dezember 2009 Willi More willi.more@uni-klu.ac.at I n s t i t u t f ü r M a t h e m a t i k Überblick 1/ Primzahlen 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,

Mehr

Literatur. [9-3] [9-4]

Literatur. [9-3]   [9-4] Literatur [9-1] Willems, Wolfgang: Codierungstheorie und Kryptographie. Mathematik Kompakt, Birkhäuser, 2008 [9-2] Socher, Rolf: Algebra für Informatiker. Hanser, 2012 [9-3] https://de.wikipedia.org/wiki/fermatscher_primzahltest

Mehr

Verschlüsselung durch Exponentiation (Pohlig, Hellman, 1976)

Verschlüsselung durch Exponentiation (Pohlig, Hellman, 1976) Verschlüsselung durch Exponentiation (Pohlig, Hellman, 1976) p : eine (grosse) Primzahl e : Zahl 0 < e < p mit ggt(e, p 1) = 1 d Inverses von e in Z p 1, dh d e 1 mod p 1 (= φ(p)) M : numerisch codierter

Mehr

Digitale Unterschriften mit ElGamal

Digitale Unterschriften mit ElGamal Digitale Unterschriften mit ElGamal Seminar Kryptographie und Datensicherheit Institut für Informatik Andreas Havenstein Inhalt Einführung RSA Angriffe auf Signaturen und Verschlüsselung ElGamal Ausblick

Mehr

5 Harte zahlentheoretische Probleme

5 Harte zahlentheoretische Probleme 5 Harte zahlentheoretische Probleme Die folgende Tabelle gibt einen Überblick über kryptologisch relevante zahlentheoretische Berechnungsprobleme. Effizient bedeutet dabei mit polynomialem Aufwand lösbar.

Mehr

Primzahlen im Schulunterricht wozu?

Primzahlen im Schulunterricht wozu? Primzahlen im Schulunterricht wozu? Franz Pauer Institut für Fachdidaktik und Institut für Mathematik Universität Innsbruck Lehrer/innen/fortbildungstag Wien 2013 5. April 2013 Einleitung Eine (positive)

Mehr

Einführung in. Elliptische Kurven. Seminarvortrag im Rahmen des Proseminars. Public-Key Kryptographie. Björn Mühlenfeld

Einführung in. Elliptische Kurven. Seminarvortrag im Rahmen des Proseminars. Public-Key Kryptographie. Björn Mühlenfeld Einführung in Elliptische Kurven Seminarvortrag im Rahmen des Proseminars Public-Key Kryptographie Björn Mühlenfeld 10.01.2006 Übersicht 1/15 Definition Addition auf elliptischen Kurven Elliptische Kurven

Mehr

Kapitel 2. Elementare Zahlentheorie Primfaktorzerlegung

Kapitel 2. Elementare Zahlentheorie Primfaktorzerlegung Kapitel 2. Elementare Zahlentheorie 2.1. Primfaktorzerlegung Menge der ganzen Zahlen Z = {..., 3, 2, 1, 0, 1, 2, 3,...} Addition Inverse Multiplikation Z Z Z, Z Z, Z Z Z, (a, b) a + b a a (a, b) a b Ausgezeichnete

Mehr

Einführung in die Zahlentheorie

Einführung in die Zahlentheorie Einführung in die Zahlentheorie von Peter Hellekalek Institut für Mathematik Universität Salzburg Hellbrunner Straße 34 A-5020 Salzburg, Austria Tel: +43-(0)662-8044-5310 Fax: +43-(0)662-8044-137 e-mail:

Mehr

Kryptologie. Bernd Borchert. Univ. Tübingen SS Vorlesung. Teil 14. Faktorisierungsmethoden

Kryptologie. Bernd Borchert. Univ. Tübingen SS Vorlesung. Teil 14. Faktorisierungsmethoden Kryptologie Bernd Borchert Univ. Tübingen SS 2017 Vorlesung Teil 14 Faktorisierungsmethoden Faktorisierungsmethoden Kryptologie Probedivision ggt Pollard rho Methode Fermat Methode Lucas Test Probedivision

Mehr

Objektorientierte Programmierung VL: Prof. Dr. Marco Block-Berlitz - Freie Universität Berlin Proinformatik III

Objektorientierte Programmierung VL: Prof. Dr. Marco Block-Berlitz - Freie Universität Berlin Proinformatik III Objektorientierte Programmierung VL: Prof. Dr. Marco Block-Berlitz - Freie Universität Berlin Proinformatik III Text: Hinnerk van Bruinehsen - Grafiken: Jens Fischer powered by SDS.mint SoSe 2011 1 Teil

Mehr

Komplexität von Algorithmen

Komplexität von Algorithmen Komplexität von Algorithmen Prof. Dr. Christian Böhm WS 07/08 in Zusammenarbeit mit Gefei Zhang http://www.dbs.informatik.uni-muenchen.de/lehre/nfinfosw Ressourcenbedarf - Größenordnungen Prozesse verbrauchen

Mehr

Kryptologie. Bernd Borchert. Univ. Tübingen SS Vorlesung. Teil 17. Quantencomputer, Postquantum Kryptographie

Kryptologie. Bernd Borchert. Univ. Tübingen SS Vorlesung. Teil 17. Quantencomputer, Postquantum Kryptographie Kryptologie Bernd Borchert Univ. Tübingen SS 2017 Vorlesung Teil 17 Quantencomputer, Postquantum Kryptographie Shor's Algorithmus (klassischer Teil) Shor's Algorithmus zur Faktorisierung - Teilalgorithmus

Mehr

Primzahltest für Mersenne-Primzahlen

Primzahltest für Mersenne-Primzahlen Primzahltest für Mersenne-Primzahlen Satz Lucas-Lehmer Test Sei n = 2 p 1 N für p P\{2}. Wir definieren die Folge S k durch S 1 = 4 und S k = S 2 k 1 2. Falls n S p 1, dann ist n prim. Beweis: Seien ω

Mehr

Erzeugung von Pseudozufallszahlen

Erzeugung von Pseudozufallszahlen Erzeugung von Pseudozufallszahlen Proseminar Kryptografie und Datensicherheit Sommersemester 2009 Mario Frank Übersicht 1. Allgemeines 2. Anwendungen von PRBG 3. (k,l)-bit Generatoren 4. Unterscheidbarkeit

Mehr

Attacken auf RSA und Das Rabin Kryptosystem

Attacken auf RSA und Das Rabin Kryptosystem Attacken auf RSA und Das Rabin Kryptosystem Institut für Informatik Universität Potsdam 4. Januar 2005 Überblick Wiederholung: RSA Das RSA Kryptosystem Attacken auf RSA RSA-FACTOR Wieners Algorithmus Das

Mehr

Zahlentheorie, Arithmetik und Algebra

Zahlentheorie, Arithmetik und Algebra Zahlentheorie, Arithmetik und Algebra Seminar Hallo Welt für Fortgeschrittene 2008 Matthias Niessner June 20, 2008 Erlangen 1 von 29 Matthias Niessner Zahlentheorie, Arithmetik und Algebra Übersicht 1

Mehr

Elliptische Kurven in der Kryptographie

Elliptische Kurven in der Kryptographie Elliptische Kurven in der Kryptographie Sandro Schugk und Günther Nieß 25. Januar 2007 Inhalt Motivation Elliptische Kurven über R Elliptische Kurven über Z p Elliptische Kurven über K Kryptoanalyse Fazit

Mehr

RSA Parameter öffentlich: N = pq mit p, q prim und e Z RSA Parameter geheim: d Z φ(n)

RSA Parameter öffentlich: N = pq mit p, q prim und e Z RSA Parameter geheim: d Z φ(n) RSA Parameter { öffentlich: N = pq mit p, q prim und e Z RSA Parameter φ(n) geheim: d Z φ(n) mit ed = 1 mod φ(n). Satz RSA Parameter Generierung RSA-Parameter (N, e, d) können in Zeit O(log 4 N) generiert

Mehr

RSA-Verfahren Schnelle Ver- / Entschlüsselung Zusammenhang mit dem Faktorisierungsproblem. RSA-Verfahren. Herwig Stütz

RSA-Verfahren Schnelle Ver- / Entschlüsselung Zusammenhang mit dem Faktorisierungsproblem. RSA-Verfahren. Herwig Stütz 2007-11-23 Überblick 1 2 Schnelle modulare Exponentiation Chinesischer Restsatz 3 Allgemeines Public-Key Methode Rivest, Shamir und Adleman 1977 Sicherheit des Verfahrens beruht auf Schwierigkeit der Primfaktorenzerlegung

Mehr

Post-Quanten Kryptografie. Chancen und Risiken in der IT-Sicherheit. Stefan Schubert Institut für IT-Sicherheitsforschung

Post-Quanten Kryptografie. Chancen und Risiken in der IT-Sicherheit. Stefan Schubert Institut für IT-Sicherheitsforschung Post-Quanten Kryptografie Chancen und Risiken in der IT-Sicherheit Stefan Schubert Institut für IT-Sicherheitsforschung 5. Semester IT-Security Stefan Schubert Research Assistant Institut für IT-Security

Mehr

Ausarbeitung zum Seminarvortrag Schnelle Faktorisierung, Diskreter Logarithmus, Untergruppensuche

Ausarbeitung zum Seminarvortrag Schnelle Faktorisierung, Diskreter Logarithmus, Untergruppensuche Ausarbeitung zum Seminarvortrag Schnelle Faktorisierung, Diskreter Logarithmus, Untergruppensuche Marc E.E. van Woerkom Steinstr. 6 D 51429 Bergisch Gladbach 25. Juli 2003 Zusammenfassung Schlüsselwörter

Mehr

Von Primzahlen und Pseudoprimzahlen

Von Primzahlen und Pseudoprimzahlen 1 Von Primzahlen und Pseudoprimzahlen Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastik (WIAS), Berlin 23. Tag der Mathematik 21. April 2018, Technische Universität Berlin Primzahlen

Mehr

Anhang I zur Vorlesung Kryptologie: Elementare Zahlentheorie

Anhang I zur Vorlesung Kryptologie: Elementare Zahlentheorie Anhang I zur Vorlesung Kryptologie: Elementare Zahlentheorie von Peter Hellekalek Fakultät für Mathematik, Universität Wien, und Fachbereich Mathematik, Universität Salzburg Tel: +43-(0)662-8044-5310 Fax:

Mehr

Einführung in die Kryptographie. 20.6.2011, www.privacyfoundation.ch

Einführung in die Kryptographie. 20.6.2011, www.privacyfoundation.ch Einführung in die Kryptographie 20.6.2011, www.privacyfoundation.ch Kryptographie Name kryptós: verborgen, geheim gráphein: schreiben Verschlüsselung Text so umwandeln, dass man ihn nur noch entziffern/lesen

Mehr

Zahlentheorie, Arithmetik und Algebra I

Zahlentheorie, Arithmetik und Algebra I Zahlentheorie, Arithmetik und Algebra I Viktoria Ronge 04.06.2014 Viktoria Ronge Zahlentheorie, Arithmetik und Algebra I 04.06.2014 1 / 63 Übersicht 1 Modulare Arithmetik 2 Primzahlen 3 Verschiedene Teiler

Mehr

2008W. Vorlesung im 2008W Institut für Algebra Johannes Kepler Universität Linz

2008W. Vorlesung im 2008W   Institut für Algebra Johannes Kepler Universität Linz Mathematik Institut für Algebra Johannes Kepler Universität Linz Vorlesung im http://www.algebra.uni-linz.ac.at/students/win/ml Inhalt Definierende Eigenschaften Definition 0 ist eine natürliche Zahl;

Mehr

Mathematisches Institut II Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg

Mathematisches Institut II Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg 1 Mathematisches Institut II 06.07.004 Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg SS 05 Schnupperkurs: Ausgewählte Methoden zur Aufgabenlösung Vorlesung 5: Elementare Zahlentheorie: Teilbarkeit Primfaktorzerlegung

Mehr

6.2 Asymmetrische Verschlüsselung

6.2 Asymmetrische Verschlüsselung 6.2 Asymmetrische Verschlüsselung (asymmetric encryption, public-key encryption) Prinzip (Diffie, Hellman, Merkle 1976-78): Statt eines Schlüssels K gibt es ein Schlüsselpaar K E, K D zum Verschlüsseln

Mehr

Primzahlen und Programmieren

Primzahlen und Programmieren Primzahlen Wir wollen heute gemeinsam einen (sehr grundlegenden) Zusammenhang zwischen Programmieren und Mathematik herstellen. Die Zeiten in denen Mathematiker nur mit Zettel und Stift (oder Tafel und

Mehr

4 Der diskrete Logarithmus mit Anwendungen

4 Der diskrete Logarithmus mit Anwendungen 4 Der diskrete Logarithmus mit Anwendungen 62 4.1 Der diskrete Logarithmus Für eine ganze Zahl a Z mit ggt(a, n) = 1 hat die Exponentialfunktion mod n zur Basis a exp a : Z M n, x a x mod n, die Periode

Mehr

Zahlentheorie, Arithmetik und Algebra 1

Zahlentheorie, Arithmetik und Algebra 1 Zahlentheorie, Arithmetik und Algebra 1 Monika Huber 24.6.2015 Monika Huber Zahlentheorie, Arithmetik und Algebra 1 24.6.2015 1 / 52 Übersicht Modulare Arithmetik Größter gemeinsamer Teiler Primzahlen

Mehr

Beispiel für simultane Kongruenz

Beispiel für simultane Kongruenz Beispiel für simultane Kongruenz Jetzt wollen wir das Lemma der letzten Einheit anwenden. Wenn man eine Zahl sucht, die kongruent zu y modulo m und kongruent zu z modulo n ist, so nehme man zam + ybn wobei

Mehr

Exponentiation: das Problem Gegeben: (multiplikative) Halbgruppe (H, ), Element a H, n N Aufgabe: berechne das Element

Exponentiation: das Problem Gegeben: (multiplikative) Halbgruppe (H, ), Element a H, n N Aufgabe: berechne das Element Problemstellung Banale smethode : das Problem Gegeben: (multiplikative) Halbgruppe (H, ), Element a H, n N Aufgabe: berechne das Element a n = } a a a {{ a } H n (schreiben ab jetzt a n statt a n ) Hinweis:

Mehr

Exponentiation: das Problem

Exponentiation: das Problem Problemstellung Exponentiation: das Problem Gegeben: (multiplikative) Halbgruppe (H, ), Element a H, n N Aufgabe: berechne das Element a n = } a a a {{ a } H n (schreiben ab jetzt a n statt a n ) Hinweis:

Mehr

Quanteninformation/ Quantencomputer

Quanteninformation/ Quantencomputer Quanteninformation/ Quantencomputer Jonas Heinze Proseminar SS 2013 Jonas Heinze (University of Bielefeld) Quanteninformation/ Quantencomputer 2013 1 / 20 Übersicht 1 Kurzer Einstieg in die Informatik

Mehr

Bsp: Die kleinsten Carmichael-Zahlen sind 561, 1105, 1729, Es gibt unendlich viele Carmichael-Zahlen (Beweis 1994).

Bsp: Die kleinsten Carmichael-Zahlen sind 561, 1105, 1729, Es gibt unendlich viele Carmichael-Zahlen (Beweis 1994). Primzahltest Wir wollen testen, ob eine gegebene Zahl n eine Primzahl ist Effizienter Algorithmus zum Faktorisieren ist unbekannt Kontraposition des Kleinen Satzes von Fermat liefert: Falls a n 1 1 mod

Mehr

Einwegfunktionen. Problemseminar. Komplexitätstheorie und Kryptographie. Martin Huschenbett. 30. Oktober 2008

Einwegfunktionen. Problemseminar. Komplexitätstheorie und Kryptographie. Martin Huschenbett. 30. Oktober 2008 Problemseminar Komplexitätstheorie und Kryptographie Martin Huschenbett Student am Institut für Informatik an der Universität Leipzig 30. Oktober 2008 1 / 33 Gliederung 1 Randomisierte Algorithmen und

Mehr

Index Calculus. Index Calculus

Index Calculus. Index Calculus Das DLP in (Z/lZ, +) ist leicht, weil wir zusätzlich die Multiplikation verwenden können. Dies können wir in einer Black-Box Gruppe nicht. Algorithmen basieren auf der Tatsache, daß gewisse Gruppen Faktorgruppen

Mehr

Das RSA Kryptosystem

Das RSA Kryptosystem Kryptografie Grundlagen RSA Institut für Mathematik Technische Universität Berlin Kryptografie Grundlagen RSA mit geheimem mit öffentlichem Schlüssel Realisierung Kryptografie mit geheimem Schlüssel Alice

Mehr

Theoretische Informatik. Exkurs: Komplexität von Optimierungsproblemen. Optimierungsprobleme. Optimierungsprobleme. Exkurs Optimierungsprobleme

Theoretische Informatik. Exkurs: Komplexität von Optimierungsproblemen. Optimierungsprobleme. Optimierungsprobleme. Exkurs Optimierungsprobleme Theoretische Informatik Exkurs Rainer Schrader Exkurs: Komplexität von n Institut für Informatik 13. Mai 2009 1 / 34 2 / 34 Gliederung Entscheidungs- und Approximationen und Gütegarantien zwei Greedy-Strategien

Mehr

Vorlesung Datensicherheit. Sommersemester 2010

Vorlesung Datensicherheit. Sommersemester 2010 Vorlesung Datensicherheit Sommersemester 2010 Harald Baier Kapitel 3: Hashfunktionen und asymmetrische Verfahren Inhalt Hashfunktionen Asymmetrische kryptographische Verfahren Harald Baier Datensicherheit

Mehr

Euklidische Division. Zahlentheorie - V Zusammenfassung 225 / 231

Euklidische Division. Zahlentheorie - V Zusammenfassung 225 / 231 Euklidische Division 1. Euklidische Division: Landau Notation: f(n) = O(g(n)). Definitionen: Gruppe, Ring, Ideal Teilbarkeit und Teilbarkeit mit Rest (euklidisch) Beispiel für euklidische Ringe Z euklidisch

Mehr

Probabilistische Algorithmen

Probabilistische Algorithmen Probabilistische Algorithmen Michal Švancar Gerardo Balderas Hochschule Zittau/Görlitz 21. Dezember 2014 Michal Švancar, Gerardo Balderas (HSZG) Probabilistische Algorithmen 21. Dezember 2014 1 / 40 Inhaltsverzeichnis

Mehr

Das RSA-Verfahren. Proseminar Kryptographische Protokolle SS Armin Litzel

Das RSA-Verfahren. Proseminar Kryptographische Protokolle SS Armin Litzel in der Praxis Proseminar Kryptographische Protokolle SS 2009 5.5.2009 in der Praxis Gliederung 1 Grundlegendes über RSA 2 in der Praxis Allgemeine Vorgehensweise zur Verschlüsselung Signieren mit RSA 3

Mehr

Sicherheit: Fragen und Lösungsansätze

Sicherheit: Fragen und Lösungsansätze Vorlesung (WS 2014/15) Sicherheit: Fragen und Lösungsansätze Dr. Thomas P. Ruhroth TU Dortmund, Fakultät Informatik, Lehrstuhl XIV 1 Asymmetrische Verschlüsselung [mit freundlicher Genehmigung basierend

Mehr