Prima Zahlen? Primzahlen
|
|
|
- Marta Fiedler
- vor 9 Jahren
- Abrufe
Transkript
1 Prima Zahlen? Primzahlen 10. Dezember 2009 Willi More I n s t i t u t f ü r M a t h e m a t i k
2 Überblick 1/ Primzahlen 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,,, ,, , 2/ Mersennesche Zahlen Trenton, Gibson County M n = 2 n 1 3/ Fermatsche Zahlen F n = 2 2n +1 4/ Primzahlen in Anwendungen ISBN-10 (a mod p), RSA (x e mod p q), Willi More, Institut für Mathematik, Universität Klagenfurt Seite 2
3 1/ Primzahlen Natürliche Zahlen: 1, 2, 3, 4, Primzahlen sind natürliche Zahlen größer 1, welche nur durch 1 und sich selbst teilbar sind: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,, ,, , Die Zahl 1 wird Einheit genannt. Alle natürlichen Zahlen größer 1, welche nicht Primzahlen sind, nennen wir zusammengesetzte Zahlen: 4 = 2 2, 6 = 2 3, 8 = 2 4, 9 = 3 3, Fundamentalsatz der Arithmetik (der elementaren Zahlentheorie): Jede natürliche Zahl größer 1 kann auf genau eine Weise in ihre Primteiler zerlegt werden. Primzahlen sind die elementaren multiplikativen Bausteine der natürlichen Zahlen. - Wie können Primzahlen erkannt werden? - Wie viele Primzahlen gibt es? - Wie sind die Primzahlen verteilt? - Sind Primzahlen tatsächlich nicht zerlegbar? - Primzahlen spezieller Bauart Willi More, Institut für Mathematik, Universität Klagenfurt Seite 3
4 Prima Zahlen? Primzahlen 10. Dezember / Primzahltabelle Sieb des Eratostheness (-230) Willi More, Institut für Mathematik, Universität Klagenfurt Seite 4
5 1/ Wie viele Primzahlen gibt es? Der Abstand zwischen zwei ungeraden Primzahlen ist mindestens zwei (Primzahlzwillinge), sonst eins, kann aber beliebig groß sein: n! = (n-1) n 2 n!+2, 3 n!+3,, n n!+n Aber: Es gibt unendlich viele Primzahlen Beweis von Euklid von Alexandria (-3Jhdt., Elemente, Buch IX, Satz 20) H. Lenstra: Es gibt unendlich viele zusammengesetzte Zahlen. Beweis: Multipliziere die ersten r Primzahlen und addiere 1 nicht. Faktorisierungsproblem Gegeben ist eine natürliche Zahl n, gesucht ist die Primfaktorzerlegung n = p 1 α 1p2 α 2 p k α k Ähnliches, aber einfacheres Problem: Bestimme ob eine natürliche Zahl n eine Primzahl ist. 6+o(1) - Primzahltest, AKS [Agrawal, Kayal & Saxena 2002] O(ln( n) f (ln ln( n))) [Lenstra/Pomerance] Ähnliches, aber komplexitätstheoretisch fast gleich schweres Problem - Zerlegung von n = a b mit 1 < a,b < n Triviale Algorithmen: Probedivision, Fermat-Faktorisierung 32 ( 1 o(1)) ln( n)(ln ln( n)) O Faktorisierungsrekord: M 1039 = = p 7 p 80 p 227 (SNFS 2007), ( e ) Willi More, Institut für Mathematik, Universität Klagenfurt Seite 5
6 1/ Wie häufig sind Primzahlen? 100 π(x) = {Primzahlen p mit p x} Primzahlsatz [Gauss 1792; Beweis: Hadamard / De La Vallée-Poussin, 1896] π( x) lim = 1 x x / ln( x) Der derzeitige Rekord [pi(x) project / Gourdon et.al. 2001] für π(x) liegt bei π( ) = In diesem Bereich ist im Durchschnitt jede 26te ungerade Zahl eine Primzahl. Willi More, Institut für Mathematik, Universität Klagenfurt Seite 6
7 1/ Sind Primzahlen unzerlegbar? Für die Primzahl 5 gilt wobei i 2 = 1. 5 = (1 2i)(1+2i), Mit Hilfe der imaginären Einheit i können die ganzen Zahlen zum Zahlbereich [ 1] = [i] = {a + bi a,bœ } der Gaußschen Zahlen erweitert werden, anschaulich: ganzzahlige Gitterpunkte. [i] ist ein faktorieller Ring, d.h. jedes Element besitzt eine eindeutige Zerlegung in Primelemente (p a b fl p a oder p b). Die Einheiten in [i] sind ±1, ±i. Die Gaußsche Primzahlen sind 2, alle Primzahlen der Form 4k+3 (7, 11, 19, 23, ) und alle Teiler von a 2 +b 2 =(a+bi)(a bi) der Primzahlen der Form 4k+1 (5= , 13= , 17= , 29= , ). Hinweis: Es gibt auch Zahlbereiche die keine eindeutige Zerlegung in Primelemente besitzen. Etwa gilt in [ 5] = [i 5] mit den Einheiten ±1, dass 6 = 2 3 = (1 i 5)(1+i 5), wobei alle vier Faktoren Primelemente in [i 5] sind. Willi More, Institut für Mathematik, Universität Klagenfurt Seite 7
8 2/ Mersennesche Zahlen Für welche Exponenten t 1 ist 2 t 1 eine Primzahl? 2 t 1 kann nur dann Primzahl sein, wenn t selbst eine Primzahl ist, denn 2 u 1 2 uv 1. M n = 2 n 1 wird Mersennesche Zahl genannt. Ist M p eine Primzahl, so nennen wir sie Mersennesche Primzahl: - genau 39 für p = 2, 3, 5, 7, 13, 17, 19, 31,, 11213,, weitere 8 für p = , , , , , , Die Mersennesche Primzahl [Smith et al 2008, GIMPS/PrimeNet] = ist die derzeit größte bekannte Primzahl mit rund 13 Millionen Dezimalstellen und einem Wert von US$ Gibt es unendlich viele Mersennesche Primzahlen? - Gibt es unendlich viele zusammengesetzte M n? - Ist jede Mersennesche Zahl quadratfrei? Willi More, Institut für Mathematik, Universität Klagenfurt Seite 8
9 3/ Fermatsche Zahlen Für welche Exponenten t 1 ist 2 t +1 eine Primzahl? 2 t +1 Primzahlkandidat wenn t Zweierpotenz, denn für eine ungerades v gilt: 2 u +1 2 uv +1. F n = 2 2n +1 wird Fermatsche Zahl genannt. Ist F n eine Primzahl, so nennen wir sie Fermatsche Primzahl: F 0 = = 3, F 1 = = 5, F 2 = = 17, F 3 = = 257, F 4 = = Komplett faktorisiert: F 5,, F 10 und [Cunnigham Brent & Morain 1988] F 11 = P564 Zusammengesetzt, aber kein Faktor bekannt für n = 14, 20, 22, 24 Zuordnung von F n bisher unbekannt für n = 33 35, 40, 41, 44 47, F [Cosgrave et al 2003] ist zusammengesetzt und hat rund Dezimalstellen. - Gibt es unendlich viele Fermatsche Primzahlen? - Gibt es unendlich viele zusammengesetzte F n? - Ist jede Fermatsche Zahl quadratfrei? Willi More, Institut für Mathematik, Universität Klagenfurt Seite 9
10 4/ Primzahlen in Anwendungen Die Zahlentheorie, und mit ihr die Primzahlen, galt lange Zeit als ein Beispiel für reinste Mathematik ohne Anwendungsbezug und zu nichts außer allenfalls in der Mathematik nütze. Diese Einschätzung hat sich in den letzten 30 Jahren stark verändert. Prüfziffern Bei der Internationale Standardbuchnummer ISBN-10 basiert die Prüfziffernberechnung auf einer gewichteten Summe mod 11. Beispiel: ISBN , denn = 172 = 7 mod 11. Hinweis: Bei ISBN-13/EAN (Europäische Artikelnummer) wird für die Prüfzifferberechnung alternierend mit 1 und 3 gewichtet und mod 10 gerechnet, um das bei der ISBN-10 zusätzlich benötigte Zeichen X für 10 zu vermeiden. Public key-kryptographie RSA-Kryptosystem, ElGamal-Kryptosystem, Diffie-Hellman-Schlüsselaustausch, Elliptische Kurven über endlichen Körpern, Hash-Tabellen, Pseudozufallsgeneratoren, Willi More, Institut für Mathematik, Universität Klagenfurt Seite 10
Die Faszination der Primzahlen
zu Die der Institut für Mathematik Humboldt-Universität zu Berlin 27. April 2015 zu zu zu zu Die natürlichen Zahlen. Die Menge der natürlichen Zahlen: N = {0, 1, 2, 3,... }. zu zu Die natürlichen Zahlen.
Primzahlen Primzahlsatz Der Satz von Green und Tao Verschlüsselung mit RSA. Primzahlen. Ulrich Görtz. 3. Mai 2011
Primzahlen Ulrich Görtz 3. Mai 2011 Sei N := {1, 2, 3,... } die Menge der natürlichen Zahlen. Definition Eine Primzahl ist eine natürliche Zahl > 1, die nur durch 1 und durch sich selbst teilbar ist. Beispiel
2. Primzahlen. 2.1 Definition, Eigenschaften. Definition: Eine natürliche Zahl p heisst Primzahl, wenn p genau zwei Teiler hat.
1 2. Primzahlen 2.1 Definition, Eigenschaften Definition: Eine natürliche Zahl p heisst Primzahl, wenn p genau zwei Teiler hat. Die Folge der Primzahlen: 2, 3, 5, 7, 11,13, 17, 19, 23, 29,... Die Suche
Primzahlen von Euklid bis heute
Mathematisches Institut Universität zu Köln [email protected] 5. November 2004 Pythagoras von Samos (ca. 570-480 v. Chr.) Euklid von Alexandria (ca. 325-265 v. Chr.) Teilbarkeit Satz von Euklid
3: Zahlentheorie / Primzahlen
Stefan Lucks Diskrete Strukturen (WS 2009/10) 96 3: Zahlentheorie / Primzahlen 3: Zahlentheorie / Primzahlen Stefan Lucks Diskrete Strukturen (WS 2009/10) 97 Definition 37 (Teiler, Vielfache, Primzahlen,
3: Primzahlen. 111 S. Lucks Diskr Strukt. (WS 18/19) 3: Primzahlen
3: Primzahlen 111 S. Lucks Diskr Strukt. (WS 18/19) 3: Primzahlen Definition 40 (Teiler, Vielfache, Primzahlen, zusammengesetzte Zahlen) Seien a, b N. a ist ein Teiler von b ( a b ), falls es ein k N gibt
L-Funktionen in Geometrie und Arithmetik
Fachbereich Mathematik Technische Universität Darmstadt [email protected] 30. Januar 2008 Leonhard Euler (1707 1783) Bernhard Riemann (1826-1866) Die rationalen Zahlen Prinzahlen Die
Primzahlen. Herbert Koch Mathematisches Institut Universität Bonn Die Primfaktorzerlegung. a = st
Primzahlen Herbert Koch Mathematisches Institut Universität Bonn 12.08.2010 1 Die Primfaktorzerlegung Wir kennen die natürlichen Zahlen N = 1, 2,..., die ganzen Zahlen Z, die rationalen Zahlen (Brüche
Man weiß, dass zwischen zwei aufeinanderfolgenden Quadratzahlen immer mindestens eine Primzahl liegt:
Primzahlgeheimnis 1 Man weiß, dass zwischen zwei aufeinanderfolgenden Quadratzahlen immer mindestens eine Primzahl liegt: Vervollständige die Quadrate und kringele alle Primzahlen ein: 1 2 5 10 17 26 37
1.1 Teilbarkeit, Primzahlen und Teilerfremdheit
Kapitel Primzahlen Bevor wir uns allgemeineren Themen und Begriffen der Algebra zuwenden, wollen wir einige zugleich elementare und schöne Ideen aus der Theorie der Primzahlen zusammenstellen, da diese
Prima Zahlen? Primzahlen!
Prima Zahlen? Primzahlen! Teilnehmer: Yu Shi Li Felix Fichte Tuyet Mai Hoang Thi Harry Bober Vincent Hitzler Julius Range David Schmidt Gruppenleiter: Jürg Kramer Anna v. Pippich Andreas-Oberschule, Berlin
4 Vollkommene Zahlen
Sei a > 0 4 Vollkommene Zahlen T (a) bezeichnet die Anzahl der positiven Teiler von a. S(a) bezeichnet die Summe der positiven Teiler von a. Es ist also T (1) = S(1) = 1. Jede Zahl a > 1 hat eine eindeutige
Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler
Kapitel 3: Die Sätze von Euler, Fermat und Wilson In diesem Kapitel wollen wir nun die eulersche -Funktion verwenden, um einen berühmten Satz von Euler zu formulieren, aus dem wir dann mehrere interessante
Der Primzahltest von Agrawal, Kayal und Saxena. Dr. Gerold Jäger
Der Primzahltest von Agrawal, Kayal und Saxena Dr. Gerold Jäger Habilitationsvortrag Christian-Albrechts-Universität zu Kiel Institut für Informatik 19. Januar 2011 Dr. Gerold Jäger Habilitationsvortrag
7-1 Elementare Zahlentheorie
7-1 Elementare Zahlentheorie 7 Die ganzen Gauß schen Zahlen Wir betrachten den Körper C der komplexen Zahlen Es ist C = R 2 mit komponentenweiser Addition und mit Multiplikation [a 1, a 2 ][b 1, b 2 ]
Man weiß, dass zwischen zwei aufeinanderfolgenden Quadratzahlen immer mindestens eine Primzahl liegt:
Primzahlgeheimnis 1 Man weiß, dass zwischen zwei aufeinanderfolgenden Quadratzahlen immer mindestens eine Primzahl liegt: Vervollständige die Quadrate und kringele alle Primzahlen ein: 1 2 5 10 17 26 37
Primzahlen: vom antiken Griechenland bis in den Computer
Primzahlen: vom antiken Griechenland bis in den Computer Jakob Stix Institut für Mathematik Goethe Universität Frankfurt am Main 28 April 2016 Girls Day GU-Frankfurt Primzahlen Atome (unteilbar!) der Multiplikation:
Die Welt der Primzahlen
Springer-Lehrbuch Die Welt der Primzahlen Geheimnisse und Rekorde Bearbeitet von Paulo Ribenboim, Wilfrid Keller, Jörg Richstein 1. Auflage 2006. Taschenbuch. XXIV, 356 S. Paperback ISBN 978 3 540 34283
6-1 Elementare Zahlentheorie Zahlen, die sich als Summe zweier Quadrate schreiben lassen.
6-1 Elementare Zahlentheorie 6 Summen von Quadraten Wir interessieren uns hier für die Frage, ob sich eine Zahl n als Summe von sagen wir t Quadraten ganzer Zahlen schreiben lässt, oder auch, genauer,
Volker Kaatz. Faktorisierung. Faktorisierung. Problem und Algorithmen. Relevanz in der Kryptographie
Faktorisierung Problem und Algorithmen Relevanz in der Kryptographie Inhalt Begriff Faktorisierung Algorithmen (Übersicht) Strategie und Komplexität Pollard p-1 Algorithmus Pseudocode, mathematische Basis,
24. April Institut für Mathematik Humboldt-Universität zu Berlin. Primzahlen und Chaos. Jürg Kramer. Natürliche Zahlen. Bausteine.
Institut für Mathematik Humboldt-Universität zu Berlin 24. April 2008 Die natürlichen Operationen Die Menge der natürlichen : N = {0, 1, 2, 3,... } Die Menge der ganzen : Z = {..., 2, 1, 0, 1, 2,... }
Seminararbeit zur Zahlentheorie. Die Gaußschen Zahlen
Universität Paderborn WS 2007/2008 Warburger Str. 100 33098 Paderborn Seminararbeit zur Zahlentheorie Die Gaußschen Zahlen Tatjana Linkin, Svetlana Krez 20. November 2007 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis
Kryptographie und Codierungstheorie
Proseminar zur Linearen Algebra Kryptographie und Codierungstheorie Thema: Faktorisierungsalgorithmen (nach der Fermat'schen Faktorisierungsmethode) Kettenbruchalgorithmus (Continued Fraction Method) Quadratisches
U. Rausch, 2010 Ganze Zahlen 1
U. Rausch, 2010 Ganze Zahlen 1 Ganze Zahlen 1 Einleitung Als ganze Zahlen bezeichnet man die natürlichen Zahlen 1, 2,, 4,..., die Null 0 und die negativen ganzen Zahlen 1, 2,, 4,... Wir verabreden die
Existenz unendlich vieler Primzahlen Es werden mehrere Beweise für die Existenz unendlich vieler Primzahlen vorgetragen.
Seminarausarbeitung Existenz unendlich vieler Primzahlen Es werden mehrere Beweise für die Existenz unendlich vieler Primzahlen vorgetragen. Andre Eberhard Mat. Nr. 25200607 5. November 207 Inhaltsverzeichnis
Ältere Aufgaben (bis 1998)
Ältere Aufgaben (bis 1998) Es waren in den 4 Stunden jeweils nur 2 Aufgaben zu bearbeiten, die einzelnen Aufgaben waren umfangreicher. September 1998, Aufgabe 1 Sei p eine ungerade Primzahl. a) Beweise:
4. Die Menge der Primzahlen. Bertrands Postulat
O. Forster: Eiführug i die Zahletheorie 4. Die Mege der Primzahle. Bertrads Postulat 4.1. Satz (Euklid. Es gibt uedlich viele Primzahle. Beweis. Wir zeige, dass es zu jeder edliche Mege p 1, p 2,..., p
χ a : N + {0, 1, 1} {( a χ a (n) = χ a (n ). ψ(mn) < ψ(m)ψ(n).
September 007, Zahlentheorie 1 a) Formulieren Sie das quadratische Reziprozitätsgesetz einschließlich der Definitionen der Legendre- und Jacobi-Symbole. b) Für a Z \ {0} definieren wir durch χ a (n) =
Primzahlen und Pseudoprimzahlen
1 Primzahlen und Pseudoprimzahlen Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastik (WIAS), Berlin 20. Tag der Mathematik 9. Mai 2015, Beuth Hochschule für Technik Berlin Primzahlen
Von Primzahlen und Pseudoprimzahlen
1 Von Primzahlen und Pseudoprimzahlen Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastik (WIAS), Berlin 23. Tag der Mathematik 21. April 2018, Technische Universität Berlin Primzahlen
2.2. ELEMENTARE TEILBARKEITSTHEORIE, INTEGRITÄTSBEREICHE 65
2.2. ELEMENTARE TEILBARKEITSTHEORIE, INTEGRITÄTSBEREICHE 65 Nun kommen wir zur Teilbarkeitstheorie in Integritätsbereichen. Es wird ganz elementar in dem Sinne, dass wir wieder mehr von Elementen als von
Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. ***
M. Welter Übungen zum Vorkurs Mathematik für Studienanfänger 2004 Einige Zeichen und Konventionen: IN := {1, 2, 3, 4,...} Die Menge der natürlichen Zahlen IN 0 := IN {0}{0, 1, 2, 3, 4,...} Z := {..., 2,
Carmichael-Zahlen und Miller-Rabin-Test
Institut für Mathematik Universität Hannover Proseminar: Zahlentheorie und Kryptographie Prof. Dr. C. Bessenrodt Carmichael-Zahlen und Miller-Rabin-Test Felix Pape 15. Mai 2003 1 Carmichael-Zahlen 1.1
ADS: Algorithmen und Datenstrukturen 2
ADS: Algorithmen und Datenstrukturen 2 Teil 11 Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität
Kapitel 2: Multiplikative Funktionen. 3 Multiplikative Funktionen. Definition 2.1 (arithmetische Funktion, (vollständig) multiplikative Funktion)
Kapitel 2: Multiplikative Funktionen 3 Multiplikative Funktionen Definition 2.1 (arithmetische Funktion, (vollständig) multiplikative Funktion) (a) Eine Funktion α : Z >0 C heißt arithmetisch (oder zahlentheoretisch).
Übungen zu Zahlentheorie für TM, SS 2013
Übungen zu Zahlentheorie für TM, SS 2013 zusammengestellt von Johannes Morgenbesser Übungsmodus: Ausarbeitung von 10 der Beisiele 1 38, 5 der Beisiele A O und 15 der Beisiele i xxxi. 1. Zeigen Sie, dass
1.1.1 Konstruktion der ganzen Zahlen, Vertretersystem (nicht-negative und negative ganze Zahlen)
Zahlentheorie LVA 405.300 C. Fuchs Inhaltsübersicht 26.06.2013 Inhaltsübersicht Die Zahlentheorie gehört zu den Kerngebieten der Mathematik und steht historisch und thematisch in ihrem Zentrum. Es geht
Die Primheit von Primzahlen kann man effizient verifizieren. oder. Primes NP. Die Zahl
Historisches Die Zahl Die Primheit von Primzahlen kann man effizient verifizieren oder Primes NP n = 114381625757888867669235779976146612010218296721242 362562561842935706935245733897830597123563958705
Kryptographie mit elliptischen Kurven
Kryptographie mit elliptischen Kurven Dr. Dirk Feldhusen SRC Security Research & Consulting GmbH Bonn - Wiesbaden Inhalt Elliptische Kurven! Grafik! Punktaddition! Implementation Kryptographie! Asymmetrische
Rationale Punkte auf algebraischen Kurven
Rationale Punkte auf algebraischen Kurven THOMAS CHRIST, JÖRN STEUDING (Uni Würzburg) Würzburg, den 7. Oktober 2009 W-Seminare p.1/20 Kurven Kurven begegnen uns in allen Lebenslagen... p.2/20 Kurven Kurven
Übungsaufgaben zur Zahlentheorie (Holtkamp)
Ruhr-Universität Bochum Fakultät für Mathematik Sommersemester 2005 Übungsaufgaben zur Zahlentheorie (Holtkamp) Sonderregelung: Zur vollständigen Lösung jeder Aufgabe gehört die Kennzeichnung der (maximal
Die Welt der Primzahlen
Paulo Ribenboim Die Welt der Primzahlen Geheimnisse und Rekorde Aus dem Englischen übersetzt von Jörg Richstein. Auf den neuesten Stand gebracht von Wilfrid Keller. Mit 29 Tabellen Sprin ger Inhaltsverzeichnis
Gewinnung und Test großer Primzahlen
16. Mai 2007 1 Einführung 2 Primzahlgewinnung 3 Primzahlentest 4 Aktuelles 5 Appendix 1 Einführung Anwendung Notation und Grundlagen Ordnung Eulersche φ-funktion Kleiner Satz von Fermat Anwendung Verwendung
6 Zahlentheoretische Grundlagen
6 Zahlentheoretische Grundlagen 89 6 Zahlentheoretische Grundlagen In diesem Abschnitt stellen wir die Hilfsmittel aus der Zahlentheorie bereit, die wir zum Verständnis der Public-Key Verfahren, die im
Übungen zu Zahlentheorie, SS 2017
Übungen zu Zahlentheorie, SS 017 Christoph Baxa 1) Finde alle positiven Teiler von a) 1799 b) 997. ) Zeige (a b) (a n b n ) für alle a, b Z und alle n N. 3) Zeige: Wenn m n dann (a m b m ) (a n b n ) (mit
5 Grundlagen der Zahlentheorie
5 Grundlagen der Zahlentheorie 1 Primfaktorzerlegung Seienm, n N + := {k N k > 0} Man schreibt n n, gesprochen m teilt n oder m ist ein Teiler von n, wenn es eine positive natürliche Zahl k gibt mit mk
Einführung in die Zahlentheorie
Einführung in die Zahlentheorie von Peter Hellekalek Institut für Mathematik Universität Salzburg Hellbrunner Straße 34 A-5020 Salzburg, Austria Tel: +43-(0)662-8044-5310 Fax: +43-(0)662-8044-137 e-mail:
3 Primzahlen. j,... stets Primzahlen. 3.1 Satz. Jedes a > 1 ist als Produkt von Primzahlen darstellbar (Primfaktorzerlegung. n=1
3 Primzahlen Die Zahl 1 hat nur einen positiven Teiler, nämlich 1. Jede Zahl a > 1 hat mindestens zwei positive Teiler: 1 und a. Definition. Eine Primzahl ist eine Zahl a > 1, welche nur die Teiler 1 und
Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik
UNIVERSITÄT ULM Institut für Zahlentheorie und Wahrscheinlichkeitstheorie Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Prof. Dr. Helmut Maier, Hans- Peter Reck Gesamtpunktzahl: 100
Übung ln(p) x aus dem Primzahlsatz π(x) x/ ln(x) folgt. Gehen Sie dabei wie folgt vor: i) p x
Übung 0 Übung 0 Zeigen Sie, dass der Primzahlsatz π(x) x/ ln(x) aus p x ln(p) x folgt Übung 02 Zeigen Sie, dass p x ln(p) x aus dem Primzahlsatz π(x) x/ ln(x) folgt Gehen Sie dabei wie folgt vor: i) p
Bsp: Die kleinsten Carmichael-Zahlen sind 561, 1105, 1729, Es gibt unendlich viele Carmichael-Zahlen (Beweis 1994).
Primzahltest Wir wollen testen, ob eine gegebene Zahl n eine Primzahl ist Effizienter Algorithmus zum Faktorisieren ist unbekannt Kontraposition des Kleinen Satzes von Fermat liefert: Falls a n 1 1 mod
Kryptographie und Komplexität
Kryptographie und Komplexität Einheit 4.2 Primzahltests 1. Deterministische Primzahltests 2. Der Primzahltest von Solovay-Strassen 3. Der Milner-Rabin Test Wozu Primzahltests? RSA Schlüssel benötigen sehr
Der Zwei-Quadrate-Satz von Fermat. Hauptseminar: Eine Einladung in die Mathematik Leitung: Prof. Dr. Lukacova Referent: Julia Breit Datum:
Der Zwei-Quadrate-Satz von Fermat Hauptseminar: Eine Einladung in die Mathematik Leitung: Prof. Dr. Lukacova Referent: Julia Breit Datum: 09.11.2015 GLIEDERUNG Einleitung Der Zwei-Quadrate-Satz Vorwissen
Kapitel 2. Elementare Zahlentheorie Primfaktorzerlegung
Kapitel 2. Elementare Zahlentheorie 2.1. Primfaktorzerlegung Menge der ganzen Zahlen Z = {..., 3, 2, 1, 0, 1, 2, 3,...} Addition Inverse Multiplikation Z Z Z, Z Z, Z Z Z, (a, b) a + b a a (a, b) a b Ausgezeichnete
In diesem Kapitel bestimmen wir die multiplikative Struktur der Einheitengruppe (Z/Z) von Z/Z für eine beliebige positive Zahl Z >0.
Kapitel 5: Die Einheitengruppe von Z/Z und Primitivwurzeln modulo In diesem Kapitel bestimmen wir die multiplikative Struktur der Einheitengruppe (Z/Z) von Z/Z für eine beliebige positive Zahl Z >0. 16
Elementare Zahlentheorie. Jörn Steuding (Uni Würzburg) Wintersemester 2016/17
Elementare Zahlentheorie Jörn Steuding (Uni Würzburg) Wintersemester 2016/17 D C E A B Literaturempfehlungen J. Appell, K. Appell: Mengen - Zahlen - Zahlbereiche, Spektrum 2005 K. Reiss, G. Schmieder:
Die Primheit von Primzahlen kann man effizient verifizieren. oder. Primes NP
Die Primheit von Primzahlen kann man effizient verifizieren oder Primes NP Historisches Die Zahl n = 114381625757888867669235779976146612010218296721242 362562561842935706935245733897830597123563958705
Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 3. Der euklidische Algorithmus
Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 3 Der euklidische Algorithmus Euklid (4. Jahrhundert v. C.) Definition 3.1. Seien zwei Elemente a, b (mit b 0) eines euklidischen Bereichs
Algebra. 1 = a u + b,
Fachbereich Mathematik Prof. Dr. Nils Scheithauer Walter Reußwig TECHNISCHE UNIVERSITÄT DARMSTADT WS 08/09 11. November 2008 Algebra 5. Übung mit Lösungshinweisen Aufgabe 23 Es sei R ein euklidischer Integritätsbereich.
Elementare Zahlentheorie. Jörn Steuding (Uni Würzburg) Wintersemester 2016/17
Elementare Zahlentheorie Jörn Steuding (Uni Würzburg) Wintersemester 2016/17 D C E A B Literaturempfehlungen J. Appell, K. Appell: Mengen - Zahlen - Zahlbereiche, Spektrum 2005 K. Reiss, G. Schmieder:
Public-Key-Verschlüsselung und Diskrete Logarithmen
Public-Key-Verschlüsselung und Diskrete Logarithmen Carsten Baum Institut für Informatik Universität Potsdam 10. Juni 2009 1 / 30 Inhaltsverzeichnis 1 Mathematische Grundlagen Gruppen, Ordnung, Primitivwurzeln
Kryptologie. Bernd Borchert. Univ. Tübingen SS Vorlesung. Teil 11. Primzahltests: Fermat, Miller-Rabin
Kryptologie Bernd Borchert Univ. Tübingen SS 2017 Vorlesung Teil 11 Primzahltests: Fermat, Miller-Rabin Primzahltests Problem: Gegeben n. Ist n Primzahl? Naive Methoden: Ausprobieren: gehe der Reihe nach
Primzahltests und Faktorisierung. Primzahltests. Nuria Brede Universität Potsdam - Kryptographie SoSe 2005 Seite 1
Primzahltests und Faktorisierung Primzahltests Primzahltests Nuria Brede 16.06.2005 16.06.2005 Universität Potsdam - Kryptographie SoSe 2005 Seite 1 Primzahltests und Faktorisierung Primzahltests Inhalt
5-1 Elementare Zahlentheorie
5-1 Elementare Zahlentheorie 5 Summen von Quadraten Wir interessieren uns hier für die Frage, ob sich eine (natürlich positive) Zahl n als Summe von sagen wir t Quadraten ganzer Zahlen schreiben lässt,
Miller-Rabin Test. Primzahl- und Zerlegbarkeitstests. Zeugen für die Zerlegbarkeit ganzer Zahlen
Miller-Rabin Test Primzahl- und Zerlegbarkeitstests Sei N eine positive ganze Zahl. Wie kann man möglichst effizient feststellen, ob N eine Primzahl oder zerlegbar ist? Dies ist die Aufgabe von Primzahlund
Miller-Rabin Test. Primzahl- und Zerlegbarkeitstests. Zeugen für die Zerlegbarkeit ganzer Zahlen
Miller-Rabin Test Primzahl- und Zerlegbarkeitstests Sei N eine positive ganze Zahl. Wie kann man möglichst effizient feststellen, ob N eine Primzahl oder zerlegbar ist? Dies ist die Aufgabe von Primzahlund
Zahlentheorie für den Gebietswettbewerb für Fortgeschrittene der Österreichischen Mathematik-Olympiade
Zahlentheorie für den Gebietswettbewerb für Fortgeschrittene der Österreichischen Mathematik-Olympiade Clemens Heuberger 22. September 2014 Inhaltsverzeichnis 1 Zifferndarstellungen in anderen Basen 1
Kryptographie. ein erprobter Lehrgang. AG-Tagung Informatik, April 2011 Alfred Nussbaumer, LSR für NÖ. LSR für NÖ, 28. April 2011 Alfred Nussbaumer
Kryptographie ein erprobter Lehrgang AG-Tagung Informatik, April 2011 Alfred Nussbaumer, LSR für NÖ 1 Variante: Kryptographie in 5 Tagen Ein kleiner Ausflug in die Mathematik (Primzahlen, Restklassen,
Probabilistische Primzahltests
23.01.2006 Motivation und Überblick Grundsätzliches Vorgehen Motivation und Überblick Als Primzahltest bezeichnet man ein mathematisches Verfahren, mit dem ermittelt wird, ob eine gegebene Zahl eine Primzahl
Quadratisches Sieb. Aufgabenstellung
Quadratisches Sieb Aufgabenstellung Sei N > 1 eine zerlegbare positive ganze Zahl. Wir wollen ein Verfahren entwickeln, mit dem N in Primfaktoren zerlegt werden kann. Ist N von der Form N = p e mit einer
Vom Zauber der Zahlen
Vom Zauber der Zahlen Gedanken und Spielereien aus der Welt der Arithmetik Meisterklasse Mathematik - Dresden 2018 Olaf Schimmel (Ulf-Merbold-Gymnasium Greiz) www.mathoid.de, [email protected] Gliederung 1.
Satz von Euler. Satz von Euler. Korollar 1. Korollar 2 Kleiner Fermat. Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G.
Satz von Euler Satz von Euler Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G. Beweis: Sei G = {g 1,..., g n } und a G. Betrachte die Abbildung f : G G, g ag. Da a G, besitzt a ein
Satz von Euler. Satz von Euler. Korollar 1. Korollar 2 Kleiner Fermat. Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G.
Satz von Euler Satz von Euler Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G. Beweis: Sei G = {g 1,..., g n } und a G. Betrachte die Abbildung f : G G, g ag. Da a G, besitzt a ein
UNTERLAGEN ZUR TEILBARKEIT IN KOMMUTATIVEN RINGEN
UNTERLAGEN ZUR TEILBARKEIT IN KOMMUTATIVEN RINGEN VORLESUNG KOMMUTATIVE ALGEBRA, SOMMERSEMESTER 2007 1. Definitionen Ein kommutativer Ring mit Eins R ist ein Integritätsbereich, wenn er zumindest zwei
Zahlentheorie, Arithmetik und Algebra
Zahlentheorie, Arithmetik und Algebra Seminar Hallo Welt für Fortgeschrittene 2008 Matthias Niessner June 20, 2008 Erlangen 1 von 29 Matthias Niessner Zahlentheorie, Arithmetik und Algebra Übersicht 1
Verschlüsselung durch Exponentiation (Pohlig, Hellman, 1976)
Verschlüsselung durch Exponentiation (Pohlig, Hellman, 1976) p : eine (grosse) Primzahl e : Zahl 0 < e < p mit ggt(e, p 1) = 1 d Inverses von e in Z p 1, dh d e 1 mod p 1 (= φ(p)) M : numerisch codierter
Der diskrete Logarithmus und der Index-Calculus
Der diskrete Logarithmus und der Index-Calculus Uli Schlachter 20. Juli 2012 Uli Schlachter Index Calculus 20. Juli 2012 1 / 26 Inhalt 1 Motivation 2 Der diskrete Logarithmus 3 Der Index-Calculus 4 Implementierung
Arithmetik. Bemerkungen zu Primzahlen
Arithmetik Bemerkungen zu Primzahlen Die Suche nach Mustern und Tendenzen spielt bei der Erforschung der Verteilung der Primzahlen eine wichtige Rolle. Es gibt unendlich viele Primzahlen. (Beweis von Euklid)
Das RSA Kryptosystem
Kryptografie Grundlagen RSA Institut für Mathematik Technische Universität Berlin Kryptografie Grundlagen RSA mit geheimem mit öffentlichem Schlüssel Realisierung Kryptografie mit geheimem Schlüssel Alice
Randomisierte Primzahltests Paul Gamper
Randomisierte Primzahltests Paul Gamper Seminar im Wintersemester 2006/07 Probability and Randomization in Computer Science 07.02.2007, Aachen 1 Abstract Nach einer Einführung, in der ich kurz auf die
Primzahlen, Faktorisierung und Komplexitätstheorie
Primzahlen, Faktorisierung und Komplexitätstheorie Sicherheitsaspekte in der Softwaretechnik WS 2004/05 Bearbeitet von Sebastian Ziebell, Mat.-Nr. 197785 Jan Suhr, Mat.-Nr.? Einleitung Viele der heute
Public Key Kryptographie
3. Juni 2006 1 Algorithmen für Langzahlen 1 RSA 1 Das Rabin-Kryptosystem 1 Diskrete Logarithmen Grundlagen der PK Kryptographie Bisher: Ein Schlüssel für Sender und Empfänger ( Secret-Key oder symmetrische
Primes ist in P Der AKS-Primzahltest
Primes ist in P Der AKS-Primzahltest Hans-Gert Gräbe Institut für Informatik, Universität Leipzig 10. Oktober 2003 1 Anfang August 2002 verbreitete sich die Nachricht, dass einige bis dahin unbekannte
PRIMZAHLEN PATRICK WEGENER
PRIMZAHLEN PATRICK WEGENER 1. Einführung: Was sind Primzahlen? Eine ganze Zahl p, welche größer als 1 ist, heißt Primzahl, wenn sie nur durch 1 und sich selbst teilbar ist. Mit teilbar meinen wir hier
Zahlentheorie I - Tipps & Lösungen. Aktualisiert: 15. Oktober 2016 vers Teilbarkeit
Schweizer Mathematik-Olympiade smo osm Zahlentheorie I - Tipps & Lösungen Aktualisiert: 15. Oktober 2016 vers. 1.2.0 1 Teilbarkeit Einstieg 1.1 Zeige, dass 900 ein Teiler von 10! ist. Tipp: Schreibe 900
Primzahlen und Primfaktorzerlegung
Primzahlen und Primfaktorzerlegung Yasin Hamdan Inhaltsverzeichnis 1 Das Sieb des Eratosthenes 1 2 Primfaktorzerlegung 4 2.1 Existenz und Eindeutigkeit.......................... 4 2.2 Hasse-Diagramme...............................
Zahlentheorie, Arithmetik und Algebra 1
Zahlentheorie, Arithmetik und Algebra 1 Monika Huber 24.6.2015 Monika Huber Zahlentheorie, Arithmetik und Algebra 1 24.6.2015 1 / 52 Übersicht Modulare Arithmetik Größter gemeinsamer Teiler Primzahlen
Kölner Mathematikturnier 2011 Das Turnierlogo
Kölner Mathematikturnier 2011 Das Turnierlogo Was sind denn das für komische Punkte im Turnierlogo?, fragt Ihr Euch sicherlich. Unser Turnierlogo stellt einee Visualisierung der Primzahlen in den Gaußschen
Kryptographie und Komplexität
Kryptographie und Komplexität Einheit 5 Kryptosysteme auf der Basis diskreter Logarithmen 1. Diffie Hellman Schlüsselaustausch 2. El Gamal Systeme 3. Angriffe auf Diskrete Logarithmen 4. Elliptische Kurven
Primes ist in P Der AKS-Primzahltest Notizen zum Vortrag auf dem MCAT-6 in Halle/S.
Primes ist in P Der AKS-Primzahltest Notizen zum Vortrag auf dem MCAT-6 in Halle/S. Hans-Gert Gräbe Institut für Informatik, Universität Leipzig 10. Oktober 2003 Anfang August 2002 verbreitete sich die
KAPITEL 13. Polynome. 1. Primfaktorzerlegung in den ganzen Zahlen. ,, p r
KAPITEL 13 Polynome 1. Primfaktorzerlegung in den ganzen Zahlen DEFINITION 13.1 (Primzahl). Eine Zahl p ist genau dann eine Primzahl, wenn folgende beiden Bedingungen gelten: (1) Es gilt p > 1. (2) Für
Einführung in die algebraische Zahlentheorie
Alexander Schmidt Einführung in die algebraische Zahlentheorie Springer-Lehrbuch Springer Berlin Heidelberg New York ISBN 978-3-540-45973-6 Kapitel 7 Der Große Fermatsche Satz Die folgende Behauptung wurde
