PRIMZAHLEN PATRICK WEGENER
|
|
|
- Theresa Bachmeier
- vor 8 Jahren
- Abrufe
Transkript
1 PRIMZAHLEN PATRICK WEGENER 1. Einführung: Was sind Primzahlen? Eine ganze Zahl p, welche größer als 1 ist, heißt Primzahl, wenn sie nur durch 1 und sich selbst teilbar ist. Mit teilbar meinen wir hier folgendes: Die ganze Zahl p ist durch die ganze Zahl n teilbar, wenn p : n wieder eine ganze Zahl ist. Beispiel 1.1. Die Zahl 6 ist zum Beispiel durch 2 teilbar, denn 6 : 2 = 3 und 3 ist wieder eine ganze Zahl. Sie ist aber zum Beispiel nicht durch 4 teilbar, denn 6 : 4 = 1, 5 und 1, 5 ist keine ganze Zahl. Die Zahl 5 ist eine Primzahl, denn sie ist nicht durch 2, 3 oder 4 teilbar. Die Zahl 6 ist keine Primzahl, denn (wie oben gesehen) ist sie zum Beispiel durch 2 teilbar. Allgemein sehen wir: Jede gerade ganze Zahl größer als 2 ist keine Primzahl. Satz 1.2 (Euklid). Es gibt unendliche viele Primzahlen. Beweis. Wir nehmen an, es gäbe nur endlich viele Primzahlen. Wenn dies so wäre, dann müßte es eine größte Primzahl geben, und diese bezeichnen wir mit n. Die Liste aller Primzahlen wäre also (1) 2, 3, 5, 7, 11, 13,..., n. Wir betrachten jetzt die folgende Zahl (2) n + 1. Diese Zahl ist sicher viel größer als die Zahl n, könnte also keine Primzahl sein. Folglich müßte sie einen (von 1 und ihr selbst verschiedenen) Teiler besitzen. Dieser Teiler könnte in ein Produkt von Primzahlen zerlegt werden, und alle diese Primfaktoren müßten die Zahl (2) teilen, da sie in der Liste (1) auftauchen. (Wenn eine Zahl z.b. von 10 geteilt wird, dann auch von den Primfaktoren 2 und 5). Es müßte also zumindest eine Primzahl geben, die (2) teilt. Andererseits läßt sich (2) nicht restlos durch irgendeine Primzahl unserer Liste (1) dividieren, da immer der Rest 1 bleibt. Es gäbe also eine Primzahl, die nicht in unserer Liste vorkommt. Das widerspricht aber der Annahme, dass wir in (1) bereits alle Primzahlen aufgelistet haben. Satz 1.3. Jede ganze Zahl n mit n > 1 lässt sich eindeutig (bis auf die Reihenfolge) als Produkt von Primzahlen schreiben. D.h. es gibt Primzahlen p 1, p 2,..., p m, so dass n = p 1 p 2... p m. Wir nennen dies die Primfaktorzerlegung von n. 1
2 2 PATRICK WEGENER Beispiel 1.4. Für die Zahl n = 210 erhalten wir die Primfaktorzerlegung 210 = Für die Zahl 32 erhalten wir 32 = = 2 5, d.h. Primzahlen können in der Primfakktorzerlegung auch häufiger vorkommen. Aufgabe 1.5 (Ein Zahlenrätsel). Die beiden Google Gründer Sergey Brin und Larry Page werden von Mark Zuckerberg in seinem Keller festgehalten. Er verspricht ihnen die Freiheit, wenn sie die beiden ganzen Zahlen zwischen 1 und 100 (d.h. die möglichen Zahlen sind 2, 3, 4,..., 98, 99) herausfinden, die er sich ausgedacht hat. Er nennt Brin das Produkt und Page die Summe der beiden Zahlen. Daraufhin kommt es zu folgender Unterhaltung zwischen den beiden: Brin: Ich kenne die beiden Zahlen nicht. Page: Das war mir klar. Brin: Jetzt kenne ich die beiden Zahlen. Page: Dann kenne ich sie auch. Findet die beiden Zahlen heraus, die Zuckerberg sich ausgedacht hat. Hinweis: Alleine aus dem Dialog der beiden lässt sich eine eindeutige Lösung herleiten. So sagt Brin etwa am Anfang, dass er die beiden Zahlen nicht kenne. Hätte Zuckerberg ihm aber zum Beispiel als Produkt der beiden Zahlen die 6 genannt, so wüsste er sicher, dass die gesuchten Zahlen 2 und 3 sind. Denn 6 = 2 3 und zwar gilt auch 6 = 1 6, aber die von Zuckerberg erdachten Zahlen sind größer als 1. Aufgabe
3 PRIMZAHLEN 3 2. Warum Primzahlen? Primzahlen spielen in vielen Bereichen der Mathematik eine wichtige Rolle und sind ein entscheidender Aspekt für viele mathematische Fragestellungen. Auch hier in der AGAG (wie etwa in der der Algebraischen Geometrie, Zahlentheorie, Gruppentheorie). Aber auch in unserem Alltag spielen sie (wenn auch unbewusst) eine wichtige Rolle. Der RSA Algorithmus: Ein Verschlüsselungsverfahren aus dem Jahre 1974, benannt nach den Entwicklern Rivest, Shamir und Adleman. Es handelt sich hierbei um ein sogenanntes Public Key Verschlüsselungsverfahren, d.h. es gibt einen öffentlichen Schlüssel (der prinzipiell jedem zugänglich ist) und einen privaten Schlüssel (der geheim ist). Mit Hilfe des öffentlichen Schlüssels kann nun jeder Nachichten verschlüsseln, aber nur der Besitzer des privaten Schlüssels kann die Nachrichten wieder entschlüsseln. Im Verlaufe des RSA-Algorithmus wird eine Zahl verschlüsselt bzw. später wieder entschlüsselt. Später werden wir sehen, wie man dann auch Texte oder ähnlches verschlüsseln kann. Wir wllen nun den Algorithmus beschreiben. Parallel dazu illustrieren wir dies immer an einem Beispiel (blaue Schrift). Wir verwenden dabei den MAPLE-Befehl x mod n; Dieser berechnet den Rest bei Division von x durch n. Nun zum Verfahren: (1) Wähle zwei (unterschiedliche) Primzahlen p und q und berechne n = p q. Wir nennen n die öffentliche Zahl. p = 11, q = 17 n = = 187 (2) Berechne ϕ(n) = (p 1) (q 1) und wähle eine positive ganze Zahl e, so dass e und ϕ(n) keinen gemeinsamen Teiler (außer der 1) haben. Wir können z.b. ϕ(n) in Primfaktoren zerlegen und für e eine Primzahl wählen, die nicht unter diesen Primfaktoren vorkommt. Die Zahl e ist der öffentliche Schlüssel. ϕ(n) = (11 1) (17 1) = 160 = e = 7 (3) Es kann nun jede positive ganze Zahl m (der Klartext) mit m < n zu einer Zahl c (der Geheimtext) verschlüsselt werden. Die verschlüsselte Zahl c erhält man wie folgt: c = m e mod n, d.h. c ist der Rest bei der Division von m e durch n. Wir verschlüsseln zum Beispiel m = 4. Es ist m e = 4 7 = = 115 mod 187, d.h. c = 115. (4) Der private Schlüssel ist eine ganze Zahl d gegeben durch d e = 1 mod ϕ(n). Ein solches d gibt es immer und kann zum Beispiel mit dem folgenden MAPLE-Befehl berechnet werden. igcdex(ϕ(n), e, s, t ); Die letzte Zahl in der Ausgabe liefert dann d. Mit obigem MAPLE-Befehl erhalten wir d = 23. (5) Zum Entschlüsseln muss die Empfängerin oder der Empfänger nun c d mod n
4 4 PATRICK WEGENER berechnen. Das Ergebnis ist dann genau der Klartext m. Es ist c d = = 4 mod 187. Wir erhalten also den Klartext m = 4 zurück. Beispiel 2.1. Um einen Text zu verschlüsseln, müssen zunächst Buchstaben in Zahlen umgewandelt werden. Dazu verwendet man in der Praxis zum Beispiel den ASCII-Code. Hier sei willkürlich die folgende Zuordnung gewählt: A = 01, B = 02, C = 03,... (00 = Leerzeichen). Darüber hinaus sei angenommen, dass jeweils drei Zeichen zu einer Zahl zusammengefasst werden. Die Buchstabenfolge AXT wird also zu Die kleinste zu verschl sselnde Zahl ist dann (drei Leerzeichen), die größte (ZZZ). Die öffentliche Zahl n = p q muss also größer als sein. Der Klartext SCHULE lautet als Zahlenfolge also Zunächst werden geheim zwei Primzahlen gewählt, beispielsweise p = 307 und q = 859. Damit ergibt sich: n = p q = und ϕ(n) = (p 1) (q 1) = Wir wählen (mit Hilfe von MAPLE): e = 1721 d = 1373 Verschlüsselung: Da wir immer drei Buchstaben zu einer Zahl zusammenfassen und das Wort SCHULE sechs Buchstaben hat, müssen wir also zwei Zahlen verschlüsseln. Einmal m 1 = und zum anderen m 2 = Wir erhalten (wieder mit Hilfe von MAPLE): c 1 = m e 1 mod n = mod = c 2 = m e 2 mod n = mod = Erhält man beim Verschlüsseln (oder auch später beim Entschlüsseln) eine Zahl die nicht 6-stellig ist, so füllt man mit Nullen auf. Also statt 1234 würde man etwa nehmen. Nun entschlüsseln wir die Nachricht wieder: m 1 = c d 1 mod n = mod = m 2 = c d 2 mod n = mod = Aufgabe 2.2 (Verschlüsseln eines Textes mit RSA). Überlegt euch jeweils zwei Primzahlen p und q und berechnet dann n, ϕ(n), d und e. Tut euch in Zweiergruppen zusammen und tauscht jeweils n und e aus. Schickt euch gegenseitig eine verschlüsselte Nachricht und entschlüsselt diese dann wieder. Unter folgendem Link könnt ihr euer Ergebnis überprüfen:
5 PRIMZAHLEN 5 3. Primzahlen suchen Beispiel 3.1 (Mersenne-Primzahlen). Es gibt unendlich viele Primzahlen, d.h. es ist gar nicht möglich alle Primzahlen zu kennen. Aber zum Beispiel für den RSA-Algorithmus ist es wünschenswert, dass man sehr große Primzhalen kennt. Die größten bisher bekannten Primzahlen sind alle sogenannte Mersenne Zahlen. Dies sind Zahlen der Form 2 n 1, wobei n eine positive ganze Zahl sein kann. Also zum Beispiel = 31, was auch eine Primzahl ist. Aber nicht jede dieser Zahlen ist eine Primzahl. So ist etwa = 15 keine Primzahl. Auf der Suche nach immer größeren Primzahlen konzentriert man sich dennoch auf die Mersenne Zahlen. D.h. man kontrolliert für immer größere Zahlen n ob 2 n 1 eine Primzahl ist. Auf diese Art und Weise wurde erst vor kurzem die bislang größte bekannte Primzahl gefunden. Diese hat fast 23,5 Millionen Stellen!! Mehr dazu: Aufgabe 3.2. Die folgende Fragestellung war Teil des deutschen Vorausscheides zur Mathematik- Olympiade: Für welche ganzen Zahlen n mit n 1 ist der Ausdruck n n n 1 eine Primzahl? Wir wollen uns die Lösung schrittweise erarbeiten: (1) Testet dies zuerst an Beispielen (mit dem Computer). Betrachtet alle n mit n = 1, 2, 3,..., 14, 15. Stelle eine Vermutung auf. (2) Ist der Ausdruck n n n 1 für ein n keine Primzahl, so gibt es eine Primzahl p welche diesen Ausdruck teilt. Nehmt die ganzen Zahlen n zwischen 1 und 15, für die n n n 1 keine Primzahl ist und bestimmt alle Primzhalen p die den Ausdruck n n n 1 teilen. Was fällt euch auf?
11. Das RSA Verfahren
Chr.Nelius: Zahlentheorie (SoSe 2017) 53 11. Das RSA Verfahren Bei einer asymmetrischen Verschlüsselung lässt sich der Schlüssel zum Entschlüsseln nicht aus dem Schlüssel zum Verschlüsseln bestimmen und
n ϕ n
1 3. Teiler und teilerfremde Zahlen Euler (1707-1783, Gymnasium und Universität in Basel, Professor für Physik und Mathematik in Petersburg und Berlin) war nicht nur einer der produktivsten Mathematiker
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
3.5 Kryptographie - eine Anwendung der Kongruenzrechnung
1 3.5 Kryptographie - eine Anwendung der Kongruenzrechnung Das Wort Kryptographie leitet sich aus der griechischen Sprache ab, nämlich aus den beiden Worten κρυπτ oς(kryptos)=versteckt, geheim und γραϕɛιν(grafein)=schreiben.
11. Das RSA Verfahren und andere Verfahren
Chr.Nelius: Kryptographie (SS 2011) 31 11. Das RSA Verfahren und andere Verfahren Eine konkrete Realisierung eines Public Key Kryptosystems ist das sog. RSA Verfahren, das im Jahre 1978 von den drei Wissenschaftlern
4 Kryptologie. Übersicht
4 Kryptologie Übersicht 4.1 Der erweiterte euklidische Algorithmus................................ 38 4.2 Rechnen mit Restklassen modulo p................................... 39 4.3 Der kleine Satz von
Das RSA Kryptosystem
Kryptografie Grundlagen RSA Institut für Mathematik Technische Universität Berlin Kryptografie Grundlagen RSA mit geheimem mit öffentlichem Schlüssel Realisierung Kryptografie mit geheimem Schlüssel Alice
RSA-Verschlüsselung. von Johannes Becker Gießen 2006/2008
RSA-Verschlüsselung von Johannes Becker Gießen 2006/2008 Zusammenfassung Es wird gezeigt, wieso das nach Ronald L. Rivest, Adi Shamir und Leonard Adleman genannte RSA-Krptosstem funktioniert, das mittlerweile
Absolut geheim! Fakultät für Physik Universität Bielefeld schnack/
Absolut geheim! Jürgen Schnack Fakultät für Physik Universität Bielefeld http://obelix.physik.uni-bielefeld.de/ schnack/ Preisverleihung Mathematikolympiade Kreis Gütersloh Städtisches Gymnasium Gütersloh,
Kryptographie. Teilnehmer: Gruppenleiter: Humboldt-Universität zu Berlin.
Kryptographie Teilnehmer: Kevin Huber Philippe Gruse Vera Koldewitz Philipp Jakubahs Julian Zimmert Maximilian Werk Hermann-Hesse-Oberschule Heinrich-Hertz-Oberschule Gruppenleiter: Ulf Kühn Humboldt-Universität
Vorlesung Diskrete Strukturen Gruppe und Ring
Vorlesung Diskrete Strukturen Gruppe und Ring Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden [email protected] WS 2009/10 1 Bernhard Ganter, TU Dresden Modul Einführung in
RSA Verfahren. Kapitel 7 p. 103
RSA Verfahren RSA benannt nach den Erfindern Ron Rivest, Adi Shamir und Leonard Adleman war das erste Public-Key Verschlüsselungsverfahren. Sicherheit hängt eng mit der Schwierigkeit zusammen, große Zahlen
Primzahlen. 1.Einführung. Oberstufe Mathematik Projekt Unendlichkeit 2,3,5,7,9,11,13
1.Einführung 2,3,5,7,9,11,13 Primzahlen Primzahlen sind natürliche Zahlen, die nur durch 1 und durch sich selbst aber durch sonst keine ganze positive Zahl teilbar sind. Die Zahl 1 zählt, obwohl die obige
Das RSA-Verfahren. Proseminar Kryptographische Protokolle SS Armin Litzel
in der Praxis Proseminar Kryptographische Protokolle SS 2009 5.5.2009 in der Praxis Gliederung 1 Grundlegendes über RSA 2 in der Praxis Allgemeine Vorgehensweise zur Verschlüsselung Signieren mit RSA 3
Primzahlen. Herbert Koch Mathematisches Institut Universität Bonn Die Primfaktorzerlegung. a = st
Primzahlen Herbert Koch Mathematisches Institut Universität Bonn 12.08.2010 1 Die Primfaktorzerlegung Wir kennen die natürlichen Zahlen N = 1, 2,..., die ganzen Zahlen Z, die rationalen Zahlen (Brüche
$Id: ring.tex,v /05/03 15:13:26 hk Exp $
$Id: ring.tex,v 1.13 2012/05/03 15:13:26 hk Exp $ 3 Ringe 3.1 Der Ring Z m In der letzten Sitzung hatten wir die sogenannten Ringe eingeführt, dies waren Mengen A versehen mit einer Addition + und einer
Funktionsweise des. RSA-Verfahrens
Funktionsweise des RSA-Verfahrens CrypTool-Team November 2010 Kryptografie wozu? Das Verschlüsseln von Nachrichten hat in der Geschichte der Menschheit schon immer eine wichtige Rolle gespielt. In jedem
Regine Schreier
Regine Schreier 20.04.2016 Kryptographie Verschlüsselungsverfahren Private-Key-Verfahren und Public-Key-Verfahren RSA-Verfahren Schlüsselerzeugung Verschlüsselung Entschlüsselung Digitale Signatur mit
Computeralgebra in der Lehre am Beispiel Kryptografie
Kryptografie Grundlagen RSA KASH Computeralgebra in der Lehre am Beispiel Kryptografie Institut für Mathematik Technische Universität Berlin Kryptografie Grundlagen RSA KASH Überblick Kryptografie mit
Kryptographie - eine mathematische Einführung
Kryptographie - eine mathematische Einführung Rosa Freund 28. Dezember 2004 Überblick Grundlegende Fragestellungen Symmetrische Verschlüsselung: Blockchiffren, Hashfunktionen
3: Zahlentheorie / Primzahlen
Stefan Lucks Diskrete Strukturen (WS 2009/10) 96 3: Zahlentheorie / Primzahlen 3: Zahlentheorie / Primzahlen Stefan Lucks Diskrete Strukturen (WS 2009/10) 97 Definition 37 (Teiler, Vielfache, Primzahlen,
Hast du auch wirklich versucht, die Aufgaben einmal selbständig zu lösen? Wenn nicht, tue es, bevor du dir die Lösungen anschaust!
Chr.Nelius: Zahlentheorie (SoSe 2016) 1 14. Aufgabenblatt ZAHLENTHEORIE (für Master G und HRG) Lösungen Hast du auch wirklich versucht, die Aufgaben einmal selbständig zu lösen? Wenn nicht, tue es, bevor
Das RSA-Verfahren. Armin Litzel. Proseminar Kryptographische Protokolle SS 2009
Das RSA-Verfahren Armin Litzel Proseminar Kryptographische Protokolle SS 2009 1 Einleitung RSA steht für die drei Namen Ronald L. Rivest, Adi Shamir und Leonard Adleman und bezeichnet ein von diesen Personen
Anwendungen der Linearen Algebra: Kryptologie
Anwendungen der Linearen Algebra: Kryptologie Philip Herrmann Universität Hamburg 5.12.2012 Philip Herrmann (Universität Hamburg) AnwLA: Kryptologie 1 / 28 No one has yet discovered any warlike purpose
PRIMZAHLEN UND DIE RSA-VERSCHLÜSSELUNG
PRIMZAHLEN UND DIE RSA-VERSCHLÜSSELUNG FLORIAN KRANHOLD Kurfürst-Salentin-Gymnasium Andernach Zusammenfassung. Verschlüsselungstechniken und -mechanismen sind aus unserem alltäglichen Leben nicht mehr
Mathematische Grundlagen der Kryptografie (1321) SoSe 06
Mathematische Grundlagen der Kryptografie (1321) SoSe 06 Klausur am 19.08.2006: Lösungsvorschläge zu den Aufgaben zu Aufgabe I.1 (a) Das numerische Äquivalent zu KLAUSUR ist die Folge [10, 11, 0, 20, 18,
Kryptografie Die Mathematik hinter den Geheimcodes
Kryptografie Die Mathematik hinter den Geheimcodes Rick Schumann www.math.tu-freiberg.de/~schumann Institut für Diskrete Mathematik und Algebra, TU Bergakademie Freiberg Akademische Woche Sankt Afra /
El. Zahlentheorie I: Der kleine Satz von Fermat
Vorlesung 7 Universität Münster 25. September 2007 El. In Vorlesung 4 haben wir Modulo-Arithmetik behandelt. Definition Sei n N 1. Auf Z ist eine Äquivalenzrelation Kongruenz modulo n definiert durch x
1. Asymmetrische Verschlüsselung einfach erklärt
1. Asymmetrische Verschlüsselung einfach erklärt Das Prinzip der asymmetrischen Verschlüsselung beruht im Wesentlichen darauf, dass sich jeder Kommunikationspartner jeweils ein Schlüsselpaar (bestehend
1. KRYPTOLOGIE UND ÖFFENTLICHE SCHLÜSSEL 1
1. KRYPTOLOGIE UND ÖFFENTLICHE SCHLÜSSEL 1 1. Kryptologie und öffentliche Schlüssel 1.1. Verschlüsselung mit Alphabeten Eine beliebte Methode der Verschlüsselung (vor allem unter Kindern) ist es, sich
3. Vortrag: Das RSA-Verschlüsselungsverfahren
Westfälische Wilhelms-Universität Münster Mathematik Sommersemester 2017 Seminar: Verschlüsselungs- und Codierungstheorie Leitung: Thomas Timmermann 3. Vortrag: Das RSA-Verschlüsselungsverfahren Hendrik
Primzahlen Primzahlsatz Der Satz von Green und Tao Verschlüsselung mit RSA. Primzahlen. Ulrich Görtz. 3. Mai 2011
Primzahlen Ulrich Görtz 3. Mai 2011 Sei N := {1, 2, 3,... } die Menge der natürlichen Zahlen. Definition Eine Primzahl ist eine natürliche Zahl > 1, die nur durch 1 und durch sich selbst teilbar ist. Beispiel
U. Rausch, 2010 Ganze Zahlen 1
U. Rausch, 2010 Ganze Zahlen 1 Ganze Zahlen 1 Einleitung Als ganze Zahlen bezeichnet man die natürlichen Zahlen 1, 2,, 4,..., die Null 0 und die negativen ganzen Zahlen 1, 2,, 4,... Wir verabreden die
Kryptographie. ein erprobter Lehrgang. AG-Tagung Informatik, April 2011 Alfred Nussbaumer, LSR für NÖ. LSR für NÖ, 28. April 2011 Alfred Nussbaumer
Kryptographie ein erprobter Lehrgang AG-Tagung Informatik, April 2011 Alfred Nussbaumer, LSR für NÖ 1 Variante: Kryptographie in 5 Tagen Ein kleiner Ausflug in die Mathematik (Primzahlen, Restklassen,
Man weiß, dass zwischen zwei aufeinanderfolgenden Quadratzahlen immer mindestens eine Primzahl liegt:
Primzahlgeheimnis 1 Man weiß, dass zwischen zwei aufeinanderfolgenden Quadratzahlen immer mindestens eine Primzahl liegt: Vervollständige die Quadrate und kringele alle Primzahlen ein: 1 2 5 10 17 26 37
Kryptograhie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik
Kryptograhie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Übersicht Zwecke der Krytographie Techniken Symmetrische Verschlüsselung( One-time Pad,
10. Kryptographie. Was ist Kryptographie?
Chr.Nelius: Zahlentheorie (SoSe 2015) 39 10. Kryptographie Was ist Kryptographie? Die Kryptographie handelt von der Verschlüsselung (Chiffrierung) von Nachrichten zum Zwecke der Geheimhaltung und von dem
Man weiß, dass zwischen zwei aufeinanderfolgenden Quadratzahlen immer mindestens eine Primzahl liegt:
Primzahlgeheimnis 1 Man weiß, dass zwischen zwei aufeinanderfolgenden Quadratzahlen immer mindestens eine Primzahl liegt: Vervollständige die Quadrate und kringele alle Primzahlen ein: 1 2 5 10 17 26 37
Kap. II: Kryptographie
Chr.Nelius: Zahlentheorie (SoSe 2017) 39 Kap. II: Kryptographie 9. Allgemeines und Beispiele Was ist Kryptographie? Die Kryptographie handelt von der Verschlüsselung (Chiffrierung) von Nachrichten zum
6.2 Asymmetrische Verschlüsselung
6.2 Asymmetrische Verschlüsselung (asymmetric encryption, public-key encryption) Prinzip (Diffie, Hellman, Merkle 1976-78): Statt eines Schlüssels K gibt es ein Schlüsselpaar K E, K D zum Verschlüsseln
Über das Hüten von Geheimnissen
Über das Hüten von Geheimnissen Gabor Wiese Tag der Mathematik, 14. Juni 2008 Institut für Experimentelle Mathematik Universität Duisburg-Essen Über das Hüten von Geheimnissen p.1/14 Rechnen mit Rest Seien
Verschlüsselung. Kirchstraße 18 Steinfelderstraße 53 76831 Birkweiler 76887 Bad Bergzabern. 12.10.2011 Fabian Simon Bfit09
Verschlüsselung Fabian Simon BBS Südliche Weinstraße Kirchstraße 18 Steinfelderstraße 53 76831 Birkweiler 76887 Bad Bergzabern 12.10.2011 Fabian Simon Bfit09 Inhaltsverzeichnis 1 Warum verschlüsselt man?...3
Kryptologie. Verschlüsselungstechniken von Cäsar bis heute. Arnulf May
Kryptologie Verschlüsselungstechniken von Cäsar bis heute Inhalt Was ist Kryptologie Caesar Verschlüsselung Entschlüsselungsverfahren Die Chiffrierscheibe Bestimmung der Sprache Vigenére Verschlüsselung
Einführung in die asymmetrische Kryptographie
!"#$$% Einführung in die asymmetrische Kryptographie Dipl.-Inform. Mel Wahl Prof. Dr. Christoph Ruland Universität Siegen Institut für digitale Kommunikationssysteme Grundlagen Verschlüsselung Digitale
Zahlentheorie I - Tipps & Lösungen. Aktualisiert: 15. Oktober 2016 vers Teilbarkeit
Schweizer Mathematik-Olympiade smo osm Zahlentheorie I - Tipps & Lösungen Aktualisiert: 15. Oktober 2016 vers. 1.2.0 1 Teilbarkeit Einstieg 1.1 Zeige, dass 900 ein Teiler von 10! ist. Tipp: Schreibe 900
Vorlesung Mathematik 2 für Informatik
Vorlesung Mathematik 2 für Informatik Inhalt: Modulare Arithmetik Lineare Algebra Vektoren und Matrizen Lineare Gleichungssysteme Vektorräume, lineare Abbildungen Orthogonalität Eigenwerte und Eigenvektoren
Netzwerktechnologien 3 VO
Netzwerktechnologien 3 VO Univ.-Prof. Dr. Helmut Hlavacs [email protected] Dr. Ivan Gojmerac [email protected] Bachelorstudium Medieninformatik SS 2012 Kapitel 8 - Netzwerksicherheit 8.1 Was ist
Modul Diskrete Mathematik WiSe 2011/12
1 Modul Diskrete Mathematik WiSe 2011/12 Ergänzungsskript zum Kapitel 4.2. Hinweis: Dieses Manuskript ist nur verständlich und von Nutzen für Personen, die regelmäßig und aktiv die zugehörige Vorlesung
Primzahlen und Programmieren
Primzahlen Wir wollen heute gemeinsam einen (sehr grundlegenden) Zusammenhang zwischen Programmieren und Mathematik herstellen. Die Zeiten in denen Mathematiker nur mit Zettel und Stift (oder Tafel und
5 Grundlagen der Zahlentheorie
5 Grundlagen der Zahlentheorie 1 Primfaktorzerlegung Seienm, n N + := {k N k > 0} Man schreibt n n, gesprochen m teilt n oder m ist ein Teiler von n, wenn es eine positive natürliche Zahl k gibt mit mk
Der kleine Satz von Fermat
Der kleine Satz von Fermat Luisa-Marie Hartmann 5. Mai 2017 Inhaltsverzeichnis 1 Einleitung 3 2 Hauptteil 4 2.1 Prime Restklassengruppen............................ 4 2.2 Ordnung von Gruppenelementen........................
Primzahlen und Pseudoprimzahlen
1 Primzahlen und Pseudoprimzahlen Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastik (WIAS), Berlin 20. Tag der Mathematik 9. Mai 2015, Beuth Hochschule für Technik Berlin Primzahlen
Lineare Algebra I (WS 13/14)
Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 10.01.2014 Alexander Lytchak 1 / 9 Erinnerung: Zwei ganz wichtige Gruppen Für jede Gruppe (G, ) und jedes Element g
Vorkurs Mathematik. Vorlesung 2. Primzahlen
Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Vorkurs Mathematik Vorlesung 2 Primzahlen Das Sieb des Eratosthenes liefert eine einfache Methode, eine Liste von Primzahlen unterhalb einer bestimmten Größe
Elementare Zahlentheorie II
Schülerzirel Mathemati Faultät für Mathemati. Universität Regensburg Elementare Zahlentheorie II Der Satz von Euler-Fermat und die RSA-Verschlüsselung Die Mathemati ist die Königin der Wissenschaften,
Digitale Unterschriften mit ElGamal
Digitale Unterschriften mit ElGamal Seminar Kryptographie und Datensicherheit Institut für Informatik Andreas Havenstein Inhalt Einführung RSA Angriffe auf Signaturen und Verschlüsselung ElGamal Ausblick
Höher, Schneller, Weiter!
Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Höher, Schneller, Weiter! Das Extremalprinzip Das Extremalprinzip ist eine vielseitig einsetzbare Lösungstechnik für mathematische
Primzahlen und RSA-Verschlüsselung
Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also
Entwicklung der Asymmetrischen Kryptographie und deren Einsatz
Entwicklung der Asymmetrischen Kryptographie und deren Einsatz Peter Kraml, 5a hlw Facharbeit Mathematik Schuljahr 2013/14 Caesar-Verschlüsselung Beispiel Verschiebung der Buchstaben im Alphabet sehr leicht
Übung GSS Blatt 6. SVS Sicherheit in Verteilten Systemen
Übung GSS Blatt 6 SVS Sicherheit in Verteilten Systemen 1 Einladung zum SVS-Sommerfest SVS-Sommerfest am 12.07.16 ab 17 Uhr Ihr seid eingeladen! :-) Es gibt Thüringer Bratwürste im Brötchen oder Grillkäse
El Gamal Verschlüsselung und seine Anwendungen
El Gamal Verschlüsselung und seine Anwendungen Andrés Guevara July 11, 2005 1 Kurze Einführung in die Kryptographie Situation: Absender will Empfänger eine Nachricht schicken. Einige Ziele der Kryptographie
5 Codierung nach RSA (Lösung)
Kapitel 5 Codierung nach RSA (Lösung) Seite 1/17 5 Codierung nach RSA (Lösung) 5.1 Einführung Die drei Mathematiker Rivest, Shamir und Adleman entwickelten 1977 das nach ihnen benannte RSA-Verfahren. Es
Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens
Mathematische Grundlagen der Kryptographie 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe Stefan Brandstädter Jennifer Karstens 18. Januar 2005 Inhaltsverzeichnis 1 Ganze Zahlen 1 1.1 Grundlagen............................
3. Diskrete Mathematik
Diophantos von Alexandria um 250 Georg Cantor 1845-1918 Pythagoras um 570 v. Chr Pierre de Fermat 1607/8-1665 Seite 1 Inhalt der Vorlesung Teil 3: Diskrete Mathematik 3.1 Zahlentheorie: Abzählbarkeit,
Aufgabe der Kryptografie
Aufgabe der Kryptografie Eve möchte die Unterhaltung mithören und/oder ausgetauschte Informationen ändern. Alice & Bob kommunzieren über einen unsicheren Kanal. Alice & Bob nutzen Verschlüsselung und digitale
Public Key Kryptographie mit dem RSA Schema. Karsten Fischer, Sven Kauer
Public Key Kryptographie mit dem RSA Schema Karsten Fischer, Sven Kauer Gliederung I. Historischer Hintergrund II. Public Key Kryptographie III. Beispielszenario IV. Einweg-Funktion V. RSA Verfahren VI.
KRYPTOSYSTEME & RSA IM SPEZIELLEN
KRYPTOSYSTEME & RSA IM SPEZIELLEN Kryptosysteme allgemein Ein Kryptosystem ist eine Vorrichtung oder ein Verfahren, bei dem ein Klartext mithilfe eines Schlüssels in einen Geheimtext umgewandelt wird (Verschlüsselung)
Danach arithmetische Fragestellungen wie vollkommene Zahlen und Dreieckszahlen der Griechen.
Was ist Zahlentheorie? Ursprünglich ist die Zahlentheorie (auch: Arithmetik) ein Teilgebiet der Mathematik, welches sich allgemein mit den Eigenschaften der ganzen Zahlen und insbesondere mit den Lösungen
Public-Key-Verschlüsselung und Diskrete Logarithmen
Public-Key-Verschlüsselung und Diskrete Logarithmen Carsten Baum Institut für Informatik Universität Potsdam 10. Juni 2009 1 / 30 Inhaltsverzeichnis 1 Mathematische Grundlagen Gruppen, Ordnung, Primitivwurzeln
Einführung in die Kryptographie - Multiple Choice Quiz
Technische Universität Darmstadt Einführung in die Kryptographie - Multiple Choice Quiz Oren Halvani. M.Sc. Inf ormatik. Matrikel N o. Disclaimer Um was für ein Dokument handelt es sich hier genau?. Im
Ideen und Konzepte der Informatik Kryptographie
Ideen und Konzepte der Informatik Kryptographie und elektronisches Banking Antonios Antoniadis (basiert auf Folien von Kurt Mehlhorn) 4. Dec. 2017 4. Dec. 2017 1/30 Übersicht Zwecke der Kryptographie Techniken
Prima Zahlen? Primzahlen!
Prima Zahlen? Primzahlen! Teilnehmer: Yu Shi Li Felix Fichte Tuyet Mai Hoang Thi Harry Bober Vincent Hitzler Julius Range David Schmidt Gruppenleiter: Jürg Kramer Anna v. Pippich Andreas-Oberschule, Berlin
Lösungen der Aufgaben
Lösungen der Aufgaben Aufgabe 1.3.1 Es gibt 42 mögliche Verschlüsselungen. Aufgabe 2.3.4 Ergebnisse sind 0, 4 und 4 1 = 4. Aufgabe 2.3.6 Da in Z 9 10 = 1 ist, erhalten wir x = c 0 + + c m = c 0 + + c m.
Public Key Kryptographie
3. Juni 2006 1 Algorithmen für Langzahlen 1 RSA 1 Das Rabin-Kryptosystem 1 Diskrete Logarithmen Grundlagen der PK Kryptographie Bisher: Ein Schlüssel für Sender und Empfänger ( Secret-Key oder symmetrische
Kryptologie. Bernd Borchert. Univ. Tübingen SS Vorlesung. Teil 10. Signaturen, Diffie-Hellman
Kryptologie Bernd Borchert Univ. Tübingen SS 2017 Vorlesung Teil 10 Signaturen, Diffie-Hellman Signatur Signatur s(m) einer Nachricht m Alice m, s(m) Bob K priv K pub K pub Signatur Signatur (Thema Integrity
Ausgeschriebene Informatik-Unterrichtsmitschrift (inklusive Hausaufgaben) vom 28.02.07 V.2. Valentina Tamer
Ausgeschriebene Informatik-Unterrichtsmitschrift (inklusive Hausaufgaben) vom 280207 V2 Valentina Tamer RSA-Verschlüsselung Legende M (message) = Nachricht im Klartext p, q = (sehr große) Primzahlen N
KAPITEL 13. Polynome. 1. Primfaktorzerlegung in den ganzen Zahlen. ,, p r
KAPITEL 13 Polynome 1. Primfaktorzerlegung in den ganzen Zahlen DEFINITION 13.1 (Primzahl). Eine Zahl p ist genau dann eine Primzahl, wenn folgende beiden Bedingungen gelten: (1) Es gilt p > 1. (2) Für
Der RSA-Algorithmus. 2. Anschließend ist n = p q und ϕ (n) = (p 1) (q 1) zu berechnen.
Kapitel 4 Der RSA-Algorithmus Der RSA-Algorithmus ist das heute bekannteste Verfahren aus der Familie der Public-Key-Kryptosysteme. Es wurde 1978 der Öffentlichkeit vorgestellt und gilt bis heute als der
Der chinesische Restsatz mit Anwendung
Der chinesische Restsatz mit Anwendung Nike Garath [email protected] Martrikelnummer: 423072 Seminar: Verschlüsslungs- und Codierungstheorie Dozent: Dr. Thomas Timmermann Sommersemester 2017 Inhaltsverzeichnis
Facharbeit. Public-Key-Verfahren(PGP) Stephan Larws Informatik 02
Facharbeit Public-Key-Verfahren(PGP) Stephan Larws Informatik 02 1 Inhaltsverzeichnis 1.) DES 2.) Das Problem der Schlüsselverteilung - Lösung von Diffie, Hellman und Merkle 3.) Die Idee der asymmetrischen
Lenstras Algorithmus für Faktorisierung
Lenstras Algorithmus für Faktorisierung Bertil Nestorius 9 März 2010 1 Motivation Die schnelle Faktorisierung von Zahlen ist heutzutage ein sehr wichtigen Thema, zb gibt es in der Kryptographie viele weit
Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer
Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Allgemein: Das RSA-Verschlüsselungsverfahren ist ein häufig benutztes Verschlüsselungsverfahren, weil es sehr sicher ist. Es gehört zu der Klasse der
Wiederholung. Symmetrische Verfahren: klassische Verfahren / grundlegende Prinzipien: Substitution, Transposition, One-Time-Pad DES AES
Wiederholung Symmetrische Verfahren: klassische Verfahren / grundlegende Prinzipien: Substitution, Transposition, One-Time-Pad DES AES Mathematische Grundlagen: algebraische Strukturen: Halbgruppe, Monoid,
Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik
UNIVERSITÄT ULM Institut für Zahlentheorie und Wahrscheinlichkeitstheorie Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Prof. Dr. Helmut Maier, Hans- Peter Reck Gesamtpunktzahl: 100
RSA Verfahren. Ghazwan Al Hayek Hochschule für Technik Stuttgart. 2. November 2008
RSA Verfahren Ghazwan Al Hayek Hochschule für Technik Stuttgart 2. November 2008 1 Inhaltsverzeichnis 1. Einleitung 1.1. Übersicht 1.2. Private-Key-Verfahren 1.3. Public-Key-Verfahren 1.4. Vor/ Nachteile
Kryptographie Reine Mathematik in den Geheimdiensten
Kryptographie Reine Mathematik in den Geheimdiensten Priska Jahnke 10. Juli 2006 Kryptographie Reine Mathematik in den Geheimdiensten Kryptographie (Kryptologie) = Lehre von den Geheimschriften Kaufleute,
Zahlen und das Hüten von Geheimnissen (G. Wiese, 23. April 2009)
Zahlen und das Hüten von Geheimnissen (G. Wiese, 23. April 2009) Probleme unseres Alltags E-Mails lesen: Niemand außer mir soll meine Mails lesen! Geld abheben mit der EC-Karte: Niemand außer mir soll
Zahlenlehre 1. Die Mathematik ist die Königin der Wissenschaften und die Zahlentheorie ist die Königin der Mathematik (Carl Friedrich Gauß)
Die Mathematik ist die Königin der Wissenschaften und die Zahlentheorie ist die Königin der Mathematik (Carl Friedrich Gauß) 6. Termin, Wien 2014 Mag. a Dagmar Kerschbaumer Letzter Termin g-adische Darstellung
Grundlagen der Arithmetik und Zahlentheorie
Grundlagen der Arithmetik und Zahlentheorie 1.0 Teilbarkeit In diesem Abschnitt werden wir einerseits die ganzen Zahlen an sich studieren und dabei besonders wichtige Zahlen, die Primzahlen, entsprechend
SCHRIFTLICHE ZUSAMMENFASSUNG ZUM VORTRAG DIE GRUNDLAGEN DER RSA-VERSCHLÜSSELUNG VON DANIEL METZSCH
SCHRIFTLICHE ZUSAMMENFASSUNG ZUM VORTRAG DIE GRUNDLAGEN DER RSA-VERSCHLÜSSELUNG VON DANIEL METZSCH Freie Universität Berlin Fachbereich für Mathematik & Informatik Institut für Mathematik II Seminar über
1 Zahlentheorie. 1.1 Kongruenzen
3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern
Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. ***
Universität Bonn Mathematisches Institut Dr. Michael Welter Übungen zum Vorkurs Mathematik für Studienanfänger 2010 Einige Zeichen und Konventionen: IN := {1, 2, 3, 4,...} Die Menge der natürlichen Zahlen
Public-Key Kryptographie mit dem RSA Schema. Torsten Büchner
Public-Key Kryptographie mit dem RSA Schema Torsten Büchner 7.12.2004 1.Einleitung 1. symmetrische-, asymmetrische Verschlüsselung 2. RSA als asymmetrisches Verfahren 2.Definition von Begriffen 1. Einwegfunktionen
