Arithmetik. Bemerkungen zu Primzahlen

Größe: px
Ab Seite anzeigen:

Download "Arithmetik. Bemerkungen zu Primzahlen"

Transkript

1 Arithmetik Bemerkungen zu Primzahlen

2 Die Suche nach Mustern und Tendenzen spielt bei der Erforschung der Verteilung der Primzahlen eine wichtige Rolle. Es gibt unendlich viele Primzahlen. (Beweis von Euklid) Der Abstand zwischen den Primzahlen wird im Mittel immer länger.

3 Der Primzahlsatz gibt eine Formel an, die besagt, dass der durchschnittliche Abstand zwischen zwei aufeinander folgenden Primzahlen in der Nähe der Zahl n nahe beim natürlichen Logarithmus von n liegt. z.b. Liegt n in der Nähe von 100, so hat der natürliche Logarithmus von n ungefähr den Wert 4,6. Also: Etwa jede fünfte Zahl sollte in diesem Bereich eine Primzahl sein.

4 Der Abstand zwischen zwei aufeinander folgenden Primzahlen kann beliebig groß werden.

5 Satz von Green-Tao, 2004 (Teilaussage): Die Primzahlen enthalten beliebig lange arithmetische Progressionen, d.h. für jede natürliche Zahl k>2 gibt es eine Folge p 1,..., p k von Primzahlen mit p 2 -p 1 =p 3 - p 2 =...=p k -p k-1. Z. B. ist 7, 37, 67, 97, 127, 157 eine arithmetische Progression der Länge k=6 aus Primzahlen. Man beachte: Der Satz garantiert zwar beliebig lange Progressionen aus Primzahlen, unendlich lange gibt es jedoch nicht, denn n+jd ist für j=n sicher nicht prim.

6 Muster 7, 37, 337, 3337, 33337, sind Primzahlen. Aber: ist nicht Primzahl. Formeln, die viele Primzahlen liefern: x 2 x 17 2 x x 41 (liefert eine Folge von 40 Primzahlen, wobei mit x=0 begonnen wird.)

7 Spiralförmige Anordnung der Primzahlen zwischen 41 und 439. Die Zahlen in der Hauptdiagonalen genügen der Formel: x 2 x 41

8 Mersennesche Zahlen sind Zahlen der Form M k =2 k -1, wobei k eine Primzahl ist. Unter den Mersenneschen Zahlen gibt es Primzahlen, die sog. Mersenneschen Primzahlen. Primzahl-Rekord 2006: Die Mersenne-Zahlen und wurden als 43te bzw. 44te Mersenne-Primzahlen nachgewiesen. Sie haben bzw Stellen. Primzahl-Rekord 2008: Die Mersenne-Zahlen und wurden als 45te bzw. 46te Mersenne-Primzahlen nachgewiesen. Sie haben bzw Stellen. Für eine Mersenne-Primzahl mit mind. 10 Millionen Stellen wurde eine Belohnung von Dollar ausgeschrieben. (Siehe und : Die Mersenne-Zahlen wurden als 49te Mersenne-Primzahl nachgewiesen. Sie hat Stellen.

9 Primzahlzwillinge: Zwei Primzahlen mit dem Abstand 2 bilden einen Primzahlzwilling. z.b.: (3,5), (5,7), (11,13), (17,19), (29,31), (41,43), (59, 61), (71,73), (101,103) Primzahldrillinge: I. A. spricht man von Primzahldrillingen, wenn unter vier aufeinander folgenden ungeraden Zahlen drei Primzahlen sind. (Vgl. hiervon abweichende Def. in den Übungen.) z. B.: (5,7,11), (7,11,13), (11,13,17), (13,17,19), (17,19,23), (37,41,43) Primzahlvierlinge: Man spricht von Primzahlvierlingen, wenn unter fünf aufeinander folgenden ungeraden Zahlen die ersten beiden und die letzten beiden jeweils ein Primzahlzwilling sind. z.b.: (5,7,11,13), (11,13,17,19), (101,103,107,109), (191,193,197,199) Bis heute unbewiesene Vermutung: Es gibt unendlich viele Primzahlzwillinge, unendlich viele Primzahldrillinge und unendlich viele Primzahlvierlinge.

10 Erster gigantischer Primzahldrilling im Oktober 2008 (wahrscheinlich) gefunden Norman Luhn fand ein Primzahldrilling (wahrscheinlich) mit genau Stellen. Das Primzahlentupel lautet p= * 2^ , p+2,p+6. Mit freundlicher Unterstützung von Francois Morain aus Frankreich, wird für die dritte Zahl p+6 ein Echtheitszertifikat mittels ECPP berechnet, da es sich im Moment nur um ein wahrscheinliche Primzahl handelt. Stand: Februar 2009

11 Weiteres aus neuerer Forschung: Yitang Zhang (ausgezeichnet mit Preisen in 2013, 2014) hat mit trickreichen Ideen gezeigt, dass es unendlich viele Primzahl-Paare gibt, die den Abstand kleiner gleich haben ein bedeutender Schritt in Richtung Beweis der Primzahlzwillingsvermutung. Inzwischen wurde die Schranke noch weiter nach unten gedrückt. (Quelle: MDMV 22/2014, S. 13)

12 Goldbachsche Vermutungen Schwache Goldbachsche Vermutung: Jede ungerade Zahl größer als 5 lässt sich als Summe von drei Primzahlen schreiben. (Noch unbewiesen, Stand 2012) Starke Goldbachsche Vermutung: Jede gerade Zahl größer als 2 lässt sich als Summe von zwei Primzahlen schreiben. (Noch unbewiesen, Stand 2012) Weitere Vermutung von Goldbach ( ) später als falsch erkannt Jede ungerade Zahl lässt sich als Summe aus einer Primzahl und dem Doppelten einer Quadratzahl schreiben. Z. B. 11 = oder 23 = Für die ersten 2500 Zahlen wurde die Behauptung durch Euler überprüft und bestätigt. Erst ein Jahrhundert später wurde die Behauptung widerlegt. Gegenbeispiele: 5777 und 5993 lassen sich nicht als solch eine Summe schreiben. (Quelle: MDMV 18/2010, S )

13 Magisches Quadrat aus Primzahlen Magische Zahl: 240 Sie realisiert sich in Zeilen-, Spalten- und Diagonalsummen, zudem in allen 2x2 Unterquadraten. (Quelle: MDMV 20/2012, S. 198)

Man weiß, dass zwischen zwei aufeinanderfolgenden Quadratzahlen immer mindestens eine Primzahl liegt:

Man weiß, dass zwischen zwei aufeinanderfolgenden Quadratzahlen immer mindestens eine Primzahl liegt: Primzahlgeheimnis 1 Man weiß, dass zwischen zwei aufeinanderfolgenden Quadratzahlen immer mindestens eine Primzahl liegt: Vervollständige die Quadrate und kringele alle Primzahlen ein: 1 2 5 10 17 26 37

Mehr

Man weiß, dass zwischen zwei aufeinanderfolgenden Quadratzahlen immer mindestens eine Primzahl liegt:

Man weiß, dass zwischen zwei aufeinanderfolgenden Quadratzahlen immer mindestens eine Primzahl liegt: Primzahlgeheimnis 1 Man weiß, dass zwischen zwei aufeinanderfolgenden Quadratzahlen immer mindestens eine Primzahl liegt: Vervollständige die Quadrate und kringele alle Primzahlen ein: 1 2 5 10 17 26 37

Mehr

Die Faszination der Primzahlen

Die Faszination der Primzahlen zu Die der Institut für Mathematik Humboldt-Universität zu Berlin 27. April 2015 zu zu zu zu Die natürlichen Zahlen. Die Menge der natürlichen Zahlen: N = {0, 1, 2, 3,... }. zu zu Die natürlichen Zahlen.

Mehr

Groÿe Fortschritte bei kleinen Primzahllücken

Groÿe Fortschritte bei kleinen Primzahllücken Groÿe Fortschritte bei kleinen Primzahllücken Ringvorlesung PD Dr. Karin Halupczok 7. Mai 2014, Mathematisches Institut der WWU Münster Die Verteilung der Primzahlen Die Verteilung der Primzahlen in Restklassen

Mehr

Primzahlen Primzahlsatz Der Satz von Green und Tao Verschlüsselung mit RSA. Primzahlen. Ulrich Görtz. 3. Mai 2011

Primzahlen Primzahlsatz Der Satz von Green und Tao Verschlüsselung mit RSA. Primzahlen. Ulrich Görtz. 3. Mai 2011 Primzahlen Ulrich Görtz 3. Mai 2011 Sei N := {1, 2, 3,... } die Menge der natürlichen Zahlen. Definition Eine Primzahl ist eine natürliche Zahl > 1, die nur durch 1 und durch sich selbst teilbar ist. Beispiel

Mehr

2. Primzahlen. 2.1 Definition, Eigenschaften. Definition: Eine natürliche Zahl p heisst Primzahl, wenn p genau zwei Teiler hat.

2. Primzahlen. 2.1 Definition, Eigenschaften. Definition: Eine natürliche Zahl p heisst Primzahl, wenn p genau zwei Teiler hat. 1 2. Primzahlen 2.1 Definition, Eigenschaften Definition: Eine natürliche Zahl p heisst Primzahl, wenn p genau zwei Teiler hat. Die Folge der Primzahlen: 2, 3, 5, 7, 11,13, 17, 19, 23, 29,... Die Suche

Mehr

Zahlentheorie. Vorlesung 13. Mersenne-Primzahlen. Marin Mersenne ( )

Zahlentheorie. Vorlesung 13. Mersenne-Primzahlen. Marin Mersenne ( ) Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 13 Mersenne-Primzahlen Marin Mersenne (1588-1648) Definition 13.1. Eine Primzahl der Form 2 n 1 heißt Mersennesche Primzahl. Generell nennt

Mehr

Übungen zu Zahlentheorie, SS 2017

Übungen zu Zahlentheorie, SS 2017 Übungen zu Zahlentheorie, SS 017 Christoph Baxa 1) Finde alle positiven Teiler von a) 1799 b) 997. ) Zeige (a b) (a n b n ) für alle a, b Z und alle n N. 3) Zeige: Wenn m n dann (a m b m ) (a n b n ) (mit

Mehr

Grundkurs Mathematik I

Grundkurs Mathematik I Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 12 Man muss auch teilen können. Teilbarkeitseigenschaften Wir besprechen nun die Eigenschaft, dass eine natürliche Zahl eine

Mehr

Primzahlen und Primfaktorzerlegung

Primzahlen und Primfaktorzerlegung Primzahlen und Primfaktorzerlegung Yasin Hamdan Inhaltsverzeichnis 1 Das Sieb des Eratosthenes 1 2 Primfaktorzerlegung 4 2.1 Existenz und Eindeutigkeit.......................... 4 2.2 Hasse-Diagramme...............................

Mehr

Zahlentheorie. Vorlesung 11. Die Unendlichkeit der Primzahlen. N = p 1 p 2 p 3 p r +1.

Zahlentheorie. Vorlesung 11. Die Unendlichkeit der Primzahlen. N = p 1 p 2 p 3 p r +1. Prof. Dr. H. Brenner Osnabrück WS 206/207 Zahlentheorie Vorlesung Die Unendlichkeit der Primzahlen Satz.. Es gibt unendlich viele Primzahlen. Beweis. Angenommen, die Menge aller Primzahlen sei endlich,

Mehr

Johannes Gutenberg-Universität Mainz

Johannes Gutenberg-Universität Mainz Johannes Gutenberg-Universität Mainz Im Rahmen des Seminares Struktur und Zufälligkeit der Primzahlen im Sommersemester 07 Bei Prof. Dr. Maria Lukacova 5.4.7 Stephanie Katharina Schwab Inhaltsverzeichnis

Mehr

Struktur und Zufall in der Menge der Primzahlen

Struktur und Zufall in der Menge der Primzahlen Struktur und Zufall in der Menge der Primzahlen Vortrag zum Tag der Mathematik 2013 PD Dr. Karin Halupczok 2. März 2013, LVM in Münster Primzahlen zählen: von Euklid bis Riemann Primzahlmuster nden: viele

Mehr

Primzahlen: vom antiken Griechenland bis in den Computer

Primzahlen: vom antiken Griechenland bis in den Computer Primzahlen: vom antiken Griechenland bis in den Computer Jakob Stix Institut für Mathematik Goethe Universität Frankfurt am Main 28 April 2016 Girls Day GU-Frankfurt Primzahlen Atome (unteilbar!) der Multiplikation:

Mehr

Prima Zahlen? Primzahlen

Prima Zahlen? Primzahlen Prima Zahlen? Primzahlen 10. Dezember 2009 Willi More willi.more@uni-klu.ac.at I n s t i t u t f ü r M a t h e m a t i k Überblick 1/ Primzahlen 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,

Mehr

Lineare Algebra I. Lösung 1.1: Voraussetzung: Seien A, B und C beliebige Mengen.

Lineare Algebra I. Lösung 1.1: Voraussetzung: Seien A, B und C beliebige Mengen. Universität Konstanz Wintersemester 2009/2010 Fachbereich Mathematik und Statistik Lösungsblatt 1 Prof Dr Markus Schweighofer 04112009 Aaron Kunert / Sven Wagner Lineare Algebra I Lösung 11: Voraussetzung:

Mehr

Vom Zauber der Zahlen

Vom Zauber der Zahlen Vom Zauber der Zahlen Gedanken und Spielereien aus der Welt der Arithmetik Meisterklasse Mathematik - Dresden 2018 Olaf Schimmel (Ulf-Merbold-Gymnasium Greiz) www.mathoid.de, os@mathoid.de Gliederung 1.

Mehr

Zahlentheorie. Prof. Dr. H. Brenner Osnabrück SS Vorlesung 11 Satz (von Euklid) Es gibt unendlich viele Primzahlen.

Zahlentheorie. Prof. Dr. H. Brenner Osnabrück SS Vorlesung 11 Satz (von Euklid) Es gibt unendlich viele Primzahlen. Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung Satz.. (von Euklid) Es gibt unendlich viele Primzahlen. Beweis. Angenommen, die Menge aller Primzahlen sei endlich, sagen wir {p, p 2,...,

Mehr

De Morgan sche Regeln

De Morgan sche Regeln De Morgan sche Regeln Durch Auswerten der Wahrheitswertetabelle stellen wir fest, dass allgemeingültig ist; ebenso (p q) p q (p q) p q. Diese beiden Tautologien werden als die De Morgan schen Regeln bezeichnet,

Mehr

Mersennesche Primzahlen

Mersennesche Primzahlen Mersennesche Primzahlen Michael E. Pohst Technische Universität Berlin Die Zahlen von Mersenne Zu einer natürlichen Zahl n wird die zugehörige Mersennezahl M n als M n = 2 n 1 definiert. Für n = 2, 3,

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 1 Probleme In vielen Lebensbereichen gibt es Probleme: Alltagsprobleme, Beziehungsprobleme, Gesundheitsprobleme, Gewichtsprobleme,

Mehr

13 Berechenbarkeit und Aufwandsabschätzung

13 Berechenbarkeit und Aufwandsabschätzung 13 Berechenbarkeit und Aufwandsabschätzung 13.1 Berechenbarkeit Frage: Gibt es für jede Funktion, die mathematisch spezifiziert werden kann, ein Programm, das diese Funktion berechnet? Antwort: Nein! [Turing

Mehr

Einführung in die Mathematik (Vorkurs 1 )

Einführung in die Mathematik (Vorkurs 1 ) Einführung in die Mathematik (Vorkurs 1 ) Wintersemester 2008/09 Dr. J. Jordan Institut für Mathematik Universität Würzburg Germany 1 Modulbezeichnung 10-M-VKM 1 Inhaltsverzeichnis 1 Aussagen und Beweise

Mehr

Struktur und Zufälligkeit der Primzahlen. ein Überblick

Struktur und Zufälligkeit der Primzahlen. ein Überblick Struktur und Zufälligkeit der Primzahlen ein Überblick Hauptseminar Mathematik: Eine Einladung in die Mathematik Leitung: Prof. Dr. Lukacova Referent: Hauke Farny Datum: 19.10.2015 Agenda Einleitung Primzahlen

Mehr

Übungen zu Zahlentheorie, SS 2008

Übungen zu Zahlentheorie, SS 2008 Übungen zu Zahlentheorie, SS 2008 Christoph Baxa 1) Finde alle positiven Teiler von a) 1799 b) 997. 2) Zeige (a b) (a n b n )für alle a, b Z und alle n N. 3) Zeige: Wenn m n dann (a m b m ) (a n b n )

Mehr

Vorkurs Mathematik. Vorlesung 2. Primzahlen

Vorkurs Mathematik. Vorlesung 2. Primzahlen Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Vorkurs Mathematik Vorlesung 2 Primzahlen Das Sieb des Eratosthenes liefert eine einfache Methode, eine Liste von Primzahlen unterhalb einer bestimmten Größe

Mehr

Existenz unendlich vieler Primzahlen Es werden mehrere Beweise für die Existenz unendlich vieler Primzahlen vorgetragen.

Existenz unendlich vieler Primzahlen Es werden mehrere Beweise für die Existenz unendlich vieler Primzahlen vorgetragen. Seminarausarbeitung Existenz unendlich vieler Primzahlen Es werden mehrere Beweise für die Existenz unendlich vieler Primzahlen vorgetragen. Andre Eberhard Mat. Nr. 25200607 5. November 207 Inhaltsverzeichnis

Mehr

Summe und Teilbarkeit

Summe und Teilbarkeit BIP Kreativitätsgymnasium Leipzig Schuljahr 009/10 Begabtenförderung Mathematik - Klassenstufe 8 Summe und Teilbarkeit Matthias Richter 19. März 010 Aufgabenstellung Betrachten die Summe von n aufeinander

Mehr

4 Vollkommene Zahlen

4 Vollkommene Zahlen Sei a > 0 4 Vollkommene Zahlen T (a) bezeichnet die Anzahl der positiven Teiler von a. S(a) bezeichnet die Summe der positiven Teiler von a. Es ist also T (1) = S(1) = 1. Jede Zahl a > 1 hat eine eindeutige

Mehr

Der Lucas Lehmer Test

Der Lucas Lehmer Test Michael E. Pohst Der Lucas Lehmer Test Dieser Vortrag wird gehalten am 12. Juni 2004 anläßlich der Langen Nacht der Wissenschaften http://www.math.tu-berlin.de/~kant/mersenne.html

Mehr

Primzahlen Christoph & Dieter Küntzel, 2013

Primzahlen Christoph & Dieter Küntzel, 2013 Primzahlen Christoph & Dieter Küntzel, 2013 1 Inhaltsverzeichnis 1. Einleitung... 3 1.1 Definition der natürlichen Zahlen, die Peano Axiome... 3 1.2 Beweistechniken... 5 1.2.1 Vollständige Induktion...

Mehr

ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018

ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018 ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018 KARLHEINZ GRÖCHENIG So wie Sport Training erfordert, erfordert Mathematik das selbständige Lösen von Übungsaufgaben. Das wesentliche an den Übungen ist das

Mehr

Anzahl der Punkte auf Kreis und Gerade

Anzahl der Punkte auf Kreis und Gerade Anzahl der Punkte auf Kreis und Gerade Ein Kreis hat sicher einen viel kürzeren Umfang als eine unendliche Gerade. Trotzdem besteht ein Kreis (ohne seinen obersten Punkt) aus gleich vielen Punkten wie

Mehr

8 Summen von Quadraten

8 Summen von Quadraten 8 Summen von Quadraten A. Summen von zwei Quadraten. Sei p eine Primzahl. Beispiele. = 1 + 1, 5 = 1 +, 13 = + 3 Aber 3 und 7 sind nicht Summen von zwei Quadraten. 8.1 Satz. Genau dann ist p Summe von zwei

Mehr

Beweis des Satzes von Euler

Beweis des Satzes von Euler (Z/nZ) hat '(n) Elemente g 1, g 2,...,g '(n). Nach Teil c) des Satzes aus Einheit 26 definiert x 7! ax eine Bijektion auf Z/nZ und daher auch auf (Z/nZ). Also gilt: Beweis des Satzes von Euler (Z/nZ) =

Mehr

Kapitel 2: Multiplikative Funktionen. 3 Multiplikative Funktionen. Definition 2.1 (arithmetische Funktion, (vollständig) multiplikative Funktion)

Kapitel 2: Multiplikative Funktionen. 3 Multiplikative Funktionen. Definition 2.1 (arithmetische Funktion, (vollständig) multiplikative Funktion) Kapitel 2: Multiplikative Funktionen 3 Multiplikative Funktionen Definition 2.1 (arithmetische Funktion, (vollständig) multiplikative Funktion) (a) Eine Funktion α : Z >0 C heißt arithmetisch (oder zahlentheoretisch).

Mehr

7 Die Sätze von Fermat, Euler und Wilson

7 Die Sätze von Fermat, Euler und Wilson 53 7 Die Sätze von Fermat, Euler und Wilson Es gibt einige Sätze aus der elementaren Zahlentheorie, die Spezialfälle von Aussagen über endliche Gruppen sind. Z.B. gilt für ein beliebiges Element x einer

Mehr

Primzahlen Primzahlsatz Satz von Szemerédi Verallg. von Green/Tao Anwendung. Arithmetische Progressionen von Primzahlen

Primzahlen Primzahlsatz Satz von Szemerédi Verallg. von Green/Tao Anwendung. Arithmetische Progressionen von Primzahlen Arithmetische Progressionen von Primzahlen Sei N := {1, 2, 3,... } die Menge der natürlichen Zahlen. Definition Eine Primzahl ist eine natürliche Zahl > 1, die nur durch 1 und durch sich selbst teilbar

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Einführung in die mathematische Logik Vorlesung 1 Probleme In vielen Lebensbereichen gibt es Probleme: Alltagsprobleme, Beziehungsprobleme, Gesundheitsprobleme,

Mehr

Logik/Beweistechniken

Logik/Beweistechniken Mathematikvorkurs bei Marcos Soriano Logik/Beweistechniken erstellt von: Daniel Edler -II- Inhaltsverzeichnis 1 Logik/Beweistechniken 1 1.1 Allgemeine Vorgehensweise......................... 1 2 Konjunktion/Disjunktion

Mehr

Sechs Beweise für die Unendlichkeit der Primzahlen. Kapitel 1

Sechs Beweise für die Unendlichkeit der Primzahlen. Kapitel 1 Sechs Beweise für die Unendlichkeit der Primzahlen Kapitel 1 Es liegt nahe, dass wir mit dem wahrscheinlich ältesten Beweis aus dem BUCH beginnen: Euklids Beweis, dass es unendlich viele Primzahlen gibt.

Mehr

Lösungen zu Ungerade Muster in Pyramiden. Muster: Die Summe der ungeraden Zahlen (in jeder Teilpyramide) ist stets eine Quadratzahl.

Lösungen zu Ungerade Muster in Pyramiden. Muster: Die Summe der ungeraden Zahlen (in jeder Teilpyramide) ist stets eine Quadratzahl. Lösungen zu Ungerade Muster in Pyramiden Aufgabe Muster: Die Summe der ungeraden Zahlen (in jeder Teilpyramide) ist stets eine Quadratzahl. Begründung : Zunächst schauen wir eine Abbildung an, in der die

Mehr

1.1 Teilbarkeit, Primzahlen und Teilerfremdheit

1.1 Teilbarkeit, Primzahlen und Teilerfremdheit Kapitel Primzahlen Bevor wir uns allgemeineren Themen und Begriffen der Algebra zuwenden, wollen wir einige zugleich elementare und schöne Ideen aus der Theorie der Primzahlen zusammenstellen, da diese

Mehr

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. ***

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. *** M. Welter Übungen zum Vorkurs Mathematik für Studienanfänger 2004 Einige Zeichen und Konventionen: IN := {1, 2, 3, 4,...} Die Menge der natürlichen Zahlen IN 0 := IN {0}{0, 1, 2, 3, 4,...} Z := {..., 2,

Mehr

Anzahl der Punkte auf Kreis und Gerade

Anzahl der Punkte auf Kreis und Gerade Anzahl der Punkte auf Kreis und Gerade Ein Kreis hat sicher einen viel kürzeren Umfang als eine unendliche Gerade. Trotzdem besteht ein Kreis (ohne seinen obersten Punkt) aus gleich vielen Punkten wie

Mehr

2 Der Beweis. Themen: Satz und Beweis Indirekter Beweis Kritik des indirekten Beweises

2 Der Beweis. Themen: Satz und Beweis Indirekter Beweis Kritik des indirekten Beweises 2 Der Beweis Themen: Satz und Beweis Indirekter Beweis Kritik des indirekten Beweises Satz und Beweis Ein mathematischer Satz besteht aus einer Voraussetzung und einer Behauptung. Satz und Beweis Ein mathematischer

Mehr

Übungsaufgaben Blatt 3

Übungsaufgaben Blatt 3 Departement Informatik Open Class Sieben Wunder der Informatik Prof Dr Juraj Hromkovič Übungsaufgaben Blatt 3 Zürich, 23 November 26 Zusammenfassung und Aufgaben Ein Entscheidungsproblem besteht darin,

Mehr

Euler mit seinem Latein am Ende. Andreas Defant 17. Tag der Mathematik, 28. August 2017

Euler mit seinem Latein am Ende. Andreas Defant 17. Tag der Mathematik, 28. August 2017 Euler mit seinem Latein am Ende Andreas Defant 17. Tag der Mathematik, 28. August 2017 1 Sudoku 3 1 6 7 2 8 9 5 4 8 7 5 1 4 9 2 6 3 2 9 4 6 5 3 7 8 1 6 5 7 8 9 4 3 1 2 1 8 2 5 3 7 4 9 6 9 4 3 2 1 6 8 7

Mehr

Indexmengen. Definition. n n n. i=1 A i := A 1... A n

Indexmengen. Definition. n n n. i=1 A i := A 1... A n Indexmengen Definition Es sei n N. Für Zahlen a 1,..., a n, Mengen M 1,..., M n und Aussagen A 1,..., A n definieren wir: n i=1 a i := a 1 +... + a n n i=1 a i := a 1... a n n i=1 M i := M 1... M n n i=1

Mehr

Vollständige Induktion

Vollständige Induktion Kantonsschule Olten Hardwald 4600 Olten Vollständige Induktion Andreas Stoll Andreas Pulfer Erfänzungsfach Anwendungen der Mathematik (2017/18) 1 Beweisen 1.1 Axiome und Prämissen Bei einem Beweis wird

Mehr

UE Zahlentheorie. Markus Fulmek

UE Zahlentheorie. Markus Fulmek UE Zahlentheorie (Modul: Elementare Algebra (EAL)) Markus Fulmek Sommersemester 2015 Aufgabe 1: Betrachte folgende Partition der Menge r9s t1, 2, 3, 4, 5, 6, 7, 8, 9u Ă N: r9s t1, 4, 7u 9Y t2, 5, 8u 9Y

Mehr

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler Kapitel 3: Die Sätze von Euler, Fermat und Wilson In diesem Kapitel wollen wir nun die eulersche -Funktion verwenden, um einen berühmten Satz von Euler zu formulieren, aus dem wir dann mehrere interessante

Mehr

Spielen mit Zahlen Seminarleiter: Dieter Bauke

Spielen mit Zahlen Seminarleiter: Dieter Bauke Spielen mit Zahlen Seminarleiter: Dieter Bauke EINLEITUNG Was ist Mathematik? Geometrie und Arithmetik: Untersuchung von Figuren und Zahlen. Wir kombinieren Arithmetik und Geometrie mittels figurierter

Mehr

Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2017

Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2017 Logik und Beweise Logik und Beweise Vorsemesterkurs SoSe17 Ronja Düffel 22. März 2017 Logik und Beweise > Motivation Wozu Beweise in der Informatik? Quelle:http://www.capcomespace.net Logik und Beweise

Mehr

3 Determinanten, Eigenwerte, Normalformen

3 Determinanten, Eigenwerte, Normalformen Determinanten, Eigenwerte, Normalformen.1 Determinanten Beispiel. Betrachte folgendes Parallelogramm in der Ebene R 2 : y (a + c, b + d) (c, d) (a, b) x Man rechnet leicht nach, dass die Fläche F dieses

Mehr

Die Welt der Primzahlen

Die Welt der Primzahlen Paulo Ribenboim Die Welt der Primzahlen Geheimnisse und Rekorde Aus dem Englischen übersetzt von Jörg Richstein. Auf den neuesten Stand gebracht von Wilfrid Keller. Mit 29 Tabellen Sprin ger Inhaltsverzeichnis

Mehr

Folgen und Reihen. Zahlenfolgen , ,

Folgen und Reihen. Zahlenfolgen , , 97 Wegener Math/5_Reihen Mittwoch 04.04.2007 8:38:52 Folgen und Reihen Zahlenfolgen Eine Zahlenfolge a besteht aus Zahlen a,a 2,a 3,a 4,a 5,... Die einzelnen Zahlen einer Folge heißen Glieder oder Terme.

Mehr

Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2015

Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2015 Logik und Beweise Logik und Beweise Vorsemesterkurs SoSe15 Ronja Düffel 23. März 2015 Logik und Beweise > Motivation Wozu Beweise in der Informatik? Quelle:http://www.capcomespace.net Logik und Beweise

Mehr

Pythagoreische Tripel

Pythagoreische Tripel Pythagoreische Tripel Ingolf Giese Mai 2018 Pythagoreische Tripel - oder Pythagoreische Zahlentripel - sind drei (positive) ganze Zahlen, bei denen die Summe der Quadrate der beiden kleineren Zahlen gleich

Mehr

1. Regeln im Unregelmäßigen

1. Regeln im Unregelmäßigen 1. Regeln im Unregelmäßigen 1.1. Primzahlen Natürliche Zahlen sind die Zahlen 1, 2, 3, 4, 5, 6, 7, 8, 9,... Eine natürliche Zahl n > 1 heißt prim, wenn sie keine Teiler außer 1 und n hat. Beispiele: die

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Lösungen Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Kapitel I: Mengen Aufgabe

Mehr

Elemente der Arithmetik und Algebra

Elemente der Arithmetik und Algebra Elemente der Arithmetik und Algebra Bearbeitet von Harald Scheid, Wolfgang Schwarz Neuausgabe 2008. Taschenbuch. viii, 323 S. Paperback ISBN 978 3 8274 1821 0 Format (B x L): 17 x 24,4 cm Gewicht: 599

Mehr

Die Welt der Primzahlen

Die Welt der Primzahlen Springer-Lehrbuch Die Welt der Primzahlen Geheimnisse und Rekorde Bearbeitet von Paulo Ribenboim, Wilfrid Keller, Jörg Richstein 1. Auflage 2006. Taschenbuch. XXIV, 356 S. Paperback ISBN 978 3 540 34283

Mehr

Lösung 10 Punkte Teil a) Auch bei Fortsetzung der Folge der Quadratzahlen liefert die zweite Differenzenfolge

Lösung 10 Punkte Teil a) Auch bei Fortsetzung der Folge der Quadratzahlen liefert die zweite Differenzenfolge 0 Mathematik-Olympiade Stufe (Schulstufe) Klasse 9 0 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden ev wwwmathematik-olympiadende Alle Rechte vorbehalten 00 Lösung 0 Punkte Teil a) Auch bei

Mehr

Primzahlen und Pseudoprimzahlen

Primzahlen und Pseudoprimzahlen 1 Primzahlen und Pseudoprimzahlen Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastik (WIAS), Berlin 20. Tag der Mathematik 9. Mai 2015, Beuth Hochschule für Technik Berlin Primzahlen

Mehr

ERRATA. Übungsblatt 4a: Aufgabe 3 : Definition der Teilbarkeit (Skript S.62)

ERRATA. Übungsblatt 4a: Aufgabe 3 : Definition der Teilbarkeit (Skript S.62) Logik und Beweise ERRATA Übungsblatt 4a: Aufgabe 3 : Definition der Teilbarkeit (Skript S.62) Aufgabe 5 : Beweise folgende Aussage: 25 ist keine Primzahl Tipp: Beweis durch Widerspruch Logik und Beweise

Mehr

5. Bäume und Minimalgerüste

5. Bäume und Minimalgerüste 5. Bäume und Minimalgerüste Charakterisierung von Minimalgerüsten 5. Bäume und Minimalgerüste Definition 5.1. Es ein G = (V, E) ein zusammenhängender Graph. H = (V,E ) heißt Gerüst von G gdw. wenn H ein

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2016 Einführung in die mathematische Logik Arbeitsblatt 1 Übungsaufgaben Aufgabe 1.1. Warum ist Mathematik schwierig, obwohl darin doch alles logisch ist? Aufgabe 1.2.

Mehr

Mengenoperationen, Abbildungen

Mengenoperationen, Abbildungen TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Z6 Rechengesetze für Mengenoperationen Lineare Algebra 1 WS 2006/07 en Blatt 3 06.11.2006 Mengenoperationen,

Mehr

Musterlösung zum Weihnahchtsübungsblatt. Teil 1 von Martin Fabricius. Aufgabe 1

Musterlösung zum Weihnahchtsübungsblatt. Teil 1 von Martin Fabricius. Aufgabe 1 Musterlösung zum Weihnahchtsübungsblatt Teil von Martin Fabricius Aufgabe a) Diese Aufgabe kann z. B. durch ausmultiplizieren gelöst werden: (433) 7 = 4 7 3 +3 7 + 7 +3 7 0 = 4 343+3 49+ 7+3 = 37+47+4+3

Mehr

Einleitung. Wir schauen uns einige Probleme an, die wir im Laufe der Vorlesung genauer untersuchen werden.

Einleitung. Wir schauen uns einige Probleme an, die wir im Laufe der Vorlesung genauer untersuchen werden. Chr.Nelius: Zahlentheorie (SoSe 2018) 1 Einleitung Wir schauen uns einige Probleme an, die wir im Laufe der Vorlesung genauer untersuchen werden. (1) Zahlbereiche Unsere Zahlentheorie spielt sich im Bereich

Mehr

BWM 2004 AUFGABE 1 Marcel Schmittfull. s i mod 11 = S mod 11 = const. i=1

BWM 2004 AUFGABE 1 Marcel Schmittfull. s i mod 11 = S mod 11 = const. i=1 BWM 004 AUFGABE 1 Marcel Schmittfull Aufgabe 1 Man bezeichne die Menge der an der Tafel stehenden Zahlen mit S {s 1, s,..., s n }. Die Summe aller Elemente einer Menge M werde durch M dargestellt. Behauptung.

Mehr

Danach arithmetische Fragestellungen wie vollkommene Zahlen und Dreieckszahlen der Griechen.

Danach arithmetische Fragestellungen wie vollkommene Zahlen und Dreieckszahlen der Griechen. Was ist Zahlentheorie? Ursprünglich ist die Zahlentheorie (auch: Arithmetik) ein Teilgebiet der Mathematik, welches sich allgemein mit den Eigenschaften der ganzen Zahlen und insbesondere mit den Lösungen

Mehr

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. ***

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. *** Universität Bonn Mathematisches Institut Dr. Michael Welter Übungen zum Vorkurs Mathematik für Studienanfänger 2013 Einige Zeichen und Konventionen: IN := {1, 2, 3, 4,...} Die Menge der natürlichen Zahlen

Mehr

ZahlenfolgenZahlenfolgen. Zahlenfolgen. Anna Rodenhausen. Wieviele Dreiecke, wieviele Trapeze?

ZahlenfolgenZahlenfolgen. Zahlenfolgen. Anna Rodenhausen. Wieviele Dreiecke, wieviele Trapeze? Zahlenfolgen Anna Rodenhausen Wieviele Dreiecke, wieviele Trapeze? Wieviele Dreiecke, wieviele Trapeze? # Linien # Dreiecke # Trapeze 0 3 0 3 3 6 5 0 5 6 5 3 Wieviele Dreiecke, wieviele Trapeze? # Linien

Mehr

Folgen und Reihen. Thomas Blasi

Folgen und Reihen. Thomas Blasi Folgen und Reihen Thomas Blasi 02.03.2009 Inhaltsverzeichnis Folgen und Grenzwerte 2. Definitionen und Bemerkungen............................. 2.2 Konvergenz und Beschränktheit.............................

Mehr

Zerlegung in Quadratzahlen

Zerlegung in Quadratzahlen Zerlegung in Quadratzahlen Die Zerlegung von natürlichen Zahlen in die Summe von Quadratzahlen ist eine alte, abgeschlossene Theorie, die schon von FERMAT im 17. Jahrhundert und später von EULER, LAGRANGE

Mehr

Mehr als perfekt. 1 Interessant ist hierbei folgender Satz von Prof. Wikipedia: Die kleinste abundante Zahl, die durch

Mehr als perfekt. 1 Interessant ist hierbei folgender Satz von Prof. Wikipedia: Die kleinste abundante Zahl, die durch Mehr als perfekt Summiert man die Teiler einer natürlichen Zahl n (einschließlich des Teilers 1 aber ausschließlich des Teilers n), so erhält man einen Wert, den ich hier Teilersumme nennen will. 15 hat

Mehr

IV Beweise in der Mathematik

IV Beweise in der Mathematik Propädeutikum 018 0. September 018 Mathematische Texte enthalten verschiedene Bezeichnungen der Sinneinheiten. Bezeichnungen in mathematischen Texten Axiome elementare Grundaussagen; werden nicht bewiesen

Mehr

Normalformen boolescher Funktionen

Normalformen boolescher Funktionen Normalformen boolescher Funktionen Jeder boolesche Ausdruck kann durch (äquivalente) Umformungen in gewisse Normalformen gebracht werden! Disjunktive Normalform (DNF) und Vollkonjunktion: Eine Vollkonjunktion

Mehr

Dem Anschein nach werden diese Zahlen kleiner und kleiner und streben gegen Null. Was sollen sie sonst auch tun? Aber der Begriff

Dem Anschein nach werden diese Zahlen kleiner und kleiner und streben gegen Null. Was sollen sie sonst auch tun? Aber der Begriff 47 5 Irrationales 5.1 Folgen, Konvergenz und Vollständigkeit Eine Abbildung a : N R definiert eine Folge von reellen Werten a 1 = a(1), a 2 = a(2), a 3 = a(3),... Solche Zahlenfolgen werden uns dazu dienen,

Mehr

9. Primitivwurzeln. O. Forster: Einführung in die Zahlentheorie

9. Primitivwurzeln. O. Forster: Einführung in die Zahlentheorie 9. Primitivwurzeln 9.1. Satz. Sei G eine zyklische Gruppe der Ordnung m und g G ein erzeugendes Element. Das Element a := g k, k Z, ist genau dann ein erzeugendes Element von G, wenn k zu m teilerfremd

Mehr

Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2016

Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2016 Logik und Beweise Logik und Beweise Vorsemesterkurs SoSe16 Ronja Düffel 21. März 2016 Logik und Beweise Wozu Beweise in der Informatik?... um Aussagen wie 1 Das Programm erfüllt die gewünschte Aufgabe.

Mehr

Der Satz von Taylor. Kapitel 7

Der Satz von Taylor. Kapitel 7 Kapitel 7 Der Satz von Taylor Wir haben bereits die Darstellung verschiedener Funktionen, wie der Exponentialfunktion, der Cosinus- oder Sinus-Funktion, durch unendliche Reihen kennen gelernt. In diesem

Mehr

KV Logik als Arbeitssprache. Christoph Hörtenhuemer LVA-Nummer: LVA-Leiterin: Wolfgang Windsteiger. Agnes Schoßleitner

KV Logik als Arbeitssprache. Christoph Hörtenhuemer LVA-Nummer: LVA-Leiterin: Wolfgang Windsteiger. Agnes Schoßleitner KV Logik als Arbeitssprache LVA-Nummer: 326.014 LVA-Leiterin: Wolfgang Windsteiger Abgabedatum: 02. 06. 2004 Christoph Hörtenhuemer 0355958 Agnes Schoßleitner 0355468 Inhaltsverzeichnis Kurzbeschreibung...

Mehr

Marc-Robin Wendt. Halbadditive Strukturen. Definition 3. Eine algebraische Struktur (A, ) heißt halbaddititve Struktur,wenn 1. A R

Marc-Robin Wendt. Halbadditive Strukturen. Definition 3. Eine algebraische Struktur (A, ) heißt halbaddititve Struktur,wenn 1. A R Marc-Robin Wendt Halbadditive Strukturen Definition 1 Eine algebraische Struktur (A, ) heißt halbaddititve Struktur,wenn 1. A R 2. µ A y A : µ y (A ist nach unten beschränkt) 3. β R, β > 0 x, y A : x y

Mehr

Übungen zum Vorkurs Mathematik für Studienanfänger 2009 ***

Übungen zum Vorkurs Mathematik für Studienanfänger 2009 *** Universität Bonn Mathematisches Institut Dr. Michael Welter Übungen zum Vorkurs Mathematik für Studienanfänger 2009 Einige Zeichen und Konventionen: IN := {1, 2, 3, 4,...} Die Menge der natürlichen Zahlen

Mehr

Hausaufgabenüberprüfung 1 zu Mathematische Strukturen Hagen Knaf, SS 2016

Hausaufgabenüberprüfung 1 zu Mathematische Strukturen Hagen Knaf, SS 2016 Hausaufgabenüberprüfung 1 zu Mathematische Strukturen Hagen Knaf, SS 2016 Lösungen Aufgabe 1: Betrachten Sie die Menge H aller Abbildungen f : R 2 R 2 der Form f(x) = Ax + b, A R 2 2, b R 2. (1) Zeigen

Mehr

Vollständige Induktion

Vollständige Induktion 30. September 008 Gliederung 1 3 4 Die Peano Axiome für die Menge der Natürlichen Zahlen N I. 0 ist eine natürliche Zahl, d.h. 0 N. II. Jede natürliche Zahl hat genau einen Nachfolger d.h. n : (n N! n

Mehr

Kapitel 1. Kapitel 1 Vollständige Induktion

Kapitel 1. Kapitel 1 Vollständige Induktion Vollständige Induktion Inhalt 1.1 1.1 Das Das Prinzip A(n) A(n) A(n+1) 1.2 1.2 Anwendungen 1 + 2 + 3 +...... + n =? 1.3 1.3 Landkarten schwarz-weiß 1.4 1.4 Fibonacci-Zahlen 1, 1, 1, 1, 2, 2, 3, 3, 5, 5,

Mehr

Höhere Mathematik I für die Fachrichtung Elektrotechnik und Informationstechnik Lösungsvorschläge zum 1. Übungsblatt

Höhere Mathematik I für die Fachrichtung Elektrotechnik und Informationstechnik Lösungsvorschläge zum 1. Übungsblatt Karlsruher Institut für Technologie (KIT) Institut für Analysis Prof. Dr. Dirk Hundertmark Dipl.-Math. Matthias Uhl WS 2011/12 Höhere Mathematik I für die Fachrichtung Elektrotechnik und Informationstechnik

Mehr

Vorkurs Beweisführung

Vorkurs Beweisführung Vorkurs Beweisführung Fachschaft Mathematik und Informatik 30.08.2013 Agenda 1 Einleitung 2 Direkter Beweis 3 Widerspruchsbeweis 4 Vollständige Induktion 5 Aussagen widerlegen 6 Gleichheit von Mengen 7

Mehr

Wie beweise ich etwas? 9. Juli 2012

Wie beweise ich etwas? 9. Juli 2012 Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Wie beweise ich etwas? 9. Juli 2012 1 Was ist ein Beweis? 1.1 Ein Beispiel Nimm einen Stift und ein Blatt Papier und zeichne fünf

Mehr

Analytische Lösung algebraischer Gleichungen dritten und vierten Grades

Analytische Lösung algebraischer Gleichungen dritten und vierten Grades Analytische Lösung algebraischer Gleichungen dritten und vierten Grades Inhaltsverzeichnis 1 Einführung 1 2 Gleichungen dritten Grades 3 3 Gleichungen vierten Grades 7 1 Einführung In diesem Skript werden

Mehr

Bilder von Zahlen - Arithmetik und Algebra geometrisch darstellen. Rauter Bianca ( ) Graz, am 10. Dezember 2014

Bilder von Zahlen - Arithmetik und Algebra geometrisch darstellen. Rauter Bianca ( ) Graz, am 10. Dezember 2014 Bilder von Zahlen - Arithmetik und Algebra geometrisch darstellen Rauter Bianca (101038) Graz, am 10. Dezember 014 1 Inhaltsverzeichnis Inhaltsverzeichnis 1 Abbildungen von Zahlen - Beweise durch Muster

Mehr

Vollständige Induktion

Vollständige Induktion 30. September 008 Gliederung 1 3 4 Gliederung 1 3 4 Gliederung 1 3 4 Gliederung 1 3 4 Die Peano Axiome für die Menge der Natürlichen Zahlen N I. 0 ist eine natürliche Zahl, d.h. 0 N. II. Jede natürliche

Mehr