Kryptographie und Codierungstheorie
|
|
|
- Sarah Böhmer
- vor 9 Jahren
- Abrufe
Transkript
1 Proseminar zur Linearen Algebra Kryptographie und Codierungstheorie Thema: Faktorisierungsalgorithmen (nach der Fermat'schen Faktorisierungsmethode) Kettenbruchalgorithmus (Continued Fraction Method) Quadratisches Sieb Implementierungen
2 Gliederung: 0. Einleitung 0.1 Geschichtliche Entwicklung 0.2 Fermat'sche Idee von Quadratischen Resten 1. Continued Fraction Method 1.1 Einführung in die Kettenbrüche (Continued Fractions) 1.2 Die Continued Fraction Method 2. Quadratisches Sieb 2.1 Strategie und Liste 2.2 Wahl der Faktorbasis 2.3 Ermitteln der B-glatten Werte durch Sieben 2.4 Faktorisieren der B-glatten Zahlen und Bestimmung eines Quadrats 2.5 Auswertung 2.6 Ausblick: Verbesserungen 3. Implementierungen 3.1 Quadratisches Sieb 3.2 Continued Fraction Method
3 0. Einleitung: Sei N eine natürliche Zahl, dann folgt: (nach Euklid ( v. Chr.)): jede natürliche Zahl ist zerlegbar in eindeutige Primteiler) Nächstliegende Idee: Trial Division bis Sieb des Eratosthenes ( v. Chr.): Ermitteln aller Primzahlen bis zu einer Schranke n
4 Strategie zur Faktorisierung einer natürlichen Zahl N: 1. N durch 2 teilen, bis N ungerade wird 2. Primteiler von N durch Trial Division und/oder der eben vorgestellten Methode abspalten 3. Methoden für kleine Primzahlen nutzen, um diese abzuspalten (Elliptische-Kurven-Methode, Pollard-Methoden, ) 4. Primzahl- und Primzahlpotenztests durchführen (Gruppe 1) 5. Faktorisierungsalgorithmen mit quadratischen Resten nach Fermats Ideen (CFM, QS, Zahlkörpersieb) Je nach Größe des N, des benutzten Programms und der Literatur werden unterschiedliche Grenzen zwischen den einzelnen Punkten gezogen bzw. empfohlen.
5 Fermats Idee ( n. Chr.): Sei dazu ungerade und keine Primzahl ungerade Faktorisierung
6 Gliederung: 0. Einleitung 0.1 Geschichtliche Entwicklung 0.2 Fermat'sche Idee von Quadratischen Resten 1. Continued Fraction Method 1.1 Einführung in die Kettenbrüche (Continued Fractions) 1.2 Die Continued Fraction Method 2. Quadratisches Sieb 2.1 Strategie und Liste 2.2 Wahl der Faktorbasis 2.3 Ermitteln der B-glatten Werte durch Sieben 2.4 Faktorisieren der B-glatten Zahlen und Bestimmung eines Quadrats 2.5 Auswertung 2.6 Ausblick: Verbesserungen 3. Implementierungen 3.1 Quadratisches Sieb 3.2 Continued Fraction Method
7 1. Continued Fraction Method: Definition: Als Kettenbruch definiert man Objekte der Form a 0 heißt das Anfangsglied. Die a i und die b i heißen Teilnenner bzw. zähler. Sind alle b i =1 und ist a 0 eine ganze Zahl so heißt der Kettenbruch regulär.
8 Reguläre Kettenbrüche Nun schreiben wir eine reelle Zahl x in der Form wie folgt: wobei die b i ganze Zahlen sind.
9 Beispiel 1: Wir erweitern die Wurzel aus 2 zu einem Kettenbruch: Man sieht die Entwicklung setzt sich periodisch fort.
10 Beispiel 2: Kettenbrucherweiterung von e: Dies führt in unserer Darstellung zu
11 Bemerkung: Ein endlicher Kettenbruch stellt eine rationale Zahl dar. Stellt man x als Kettenbruch dar, so stellt der vorzeitig abgebrochene Kettenbruch eine Approximation an x dar. Insbesondere: Man kann x (irrational) als endlichen Kettenbruch darstellen indem man das b n durch x n ersetzt. (Siehe Bsp. 1)
12 Auswertung von Kettenbrüchen Ziel: auszuwerten. Achtung: Nicht einfach drauflos rechnen! Satz: Seien b i ganze Zahlen und alle b i > 0 >0. Dann lässt sich der reguläre Kettenbruch mit vollständig gekürzten A s /B s durch folgende Rekursionsformel darstellen: mit A -1 :=1, B -1 :=0, A 0 :=b 0 und B 0 :=1.
13 Beispiel 3: Berechne: Schritt A n /B n 1/0 2/1 3/1 8/3 11/4 30/11 71/26 243/89 Ergebnis:
14 Ein kleiner Satz den wir für einen Beweis benötigen: Satz: Es gilt für die A s und B s : A s-1 B s A s B s-1 =(-1) s Beweis per Induktion, hier nur der Induktionsschluss: A s B s+1 A s+1 B s = A s (b s+1 B s +B s-1 ) - (b s+1 A s +A s-1 )B s =-(A s-1 B s A s B s-1 ) = -(-1) s =(-1) s+1
15 Kettenbrucherweiterungen von Quadratwurzeln Die Quadratwurzeln lassen sich leicht mit der Formel berechnen: D.h. die Wurzel aus N lässt sich damit so schreiben
16 Beispiel 4: N=69 => b 0 =8
17 Das Ergebnis ist ein periodischer Kettenbruch:
18 Bemerkung: Jede Kettenbrucherweiterung einer irrationalen Zahl, die Quadratwurzel ist, ist periodisch.
19 Kettenbrüche und Quadratische Reste Folgende Formel ist Basis der Methode zur Bestimmung quadratischer Reste (mod N): (+) (A n-1 ) 2 - N(B n-1 ) 2 =(-1) n Q n
20 Aus (+) erhält man den Ausdruck D.h. (-1) n Q n ist ein quadratischer Rest (mod N) Wir haben bereits rausgefunden: Kettenbrucherweiterung von liefert daher schnell kleine quadratische Reste.
21 Nachteil: Die Kettenbrucherweiterung ist periodisch => die Q i werden sich periodisch wiederholen Ist die Periode klein, so auch die Anzahl der quadratischen Reste. Verbesserung: Die Periode kann durch die KB-Erweiterung von verbessert werden, dadurch wird die Periode verlängert. (siehe Continued Fraction Method)
22 Continued Fraction Method Dieser Algorithmus benutzt die Idee: x 2 =y 2 mod N 1) Man wählt endlich viele kleine Primzahlen p 1 p n-1 und p 0 =-1 2) Wir suchen ganze Zahlen P i und C i mit s.d. die Primfaktorzerlegung von C i nur mit p 0,..., p n 1 auskommt d.h. 3) Nun definiere also als, sodass gilt:
23 4) Findet man jetzt Indizes gilt, so ist eine quadratische Zahl und man erhält: 5) Nun nur noch probieren ob ein Teiler von N ist. Bemerkung: Die in 2) gesuchten P i und C i bekommen wir durch die quadratischen Reste aus der vorherigen Teil.
24 Beispiel 5: Sei n= Wir finden folgende quadratische Reste R i (ohne Rechnung): mit (a i ) 2 =R i mod n (die R i sind die C i aus der alten Folie)
25 Und damit die folgende Matrix =:A Gauss -> (0,1,0,0,1,0,1) tr, (1,0,1,0,0,1,0) tr und (1,0,1,1,0,0,0) tr liegen im Kern(A)
26 Nun probieren: - ergibt:,also keinen Teiler. - ergibt: jedoch: ggt( ,n)=1, ergibt ebenfalls keinen Teiler. - ergibt: und damit ist ggt( ,n)=4261 ein Teiler von n.
27 Gliederung: 0. Einleitung 0.1 Geschichtliche Entwicklung 0.2 Fermat'sche Idee von Quadratischen Resten 1. Continued Fraction Method 1.1 Einführung in die Kettenbrüche (Continued Fractions) 1.2 Die Continued Fraction Method 2. Quadratisches Sieb 2.1 Strategie und Liste 2.2 Wahl der Faktorbasis 2.3 Ermitteln der B-glatten Werte durch Sieben 2.4 Faktorisieren der B-glatten Zahlen und Bestimmung eines Quadrats 2.5 Auswertung 2.6 Ausblick: Verbesserungen 3. Implementierungen 3.1 Quadratisches Sieb 3.2 Continued Fraction Method
28 Das Quadratische Sieb: 1981 von Carl Pomerance entwickelt. Der Algorithmus beruht auf Fermats Faktorisierunsmethode, Gauß` und Kraitchiks Ideen, u.v.a. Mit Ausnahme des Siebschrittes gleicht er Dixons Algorithmus. Schneller als CFM, da für die Glattheitstests Trail Division durch Sieben ersetzt werden kann. Effizient bis zu Zahlen von ca. 100 Dezimalstellen, für größere ist das Zahlkörpersieb schneller. Geschwindigkeit: ca. ln( N)ln(ln( N)) Rechenschritte. Für die Zahl RSA-129 benötigte man 1994 acht Monate RSA-129 = = *
29 Definitionen: Legendre-Symbol:,, p Primzahl N p 1 : 0 1 ggt(n, p) 1 und N ist ein Quadrat mod. p p teilt N ggt(n, p) 1 und N ist kein Quadrat mod. p z q* d, q B- glatt und B d B² heißt B-glatt, falls sie komplett in Primzahlen kleiner-gleich B zerfällt. z heißt B-semiglatt, falls sie noch einen zusätzlichen Primfaktor kleiner-gleich B² besitzt, d.h. z q* d, q B- glatt und B d B²
30 Algorithmus: 1 Liste erstellen: 2 Wahl der Faktorbasis 3 Ermitteln der B-glatten Werte durch Sieben 4 Faktorisieren der B-glatten Zahlen und Bestimmung eines Quadrats 5 Auswertung
31
32 Gliederung: 0. Einleitung 0.1 Geschichtliche Entwicklung 0.2 Fermat'sche Idee von Quadratischen Resten 1. Continued Fraction Method 1.1 Einführung in die Kettenbrüche (Continued Fractions) 1.2 Die Continued Fraction Method 2. Quadratisches Sieb 2.1 Strategie und Liste 2.2 Wahl der Faktorbasis 2.3 Ermitteln der B-glatten Werte durch Sieben 2.4 Faktorisieren der B-glatten Zahlen und Bestimmung eines Quadrats 2.5 Auswertung 2.6 Ausblick: Verbesserungen 3. Implementierungen 3.1 Quadratisches Sieb 3.2 Continued Fraction Method (kommt nächste Woche)
Das RSA Kryptosystem
Kryptografie Grundlagen RSA Institut für Mathematik Technische Universität Berlin Kryptografie Grundlagen RSA mit geheimem mit öffentlichem Schlüssel Realisierung Kryptografie mit geheimem Schlüssel Alice
Ferienakademie 2001: Kryptographie und Sicherheit offener Systeme. Faktorisierung. Stefan Büttcher [email protected]
Ferienakademie 2001: Kryptographie und Sicherheit offener Systeme Faktorisierung Stefan Büttcher [email protected] 1 Definition. (RSA-Problem) Gegeben: Ò ÔÕ, ein RSA-Modul mit unbekannten Primfaktoren
Ältere Aufgaben (bis 1998)
Ältere Aufgaben (bis 1998) Es waren in den 4 Stunden jeweils nur 2 Aufgaben zu bearbeiten, die einzelnen Aufgaben waren umfangreicher. September 1998, Aufgabe 1 Sei p eine ungerade Primzahl. a) Beweise:
1.Rationale und irrationale Zahlen. Quadratwurzel.
1.Rationale und irrationale Zahlen 1.1Quadratwurzeln Die Quadratwurzel aus einer rationalen Zahl 5 = 5; denn 5 = 5 und 5 > 0 r > 0 (geschrieben r ) ist diejenige nichtnegative Zahl, deren Quadrat r ergibt.
Primzahlen. Herbert Koch Mathematisches Institut Universität Bonn Die Primfaktorzerlegung. a = st
Primzahlen Herbert Koch Mathematisches Institut Universität Bonn 12.08.2010 1 Die Primfaktorzerlegung Wir kennen die natürlichen Zahlen N = 1, 2,..., die ganzen Zahlen Z, die rationalen Zahlen (Brüche
Die Menge C der komplexen Zahlen wird im Kapitel Weitere Themen behandelt.
1 1 Funktionen 1.1 Grundlegende Zahlenmengen Georg Cantor (1845-1918) hat den Begriff der Menge eingeführt. Man versteht darunter die Zusammenfassung einzelner Dinge, welche Elemente genannt werden, zu
Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. ***
Universität Bonn Mathematisches Institut Dr. Michael Welter Übungen zum Vorkurs Mathematik für Studienanfänger 2010 Einige Zeichen und Konventionen: IN := {1, 2, 3, 4,...} Die Menge der natürlichen Zahlen
Computeralgebra in der Lehre am Beispiel Kryptografie
Kryptografie Grundlagen RSA KASH Computeralgebra in der Lehre am Beispiel Kryptografie Institut für Mathematik Technische Universität Berlin Kryptografie Grundlagen RSA KASH Überblick Kryptografie mit
Primzahlen im Schulunterricht wozu?
Primzahlen im Schulunterricht wozu? Franz Pauer Institut für Fachdidaktik und Institut für Mathematik Universität Innsbruck Tag der Mathematik Graz 6. Februar 2014 Einleitung Eine (positive) Primzahl ist
Lineare Algebra I (WS 13/14)
Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 10.01.2014 Alexander Lytchak 1 / 9 Erinnerung: Zwei ganz wichtige Gruppen Für jede Gruppe (G, ) und jedes Element g
Probabilistische Primzahltests
23.01.2006 Motivation und Überblick Grundsätzliches Vorgehen Motivation und Überblick Als Primzahltest bezeichnet man ein mathematisches Verfahren, mit dem ermittelt wird, ob eine gegebene Zahl eine Primzahl
Kapitel 6: Das quadratische Reziprozitätsgesetz
Kapitel 6: Das quadratische Reziprozitätsgesetz Ziel dieses Kapitels: die Untersuchung der Lösbarkeit der Kongruenzgleichung X also die Frage, ob die ganze Zahl Z eine Quadratwurzel modulo P besitzt. Im
χ a : N + {0, 1, 1} {( a χ a (n) = χ a (n ). ψ(mn) < ψ(m)ψ(n).
September 007, Zahlentheorie 1 a) Formulieren Sie das quadratische Reziprozitätsgesetz einschließlich der Definitionen der Legendre- und Jacobi-Symbole. b) Für a Z \ {0} definieren wir durch χ a (n) =
3 Primzahlen. j,... stets Primzahlen. 3.1 Satz. Jedes a > 1 ist als Produkt von Primzahlen darstellbar (Primfaktorzerlegung. n=1
3 Primzahlen Die Zahl 1 hat nur einen positiven Teiler, nämlich 1. Jede Zahl a > 1 hat mindestens zwei positive Teiler: 1 und a. Definition. Eine Primzahl ist eine Zahl a > 1, welche nur die Teiler 1 und
3. Diskrete Mathematik
Diophantos von Alexandria um 250 Georg Cantor 1845-1918 Pythagoras um 570 v. Chr Pierre de Fermat 1607/8-1665 Seite 1 Inhalt der Vorlesung Teil 3: Diskrete Mathematik 3.1 Zahlentheorie: Abzählbarkeit,
Primzahlen und Pseudoprimzahlen
1 Primzahlen und Pseudoprimzahlen Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastik (WIAS), Berlin 20. Tag der Mathematik 9. Mai 2015, Beuth Hochschule für Technik Berlin Primzahlen
Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. ***
M. Welter Übungen zum Vorkurs Mathematik für Studienanfänger 2004 Einige Zeichen und Konventionen: IN := {1, 2, 3, 4,...} Die Menge der natürlichen Zahlen IN 0 := IN {0}{0, 1, 2, 3, 4,...} Z := {..., 2,
Hauptsatz der Zahlentheorie.
Hauptsatz der Zahlentheorie. Satz: Jede natürliche Zahl n N läßt sich als Produkt von Primzahlpotenzen schreiben, n = p r 1 1 p r 2 2... p r k k, wobei p j Primzahl und r j N 0 für 1 j k. Beweis: durch
KAPITEL 13. Polynome. 1. Primfaktorzerlegung in den ganzen Zahlen. ,, p r
KAPITEL 13 Polynome 1. Primfaktorzerlegung in den ganzen Zahlen DEFINITION 13.1 (Primzahl). Eine Zahl p ist genau dann eine Primzahl, wenn folgende beiden Bedingungen gelten: (1) Es gilt p > 1. (2) Für
Quadratisches Sieb. Aufgabenstellung
Quadratisches Sieb Aufgabenstellung Sei N > 1 eine zerlegbare positive ganze Zahl. Wir wollen ein Verfahren entwickeln, mit dem N in Primfaktoren zerlegt werden kann. Ist N von der Form N = p e mit einer
Zahlentheorie, Arithmetik und Algebra
Zahlentheorie, Arithmetik und Algebra Seminar Hallo Welt für Fortgeschrittene 2008 Matthias Niessner June 20, 2008 Erlangen 1 von 29 Matthias Niessner Zahlentheorie, Arithmetik und Algebra Übersicht 1
Zahlen und elementares Rechnen
und elementares Rechnen Christian Serpé Universität Münster 7. September 2011 Christian Serpé (Universität Münster) und elementares Rechnen 7. September 2011 1 / 51 Gliederung 1 2 Elementares Rechnen 3
Lenstras Algorithmus für Faktorisierung
Lenstras Algorithmus für Faktorisierung Bertil Nestorius 9 März 2010 1 Motivation Die schnelle Faktorisierung von Zahlen ist heutzutage ein sehr wichtigen Thema, zb gibt es in der Kryptographie viele weit
Zahlen 25 = = 0.08
2. Zahlen Uns bisher bekannte Zahlenbereiche: N Z Q R ( C). }{{} später Schreibweisen von rationalen/reellen Zahlen als unendliche Dezimalbrüche = Dezimalentwicklungen. Beispiel (Rationale Zahlen) 1 10
Fachwissenschaftliche Grundlagen
Fachwissenschaftliche Grundlagen Vorlesung im Wintersemester 2011/2012, Universität Landau Roland Gunesch 9. Vorlesung Roland Gunesch (Mathematik) Fachwissenschaftliche Grundlagen 9. Vorlesung 1 / 17 Themen
Lösungen der Aufgaben
Lösungen der Aufgaben Aufgabe 1.3.1 Es gibt 42 mögliche Verschlüsselungen. Aufgabe 2.3.4 Ergebnisse sind 0, 4 und 4 1 = 4. Aufgabe 2.3.6 Da in Z 9 10 = 1 ist, erhalten wir x = c 0 + + c m = c 0 + + c m.
Der Primzahltest von Agrawal, Kayal und Saxena. Dr. Gerold Jäger
Der Primzahltest von Agrawal, Kayal und Saxena Dr. Gerold Jäger Habilitationsvortrag Christian-Albrechts-Universität zu Kiel Institut für Informatik 19. Januar 2011 Dr. Gerold Jäger Habilitationsvortrag
Prima Zahlen? Primzahlen
Prima Zahlen? Primzahlen 10. Dezember 2009 Willi More [email protected] I n s t i t u t f ü r M a t h e m a t i k Überblick 1/ Primzahlen 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,
Das RSA-Verfahren. Proseminar Kryptographische Protokolle SS Armin Litzel
in der Praxis Proseminar Kryptographische Protokolle SS 2009 5.5.2009 in der Praxis Gliederung 1 Grundlegendes über RSA 2 in der Praxis Allgemeine Vorgehensweise zur Verschlüsselung Signieren mit RSA 3
Primzahlen im Schulunterricht wozu?
Primzahlen im Schulunterricht wozu? Franz Pauer Institut für Fachdidaktik und Institut für Mathematik Universität Innsbruck Lehrer/innen/fortbildungstag Wien 2013 5. April 2013 Einleitung Eine (positive)
Rabin Verschlüsselung 1979
Rabin Verschlüsselung 1979 Idee: Rabin Verschlüsselung Beobachtung: Berechnen von Wurzeln in Z p ist effizient möglich. Ziehen von Quadratwurzeln in Z N ist äquivalent zum Faktorisieren. Vorteil: CPA-Sicherheit
Grundlegendes der Mathematik
Kapitel 2 Grundlegendes der Mathematik (Prof. Udo Hebisch) 2.1 Logik Unter einer Aussage versteht man in der Mathematik einen in einer natürlichen oder formalen Sprache formulierten Satz, für den eindeutig
RSA Äquivalenz der Parameter
RSA Kryptosystem Wurde 1977 von Rivest, Shamir und Adleman erfunden. Genaue Beschreibung im PKCS #1. De-facto Standard für asymmetrische Kryptosysteme. Schlüsselerzeugung: Seien p, q zwei verschiedene,
Basiswissen Zahlentheorie
Kristina Reiss Gerald Schmieder Basiswissen Zahlentheorie Eine Einführung in Zahlen und Zahlbereiche Zweite Auflage Mit 43 Abbildungen ^y Springer Inhaltsverzeichnis 1 Grundlagen und Voraussetzungen 1.1
Faktorisieren mit dem Quadratischen Sieb
Faktorisieren mit dem Quadratischen Sieb Ein Beitrag zur Didaktik der Algebra und Kryptologie Ralph-Hardo Schulz und Helmut Witten Eines der zur Zeit schnellsten Verfahren zur Faktorisierung ganzer Zahlen
Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. ***
Universität Bonn Mathematisches Institut Dr. Michael Welter Übungen zum Vorkurs Mathematik für Studienanfänger 2013 Einige Zeichen und Konventionen: IN := {1, 2, 3, 4,...} Die Menge der natürlichen Zahlen
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 2. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN Bisher kennen wir bereits folgende Zahlenbereiche: N Natürliche Zahlen Z Ganze Zahlen Q Rationale Zahlen Bei
Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens
Mathematische Grundlagen der Kryptographie 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe Stefan Brandstädter Jennifer Karstens 18. Januar 2005 Inhaltsverzeichnis 1 Ganze Zahlen 1 1.1 Grundlagen............................
Zahlentheorie I. smo osm. Thomas Huber. Inhaltsverzeichnis. Aktualisiert: 1. August 2016 vers Teilbarkeit 2.
Schweizer Mathematik-Olympiade smo osm Zahlentheorie I Thomas Huber Aktualisiert: 1. August 2016 vers. 1.0.0 Inhaltsverzeichnis 1 Teilbarkeit 2 2 ggt und kgv 3 3 Abschätzungen 6 1 Teilbarkeit Im Folgenden
Bsp. Euklidischer Algorithmus
Bsp. Euklidischer Algorithmus Bsp: Berechne ggt(93, 42) mittels EUKLID. 93 2 42 = 9 42 4 9 = 6 9 1 6 = 3 6 2 3 = 0 D.h. ggt(93, 42) = 3. Durch Rücksubstitution erhalten wir die Bézout-Koeffizienten x,
Zahlenlehre 1. Die Mathematik ist die Königin der Wissenschaften und die Zahlentheorie ist die Königin der Mathematik (Carl Friedrich Gauß)
Die Mathematik ist die Königin der Wissenschaften und die Zahlentheorie ist die Königin der Mathematik (Carl Friedrich Gauß) 6. Termin, Wien 2014 Mag. a Dagmar Kerschbaumer Letzter Termin g-adische Darstellung
Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck
Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck Gesamtpunktzahl: 114 Punkte, 100 Punkte= 100 %, keine Abgabe 1. Es seien m = 1155 und n = 1280.
Einführung in die Zahlentheorie
Einführung in die Zahlentheorie Jörn Steuding Uni Wü, SoSe 2015 I Zahlen II Modulare Arithmetik III Quadratische Reste IV Diophantische Gleichungen V Quadratische Formen Wir behandeln die wesentliche Zahlentheorie
3.5 Kryptographie - eine Anwendung der Kongruenzrechnung
1 3.5 Kryptographie - eine Anwendung der Kongruenzrechnung Das Wort Kryptographie leitet sich aus der griechischen Sprache ab, nämlich aus den beiden Worten κρυπτ oς(kryptos)=versteckt, geheim und γραϕɛιν(grafein)=schreiben.
Zahlen und elementares Rechnen (Teil 1)
und elementares Rechnen (Teil 1) Dr. Christian Serpé Universität Münster 6. September 2010 Dr. Christian Serpé (Universität Münster) und elementares Rechnen (Teil 1) 6. September 2010 1 / 40 Gliederung
5 Grundlagen der Zahlentheorie
5 Grundlagen der Zahlentheorie 1 Primfaktorzerlegung Seienm, n N + := {k N k > 0} Man schreibt n n, gesprochen m teilt n oder m ist ein Teiler von n, wenn es eine positive natürliche Zahl k gibt mit mk
Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18
Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 9. November 2017 1/34 Beispiel 3.6 Wir können die rationalen Zahlen wie folgt konstruieren:
2. Teilbarkeit. Euklidischer Algorithmus
O. Forster: Einführung in die Zahlentheorie 2. Teilbarkeit. Euklidischer Algorithmus 2.1. Wir benutzen die folgenden Bezeichnungen: Z = {0, ±1, ±2, ±3,...} Menge aller ganzen Zahlen N 0 = {0, 1, 2, 3,...}
Quadrate und Wurzelziehen modulo p
Quadrate und Wurzelziehen modulo p Sei im Folgenden p eine Primzahl größer als. Wir möchten im Körper Z p Quadratwurzeln ziehen. Die Quadrierabbildung Q :Z p Z p ist aber nicht surjektiv, daher gibt es
Zahlentheorie. Vorlesung 14. Fermatsche Primzahlen
Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 14 Fermatsche Primzahlen Definition 14.1. Eine Primzahl der Form 2 s + 1, wobei s eine positive natürliche Zahl ist, heißt Fermatsche Primzahl.
Kapitel 2. Kapitel 2 Natürliche und ganze Zahlen
Natürliche und ganze Zahlen Inhalt 2.1 2.1 Teiler 12 12 60 60 2.2 2.2 Primzahlen 2, 2, 3, 3, 5, 5, 7, 7, 11, 11, 13, 13,...... 2.3 2.3 Zahldarstellungen 17 17 = (1 (10 0 0 1) 1) 2 2 2.4 2.4 Teilbarkeitsregeln
Kryptographie und Komplexität
Kryptographie und Komplexität Einheit 4.2 Primzahltests 1. Deterministische Primzahltests 2. Der Primzahltest von Solovay-Strassen 3. Der Milner-Rabin Test Wozu Primzahltests? RSA Schlüssel benötigen sehr
Primzahlen und RSA-Verschlüsselung
Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also
Vorlesung Mathematik 2 für Informatik
Vorlesung Mathematik 2 für Informatik Inhalt: Modulare Arithmetik Lineare Algebra Vektoren und Matrizen Lineare Gleichungssysteme Vektorräume, lineare Abbildungen Orthogonalität Eigenwerte und Eigenvektoren
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
SCHRIFTLICHE ZUSAMMENFASSUNG ZUM VORTRAG DIE GRUNDLAGEN DER RSA-VERSCHLÜSSELUNG VON DANIEL METZSCH
SCHRIFTLICHE ZUSAMMENFASSUNG ZUM VORTRAG DIE GRUNDLAGEN DER RSA-VERSCHLÜSSELUNG VON DANIEL METZSCH Freie Universität Berlin Fachbereich für Mathematik & Informatik Institut für Mathematik II Seminar über
Stichwortverzeichnis. Symbole. Stichwortverzeichnis
Stichwortverzeichnis Stichwortverzeichnis Symbole ( ) (Runde Klammern) 32, 66 (Betragszeichen) 32 (Multiplikations-Zeichen) 31 + (Plus-Zeichen) 31, 69 - (Minus-Zeichen) 31, 69 < (Kleiner-als-Zeichen) 33,
Wirtschaftsmathematik: Mathematische Grundlagen
Wirtschaftsmathematik: Mathematische Grundlagen 1. Zahlen 2. Potenzen und Wurzeln 3. Rechenregeln und Vereinfachungen 4. Ungleichungen 5. Intervalle 6. Beträge 7. Lösen von Gleichungen 8. Logarithmen 9.
1 Theorie der Kettenbrüche II
Theorie der Kettenbrüche II Vom ersten Vortrag erinnern wir, dass sich jede reelle Zahl α wie folgt darstellen lässt: α = a 0 + a + a 2 + mit a 0 Z und a i N >0 für jedes i Die Kettenbruchdarstellung lässt
Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler
Kapitel 3: Die Sätze von Euler, Fermat und Wilson In diesem Kapitel wollen wir nun die eulersche -Funktion verwenden, um einen berühmten Satz von Euler zu formulieren, aus dem wir dann mehrere interessante
Beispiel: Primelemente in den Gaußschen Zahlen
Beispiel: Primelemente in den Gaußschen Zahlen Satz Primelemente in Z[i] Für die Primelemente π Z[i] gilt bis auf Assoziiertheit 1 N(π) = p für ein p P oder 2 π = p für ein p P mit p x 2 + y 2 für (x,
Seminararbeit zur Zahlentheorie. Die Gaußschen Zahlen
Universität Paderborn WS 2007/2008 Warburger Str. 100 33098 Paderborn Seminararbeit zur Zahlentheorie Die Gaußschen Zahlen Tatjana Linkin, Svetlana Krez 20. November 2007 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis
Mathematische Grundlagen der Kryptografie (1321) SoSe 06
Mathematische Grundlagen der Kryptografie (1321) SoSe 06 Klausur am 19.08.2006: Lösungsvorschläge zu den Aufgaben zu Aufgabe I.1 (a) Das numerische Äquivalent zu KLAUSUR ist die Folge [10, 11, 0, 20, 18,
Zahlentheorie I - Tipps & Lösungen. Aktualisiert: 15. Oktober 2016 vers Teilbarkeit
Schweizer Mathematik-Olympiade smo osm Zahlentheorie I - Tipps & Lösungen Aktualisiert: 15. Oktober 2016 vers. 1.2.0 1 Teilbarkeit Einstieg 1.1 Zeige, dass 900 ein Teiler von 10! ist. Tipp: Schreibe 900
RSA (Rivest, Shamir, Adleman)
Juli 2012 LB 3 Kryptographie F. Kaden 1/11 1977 von Rivest, Shamir, Adleman am MIT (Massachusetts Institut of Technology) entwickelt asymmetrisches Verschlüsselungsverfahren Ziel: email-verschlüsselung,
RSA Verfahren. Kapitel 7 p. 103
RSA Verfahren RSA benannt nach den Erfindern Ron Rivest, Adi Shamir und Leonard Adleman war das erste Public-Key Verschlüsselungsverfahren. Sicherheit hängt eng mit der Schwierigkeit zusammen, große Zahlen
Einführung in Algebra und Zahlentheorie Lösungsvorschlag zur Klausur am 16. Februar 2016
Fakultät für Mathematik Institut für Algebra und Geometrie PD Dr. Stefan Kühnlein Dipl.-Math. oec. Anja Randecker Einführung in Algebra und Zahlentheorie Lösungsvorschlag zur Klausur am 16. Februar 016
Danach arithmetische Fragestellungen wie vollkommene Zahlen und Dreieckszahlen der Griechen.
Was ist Zahlentheorie? Ursprünglich ist die Zahlentheorie (auch: Arithmetik) ein Teilgebiet der Mathematik, welches sich allgemein mit den Eigenschaften der ganzen Zahlen und insbesondere mit den Lösungen
Übungen zu Zahlentheorie für TM, SS 2013
Übungen zu Zahlentheorie für TM, SS 2013 zusammengestellt von Johannes Morgenbesser Übungsmodus: Ausarbeitung von 10 der Beisiele 1 38, 5 der Beisiele A O und 15 der Beisiele i xxxi. 1. Zeigen Sie, dass
Vorkurs Mathematik 2016
Vorkurs Mathematik 2016 Natürliche Zahlen Der grundlegende Zahlenbereich ist die Menge der natürlichen Zahlen N = {1, 2, 3,...}. In vielen Fällen ist es sinnvoll die Zahl 0 mit einzubeziehen: N 0 = N [
Der Zwei-Quadrate-Satz von Fermat. Hauptseminar: Eine Einladung in die Mathematik Leitung: Prof. Dr. Lukacova Referent: Julia Breit Datum:
Der Zwei-Quadrate-Satz von Fermat Hauptseminar: Eine Einladung in die Mathematik Leitung: Prof. Dr. Lukacova Referent: Julia Breit Datum: 09.11.2015 GLIEDERUNG Einleitung Der Zwei-Quadrate-Satz Vorwissen
31 Polynomringe Motivation Definition: Polynomringe
31 Polynomringe 31.1 Motivation Polynome spielen eine wichtige Rolle in vielen Berechnungen, einerseits weil oftmals funktionale Zusammenhänge durch Polynome beschrieben werden, andererseits weil Polynome
Kapitel III Ringe und Körper
Kapitel III Ringe und Körper 1. Definitionen und Beispiele Definition 117 Eine Algebra A = S,,, 0, 1 mit zwei zweistelligen Operatoren und heißt ein Ring, falls R1. S,, 0 eine abelsche Gruppe mit neutralem
2 Polynome und rationale Funktionen
Gleichungen spielen auch in der Ingenieurmathematik eine große Rolle. Sie beschreiben zum Beispiel Bedingungen, unter denen Vorgänge ablaufen, Gleichgewichtszustände, Punktmengen. Gleichungen für eine
Seminar der WE AlZAGK. Glatte Zahlen
Seminar der WE AlZAGK WiSe 200/ Glatte Zahlen von Sonja Riedel Mail: [email protected] Motivation Glatte Zahlen sind, grob gesagt, Zahlen, die nur kleine Primfaktoren besitzen. Sie werden in vielen
Der chinesische Restsatz mit Anwendung
Der chinesische Restsatz mit Anwendung Nike Garath [email protected] Martrikelnummer: 423072 Seminar: Verschlüsslungs- und Codierungstheorie Dozent: Dr. Thomas Timmermann Sommersemester 2017 Inhaltsverzeichnis
1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente:
Lösung 1. Übung Elemente der Algebra WS017/18 1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente: (e) {(x,y) IR 3x+4y 1}.
(1 + o(1)) n ln(n) π(n) =
Satz 164. (Euklid): Es gibt unendlich viele Primzahlen Beweis. (Widerspruch:) Angenommen, es gäbe nur k < viele Primzahlen p 1,...,p k. Es ist dann q := (p 1 p 2... p k ) + 1 eine Zahl, die nicht durch
Primzahlzertifikat von Pratt
Primzahlzertifikat von Pratt Daniela Steidl TU München 17. 04. 2008 Primzahltests in der Informatik "Dass das Problem, die Primzahlen von den Zusammengesetzten zu unterscheiden und letztere in ihre Primfaktoren
Grundlagen der Mathematik
Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Lösungsskizzen 8 Grundlagen der Mathematik Präsenzaufgaben (P13) Primfaktorzerlegungen Die Primfaktorzerlegungen lauten: a) 66 =
Über das Hüten von Geheimnissen
Über das Hüten von Geheimnissen Gabor Wiese Tag der Mathematik, 14. Juni 2008 Institut für Experimentelle Mathematik Universität Duisburg-Essen Über das Hüten von Geheimnissen p.1/14 Rechnen mit Rest Seien
Mathematisches Institut II Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg
1 Mathematisches Institut II 06.07.004 Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg SS 05 Schnupperkurs: Ausgewählte Methoden zur Aufgabenlösung Vorlesung 5: Elementare Zahlentheorie: Teilbarkeit Primfaktorzerlegung
8. Woche Quadratische Reste und Anwendungen. 8. Woche: Quadratische Reste und Anwendungen 163/ 238
8 Woche Quadratische Reste und Anwendungen 8 Woche: Quadratische Reste und Anwendungen 163/ 238 Quadratische Reste Ḋefinition Quadratischer Rest Sei n N Ein Element a Z n heißt quadratischer Rest in Z
Kombinatorik von Zahlenfolgen
6. April 2006 Vorlesung in der Orientierungswoche 1 Kombinatorik von Zahlenfolgen Einige Beispiele Jeder kennt die Fragen aus Intelligenztests, in denen man Zahlenfolgen fortsetzen soll. Zum Beispiel könnten
Polynomiale Gleichungen
Vorlesung 5 Polynomiale Gleichungen Definition 5.0.3. Ein polynomiale Funktion p(x) in der Variablen x R ist eine endliche Summe von Potenzen von x, die Exponenten sind hierbei natürliche Zahlen. Wir haben
Einführung in Algebra und Zahlentheorie Lösungsvorschläge zur Klausur vom Aufgabe 1 (6 Punkte)
Aufgabe 1 (6 Punkte) Einführung in Algebra und Zahlentheorie svorschläge zur Klausur vom 23.09.2016 a) Bestimmen Sie das multiplikativ inverse Element zu 22 in Z/61Z. b) Finden Sie ein x Z mit folgenden
1 Das RSA-Verfahren und seine algorithmischen Grundlagen
1 Das RSA-Verfahren und seine algorithmischen Grundlagen Das wichtigste d. h., am weitesten verbreitete und am meisten analysierte asymmetrische Verfahren ist das RSA-Verfahren, benannt nach seinen Erfindern
Der diskrete Logarithmus und der Index-Calculus
Der diskrete Logarithmus und der Index-Calculus Uli Schlachter 20. Juli 2012 Uli Schlachter Index Calculus 20. Juli 2012 1 / 26 Inhalt 1 Motivation 2 Der diskrete Logarithmus 3 Der Index-Calculus 4 Implementierung
1.2 Eigenschaften der ganzen Zahlen
Lineare Algebra I WS 2015/16 c Rudolf Scharlau 13 1.2 Eigenschaften der ganzen Zahlen Dieser Abschnitt handelt von den gewöhlichen ganzen Zahlen Z und ihren Verknüpfungen plus und mal. Man kann die natürlichen
Faktorisieren mit dem Quadratischen Sieb
Faktorisieren mit dem Quadratischen Sieb Ein Beitrag zur Didaktik der Algebra und Kryptologie von Ralph-Hardo Schulz und Helmut Witten A Tale of Three Sieves Sieve the twos and sieve the threes The sieve
4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9
Chr.Nelius: Zahlentheorie (SS 2007) 9 4. ggt und kgv (4.1) DEF: Eine ganze Zahl g heißt größter gemeinsamer Teiler (ggt) zweier ganzer Zahlen a und b, wenn gilt: GGT 0 ) g 0 GGT 1 ) g a und g b GGT 2 )
3 Vom Zählen zur Induktion
7 3 Vom Zählen zur Induktion 3.1 Natürliche Zahlen und Induktions-Prinzip Seit unserer Kindheit kennen wir die Zahlen 1,, 3, 4, usw. Diese Zahlen gebrauchen wir zum Zählen, und sie sind uns so vertraut,
Beispiel: Primelemente in den Gaußschen Zahlen
Beispiel: Primelemente in den Gaußschen Zahlen Satz Primelemente in Z[i] Für die Primelemente π Z[i] gilt bis auf Assoziiertheit 1 N(π) = p für ein p P oder 2 π = p für ein p P mit p x 2 + y 2 für (x,
Analysis für Informatiker
Analysis für Informatiker Wintersemester 2017/2018 [email protected] 1 Bemerkung: Dies ist kein Skript, welches den gesamten Inhalt der Vorlesung abdeckt. Es soll den Studierenden aber während
ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe.
ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe. Das heißt, um den ggt von zwei 1000-Bit-Zahlen zu ermitteln,
