Komplexität von Algorithmen
|
|
|
- Rudolf Kirchner
- vor 9 Jahren
- Abrufe
Transkript
1 Komplexität von Algorithmen Prof. Dr. Christian Böhm WS 07/08 in Zusammenarbeit mit Gefei Zhang
2 Ressourcenbedarf - Größenordnungen Prozesse verbrauchen u.a. zwei Ressourcen: Rechenzeit Speicherplatz Die folgenden Größenordnungen geben an, wie viel Rechenzeit oder Speicherplatz verbraucht werden. 2
3 Laufzeitanalyse (1) 1. Ansatz: Direktes Messen der Laufzeit (z.b. in ms): Abhängig von vielen Parametern, wie Rechnerkonfiguration, Rechnerlast, Compiler, Betriebssystem, Deshalb: kaum übertragbar und ungenau 2. Ansatz: Zählen der benötigten Elementaroperationen des Algorithmus in Abhängigkeit von der Größe n der Eingabe Das algorithmische Verhalten wird als Funktion der benötigten Elementaroperationen dargestellt. Die Charakterisierung dieser elementaren Operationen ist abhängig von der jeweiligen Problemstellung und dem zugrunde liegenden Algorithmus. Beispiele für Elementaroperationen: Zuweisungen, Vergleiche, arithmetische Operationen, Zeigerdereferenzierungen oder Arrayzugriffe 3
4 Laufzeitanalyse (2) Das Maß für die Größe n der Eingabe ist abhängig von der Problemstellung, z.b. Suche eines Elementes in einer Liste: n = Anzahl der Elemente Multiplikation zweier Matrizen: n = Dimension der Matrizen Sortierung einer Liste von Zahlen: n = Anzahl der Zahlen Berechnung der k-ten Fibonacci-Zahl: n = k Laufzeit = benötigte Elementaroperationen bei einer bestimmten Eingabelänge n Analog: Speicherplatz = benötigter Speicher bei einer bestimmten Eingabelänge n 4
5 Problem: Hardware-Abhängigkeit Laufzeit einzelner Elementar-Operation ist abhängig von der eingesetzten Rechner-Hardware. Frühere Rechner (incl. heutige PDAs, Mobiltelefone ): billig : Fallunterscheidungen, Wiederholungen mittel : Rechnen mit ganzen Zahlen (Multiplikation usw.) teuer : Rechnen mit reellen Zahlen Heutige Rechner (incl. z.b. Spiele-Konsolen): billig : Rechnen mit reellen und ganzen Zahlen teuer : Fallunterscheidungen 5
6 Asymptotisches Laufzeitverhalten Kleine Probleme (z.b. n=5) sind uninteressant: Die Laufzeit des Programms ist eher bestimmt durch die Initialisierungskosten (Betriebssystem, Programmiersprache etc.) als durch den Algorithmus selbst. Interessanter: Wie verhält sich der Algorithmen bei sehr großen Problemgrößen? Wie verändert sich die Laufzeit, wenn ich die Problemgröße variiere (z.b. Verdopplung der Problemgröße) asymptotisches Laufzeitverhalten 6
7 Definition O-Notation Mit der O-Notation haben Informatiker einen Weg gefunden, die asymptotische Komplexität (bzgl. Laufzeit oder Speicherplatzbedarf) eines Algorithmus zu charakterisieren. Definition O-Notation: Seien f : N N und s : N N zwei Funktionen (s wie Schranke). Die Funktion f ist von der Größenordnung O(s), geschrieben f O(s), wenn es k N und m N gibt, so dass gilt: Für alle n N mit n m ist f (n) k * s(n). 7
8 Bemerkungen zur O-Notation k ist unabhängig von n: k muss dieselbe Konstante sein, die für alle n N garantiert, dass f (n) k * s(n). Existiert KEINE solche Konstante k, ist f nicht von der Größenordnung O(s). O(s) bezeichnet die Menge aller Funktionen, die bezüglich s die Eigenschaft aus der Definition haben. Man findet in der Literatur häufig f = O(s) statt f O(s). Da f nicht gleichzeitig Element von O(s) und gleich zu O(s) sein kann, ist das irreführend. 8
9 Rechnen mit der O-Notation Elimination von Konstanten: 2 n O(n) n/2 +1 O(n) Bei einer Summe zählt nur der am stärksten wachsende Summand (mit dem höchsten Exponenten): 2n 3 + 5n n + 20 O(n 3 ) O(1) O(log n) O(n) O(n log n) O(n 2 ) O(n 3 ) O(2 n ) Beachte: 1000 n 2 ist nach diesem Leistungsmaß immer besser als 0,001 n 3, auch wenn das m, ab dem die O(n 2 )-Funktion unter der O(n 3 )-Funktion verläuft, sehr groß ist (m=1 Million) 9
10 Wichtige Klassen von Funktionen (1) O(1) O(log n) O(n) O(n log n) O(n log² n) O(n²) O(n k ), k 2 O(2 n ) Sprechweise konstant logarithmisch linear quadratisch polynomiell exponentiell Typische Algorithmen / Operationen Addition, Vergleichsoperationen, rekursiver Aufruf, Suchen auf einer sortierten Menge Bearbeiten jedes Elementes einer Menge gute Sortierverfahren primitive Sortierverfahren Ausprobieren von Kombinationen 10
11 Wichtige Klassen von Funktionen (2) Die O-Notation hilft insbesondere bei der Beurteilung, ob ein Algorithmus für großes n noch geeignet ist bzw. erlaubt einen Effizienz- Vergleich zwischen verschiedenen Algorithmen für große n. Schlechtere als polynomielle Laufzeit gilt als nicht effizient. 11
12 Beispiel: Laufzeitanalyse Fakultätsfunktion public static void fak(int n) { int result = 1 ; for (int i=1 ; i<=n ; i++) result *= i ; return result ; } Für die Laufzeit T fak von fak gilt: T fak (n) O(n) Begründung: Die Schleife wird n mal ausgeführt. 12
13 Größter gemeinsamer Teiler Der größte gemeinsame Teiler (ggt) zweier natürlicher Zahlen a und b ist die größte natürliche Zahl, durch die sowohl a als auch b teilbar (d.h. ohne Rest dividierbar) ist. Die Notation t a wird verwendet, um auszudrücken, dass t ein Teiler von a ist (d.h. es gibt ein k N mit a = t * k). Ist t gemeinsamer Teiler von a und b, schreibe t a und t b. 13
14 Primfaktorzerlegung Der ggt von zwei natürlichen Zahlen a und b kann leicht aus der Primfaktorzerlegung von a und b ermittelt werden. Er ist das Produkt aller p n mit: die Primzahl p kommt in jeder der beiden Zerlegungen (einmal) vor, einmal mit Exponent n 1, einmal mit Exponent n 2. n ist das Minimum von n 1 und n 2. Die Zerlegung einer natürlicher Zahl in Primfaktoren ist eine zeitaufwendige Aufgabe, so dass dieser Ansatz zur Berechnung des ggt zweier natürlicher Zahlen ziemlich ineffizient ist. 14
15 Effizienter Ansatz zur Berechnung des ggt zweier natürlicher Zahlen Satz: Seien a N und b N mit a b. Sei r der Rest der Ganzzahldivision von a durch b (d.h. a = (b * c) + r für ein c N). Sei t N. t a und t b genau dann, wenn t b und t r. Daraus folgt, dass der ggt(a, b) zweier natürlicher Zahlen a und b mit a b und a = b * c + r gleich dem ggt(b, r) von b und r ist. 15
16 Beweis: Notwendige Bedingung (von links nach rechts => ) Seien a, b, c und r wie im Satz definiert. Sei angenommen, dass t a und t b. Zu zeigen ist, dass t b und t r gelten. Da nach Annahme t b gilt, reicht es, t r zu zeigen. Da t b gilt, gibt es t b mit b = t * t b. Da t a gilt, gibt es t a mit a = t * t a. Nach Annahme gilt a = b * c + r also t * t a = a = b * c + r = t * t b * c + r, also r = t * t a t* t b * c = t * (t a t b * c ), d.h. t r 16
17 Beweis: Hinreichende Bedingung (von rechts nach links <= ) Seien a, b, c und r wie im Satz definiert. Sei angenommen, dass t b und t r. Zu zeigen ist, dass t a und t b gelten. Da nach Annahme t b gilt, reicht es, t a zu zeigen. Da t b gilt, gibt es t b mit b = t * t b. Da t r gilt, gibt es t r mit r = t * t r. Nach Annahme gilt a = b * c + r also a = t * t b * c + t * t r = t * (t b * c + t r ), d.h. t a qed. 17
18 Endrekursive Funktion zur Berechnung des ggt public static int gcd(int a, int b) { int h; if (a<b) {h=a ; a=b ; b=h} while (b!= 0) { System.out.println ("a=" + a + " b=" + b) ; h = a%b ; a = b ; b = h ; } return a; } Der Algorithmus, den die Funktion ggt implementiert, konvergiert sehr schnell: ggt(150, 60): a=150 b=60 a=60 b=30 18
19 Euklid Dieser Algorithmus zur Berechnung des ggt zweier natürlicher Zahlen wird Euklid (ca. 3. Jh. vor Christus) zugeschrieben, weil er in Euklids Elemente der Mathematik erwähnt ist. Er gilt als der älteste bekannte Algorithmus, weil er im Gegensatz zu anderen überlieferten Algorithmen aus älteren oder sogar jüngeren Zeiten nicht mittels Beispielen, sondern abstrakt (mit Redewendungen anstelle von Variablen) spezifiziert ist. 19
20 Abschätzung der Rechenzeit des Euklid schen Algorithmus Satz (Lamé) Seien a N und b N, so dass a b ist. Benötigt der Euklid sche Algorithmus zur Berechnung von ggt(a, b) insgesamt n Iterationen, so gilt b fib(n), wobei fib(n) die n-te Fibonacci-Zahl ist. fib(0) = 0 ; fib(1) = 1 ; fib(n)=fib(n-1)+fib(n-2) ; Zahlenfolge: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1.597, 2.584, 4.181, 6.765, 20
21 Beweis des Satzes (1) Wir versuchen, die Ausgabe von unten nach oben zu konstruieren, so dass das minimal mögliche b und das minimal mögliche a entsteht: a=8 b=5 (n=5) a=5 b=3 (n=4) a=3 b=2 (n=3) a=2 b=1 (n=2) a=1 b=1 (n=1) (a=1 b=0) (n=0) Was ist das kleinste mögliche a n in Zeile Nummer n, das bei Division durch b n in Zeile n den Rest b n-1 in Zeile (n-1) ergibt? a n = b n + b n-1 b n+1 = b n + b n-1 21
22 Beweis des Satzes (2) Dieses Ergebnis entspricht dem Bildungsgesetz für die Fibonacci- Zahlen. Deshalb kann man die Hypothese aufstellen, dass b 0 fib(n), wenn n die Anzahl der Schleifeniterationen der Funktion ggt während der Berechnung von(a 0, b 0 ) ist (wobei dieser allererste Aufruf nicht mitgezählt wird). 22
23 Bezug zum Goldenen Schnitt Benötigt der Euklid sche Algorithmus zur Berechnung von ggt(a,b) genau n rekursive Aufrufe, so gilt nach dem Satz von Lamé: b fib(n) Φ n (Φ = 1,618 ist der Goldene Schnitt) Daraus folgt, dass asymptotisch, also für große n, gilt (mit der Schreibweise log Φ für den Logarithmus zur Basis Φ): log Φ b n Da es aber eine Konstante k gibt mit log Φ b k *ln b, wobei ln den Logarithmus zur Basis e bezeichnet, gilt asymptotisch auch n k *ln b, also ggt(a,b) O(ln(b)) 23
Abschnitt 7: Komplexität von imperativen Programmen
Abschnitt 7: Komplexität von imperativen Programmen 7. Komplexität von imperativen Programmen 7 Komplexität von imperativen Programmen Einf. Progr. (WS 08/09) 399 Ressourcenbedarf von Algorithmen Algorithmen
Überblick. Notwendigkeit der Rekursion (1)
Überblick 1. Die Prozedur als Kernbegriff der Programmierung 2. Prozeduren zur Bildung von Abstraktionsbarrieren: Lokale Deklarationen 3. Prozeduren versus Prozesse 4. Ressourcenbedarf Größenordnungen
Programmieren und Problemlösen
Dennis Komm Programmieren und Problemlösen Komplexität von Algorithmen Frühling 2019 27. Februar 2019 Komplexität von Algorithmen Aufgabe Primzahltest Schreibe ein Programm, das eine ganze Zahl x als Eingabe
( )= c+t(n-1) n>1. Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3)
Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Motivation: IT gestützte Steuerung, Überwachung, Fertigung, Produktion,. : erfordert effiziente Berechnungsvorschriften Ziel: Methoden kennen
Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3)
Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Technische Universität München Motivation: IT gestützte Steuerung, Überwachung, Fertigung, Produktion,. : erfordert effiziente Berechnungsvorschriften
Kapitel 1: Algorithmen und ihre Analyse
LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS DATABASE Algorithmen und Datenstrukturen Kapitel 1: Algorithmen und ihre Analyse Skript zur Vorlesung Algorithmen und Datenstrukturen
Komplexität von Algorithmen:
Komplexität von Algorithmen: Ansatz: Beschreiben/erfassen der Komplexität über eine Funktion, zur Abschätzung des Rechenaufwandes abhängig von der Größe der Eingabe n Uns interessiert: (1) Wie sieht eine
Prof. Dr. Margarita Esponda
Analyse von Algorithmen Die O-Notation WS 2012/2013 Prof. Dr. Margarita Esponda Freie Universität Berlin 1 Korrekte und effiziente Lösung von Problemen Problem Wesentlicher Teil der Lösung eines Problems.
Prof. Dr. Margarita Esponda
Die O-Notation Analyse von Algorithmen Die O-Notation Prof. Dr. Margarita Esponda Freie Universität Berlin ALP II: Margarita Esponda, 5. Vorlesung, 26.4.2012 1 Die O-Notation Analyse von Algorithmen Korrektheit
Komplexität von Algorithmen
Komplexität von Algorithmen Ziel Angabe der Effizienz eines Algorithmus unabhängig von Rechner, Programmiersprache, Compiler. Page 1 Eingabegröße n n Integer, charakterisiert die Größe einer Eingabe, die
Stabilitätsabschätzungen Vorlesung vom
Stabilitätsabschätzungen Vorlesung vom 8.12.17 Auswertungsbäume zur systematischen Stabilitätsabschätzung Auswertungsbaum: Knoten, gerichtete Kanten, Wurzel, Blätter Zerlegung in Teilbäume Von den Blättern
2. Hausübung Algorithmen und Datenstrukturen
Prof. Dr. Gerd Stumme, Folke Eisterlehner, Dominik Benz Fachgebiet Wissensverarbeitung 7.4.009. Hausübung Algorithmen und Datenstrukturen Sommersemester 009 Abgabetermin: Montag, 04.05.009, 10:00 Uhr 1
Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Rekursion
Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005 Rekursion Rekursion Neue Denkweise Wikipedia: Als Rekursion bezeichnet man den Aufruf
Übung zur Vorlesung Berechenbarkeit und Komplexität
RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Übungsblatt 7 26.11.2012 Übung zur Vorlesung Berechenbarkeit und Komplexität Aufgabe T15 Entwickeln Sie ein
11. Rekursion, Komplexität von Algorithmen
11. Rekursion, Komplexität von Algorithmen Teil 2 Java-Beispiele: Power1.java Hanoi.java K. Bothe, Institut für Informatik, HU Berlin, GdP, WS 2015/16 Version: 23. Nov. 2015 Anwendung der Rekursion Rekursiv
Algorithmen und Datenstrukturen (für ET/IT)
Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2017 Dr. Stefanie Demirci Computer Aided Medical Procedures Technische Universität München Programm heute 1 Einführung 2 Grundlagen von Algorithmen
Lösungsvorschlag Serie 2 Rekursion
(/) Lösungsvorschlag Serie Rekursion. Algorithmen-Paradigmen Es gibt verschiedene Algorithmen-Paradigmen, also grundsätzliche Arten, wie man einen Algorithmus formulieren kann. Im funktionalen Paradigma
Komplexität. G. Zachmann Clausthal University, Germany Leistungsverhalten von Algorithmen
lausthal Informatik II Komplexität von Algorithmen. Zachmann lausthal University, ermany [email protected] Leistungsverhalten von Algorithmen Speicherplatzkomplexität: Wird primärer & sekundärer
Kapitel 10. Komplexität von Algorithmen und Sortieralgorithmen
Kapitel 10 Komplexität von Algorithmen und Sortieralgorithmen Arrays 1 Ziele Komplexität von Algorithmen bestimmen können (in Bezug auf Laufzeit und auf Speicherplatzbedarf) Sortieralgorithmen kennenlernen:
Kapitel 9. Komplexität von Algorithmen und Sortieralgorithmen
Kapitel 9 Komplexität von Algorithmen und Sortieralgorithmen Arrays 1 Ziele Komplexität von Algorithmen bestimmen können (in Bezug auf Laufzeit und auf Speicherplatzbedarf) Sortieralgorithmen kennenlernen:
Kapitel 9. Komplexität von Algorithmen und Sortieralgorithmen
1 Kapitel 9 Komplexität von Algorithmen und Sortieralgorithmen Ziele 2 Komplexität von Algorithmen bestimmen können (in Bezug auf Laufzeit und auf Speicherplatzbedarf) Sortieralgorithmen kennenlernen:
Asymptotik und Laufzeitanalyse
und Vorkurs Informatik SoSe13 08. April 2013 und Algorithmen = Rechenvorschriften Wir fragen uns: Ist der Algorithmus effizient? welcher Algorithmus löst das Problem schneller? wie lange braucht der Algorithmus
Informatik I Komplexität von Algorithmen
Informatik I Komplexität von Algorithmen G. Zachmann Clausthal University, Germany [email protected] Leistungsverhalten von Algorithmen Speicherplatzkomplexität: Wird primärer & sekundärer Speicherplatz
2. Effizienz von Algorithmen
Effizienz von Algorithmen 2. Effizienz von Algorithmen Effizienz von Algorithmen, Random Access Machine Modell, Funktionenwachstum, Asymptotik [Cormen et al, Kap. 2.2,3,4.2-4.4 Ottman/Widmayer, Kap. 1.1]
Kostenmodell. Daniel Graf, Tobias Pröger. 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016)
Kostenmodell Daniel Graf, Tobias Pröger 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016) Erklärung: Diese Mitschrift ist als Ergänzung zur Vorlesung gedacht. Wir erheben keinen Anspruch
Bemerkung: der goldene Schnitt ϕ ist die positive Lösung der Gleichung: x 2 = 1 + x
Rekursive Definition der Fibonacci-Zahlen Erste Werte f 0 = 0, f 1 = 1, f n = f n 1 + f n 2 (n 2) n 0 1 2 3 4 5 6 7 8 9 10... 25... f n 0 1 1 2 3 5 8 13 21 34 55... 75025... Exakte Formel (de Moivre, 1718)
Informatik I Komplexität von Algorithmen
Leistungsverhalten von Algorithmen Informatik I Komplexität von Algorithmen G. Zachmann Clausthal University, Germany [email protected] Speicherplatzkomplexität: Wird primärer & sekundärer Speicherplatz
Algorithmen und Datenstrukturen
Technische Universität München SoSe 2017 Fakultät für Informatik, I-16 Lösungsblatt 4 Dr. Stefanie Demirci 31. Mai 2017 Rüdiger Göbl, Mai Bui Algorithmen und Datenstrukturen Aufgabe 1 Komplexität Berechnung
3.3 Laufzeit von Programmen
3.3 Laufzeit von Programmen Die Laufzeit eines Programmes T(n) messen wir als die Zahl der Befehle, die für die Eingabe n abgearbeitet werden Betrachten wir unser Programm zur Berechnung von Zweierpotenzen,
Grundlagen der Informatik Algorithmen und Komplexität
Grundlagen der Informatik Algorithmen und Komplexität Prof. Dr. Bernhard Schiefer (basierend auf Unterlagen von Prof. Dr. Duque-Antón) [email protected] http://www.fh-kl.de/~schiefer Inhalt Einleitung
Ziele. Kapitel 10: Komplexität von Algorithmen und Sortierverfahren. Beispiel: Lineare Suche eines Elements in einem Array (1)
Einführung in die Informatik: Programmierung und Softwareentwicklung Wintersemester 2018/19 Ziele Kapitel 10: Komplexität von Algorithmen und Sortierverfahren Prof. Dr. David Sabel Lehr- und Forschungseinheit
Numerische Verfahren und Grundlagen der Analysis
Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 16 4. Groß-O R. Steuding (HS-RM)
Form der Äquivalenzklassen
Form der Äquivalenzklassen Anmerkung: Es gilt a = a ± m = a ± 2m =... = a + km mod m für alle k Z. Wir schreiben auch {x Z x = a + mk, k Z} = a + mz. Es gibt m verschiedene Äquivalenzklassen modulo m:
Objektorientierte Programmierung VL: Prof. Dr. Marco Block-Berlitz - Freie Universität Berlin Proinformatik III
Objektorientierte Programmierung VL: Prof. Dr. Marco Block-Berlitz - Freie Universität Berlin Proinformatik III Text: Hinnerk van Bruinehsen - Grafiken: Jens Fischer powered by SDS.mint SoSe 2011 1 Teil
Informatik I: Einführung in die Programmierung
Informatik I: Einführung in die Programmierung 7. Albert-Ludwigs-Universität Freiburg Bernhard Nebel 31. Oktober 2014 1 31. Oktober 2014 B. Nebel Info I 3 / 20 Um zu, muss man zuerst einmal. Abb. in Public
2. Algorithmische Methoden 2.1 Rekursion. 18. April 2017
2. Algorithmische Methoden 2.1 Rekursion 18. April 2017 Rekursiver Algorithmus Ein rekursiver Algorithmus löst ein Problem, indem er eine oder mehrere kleinere Instanzen des gleichen Problems löst. Beispiel
Komplexität von Algorithmen OOPM, Ralf Lämmel
Ganz schön komplex! Komplexität von Algorithmen OOPM, Ralf Lämmel 885 Motivierendes Beispiel Algorithmus Eingabe: ein Zahlen-Feld a der Länge n Ausgabe: Durchschnitt Fragen: sum = 0; i = 0; while (i
AlgoDat Fragen zu Vorlesung und Klausur
AlgoDat Fragen zu Vorlesung und Klausur Hochschule Fulda FB AI Sommersemester 2018 http://ad.rz.hs-fulda.de Peter Klingebiel, HS Fulda, AI Vorab: Was ist wichtig? AlgoDat - Fragen - Peter Klingebiel -
Übung zu Algorithmen und Datenstrukturen (für ET/IT)
Übung zu Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2015 Matthias Wieczorek Computer-Aided Medical Procedures Technische Universität München Administratives Zentralübung (Mittwoch, 09:45
Einstieg in die Informatik mit Java
1 / 32 Einstieg in die Informatik mit Java Effizienz Gerd Bohlender Institut für Angewandte und Numerische Mathematik Gliederung 2 / 32 1 Überblick: was ist Effizienz? 2 Landau-Symbole 3 Eier im Korb 4
3.2. Korrektheit und Komplexität am Beispiel: Sortieren Sortieren ist eine wichtige Basis-Operation für komplexe Algorithmen
3.2. Korrektheit und Komplexität am Beispiel: Sortieren Sortieren ist eine wichtige Basis-Operation für komplexe Algorithmen Sortierproblem Eingabe: Folge von n natürlichen Zahlen a 1, a 2,, a n, die Folge
Einführung in die Informatik I
Einführung in die Informatik I Berechenbarkeit und Komplexität Prof. Dr. Nikolaus Wulff Berechenbarkeit Im Rahmen der Turingmaschine fiel zum ersten Mal der Begriff Berechenbarkeit. Ein Funktion f heißt
Übung zu Algorithmen und Datenstrukturen (für ET/IT)
Übung zu Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2017 Rüdiger Göbl, Mai Bui Computer Aided Medical Procedures Technische Universität München Administratives Zentralübung (Mittwoch, 09:45
2 Wachstumsverhalten von Funktionen
Algorithmen und Datenstrukturen 40 2 Wachstumsverhalten von Funktionen Beim Vergleich der Worst-Case-Laufzeiten von Algorithmen in Abhängigkeit von der Größe n der Eingabedaten ist oft nur deren Verhalten
Folgen und Funktionen in der Mathematik
Folgen und Funktionen in der Mathematik Anhand von einigen exemplarischen Beispielen soll die Implementierung von mathematischen Algorithmen in C/C++ gezeigt werden: Reelle Funktionen in C/C++ Diese wird
1. Asymptotische Notationen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. String Matching 5. Ausgewählte Datenstrukturen
Gliederung 1. Asymptotische Notationen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. String Matching 5. Ausgewählte Datenstrukturen 1/1, Folie 1 2009 Prof. Steffen Lange - HDa/FbI - Effiziente
4 Effizienz und Komplexität 3.1 1
4 Effizienz und Komplexität 3.1 1 Effizienz (efficiency): auf den Ressourcen-Verbrauch bezogene Programmeigenschaft: hohe Effizienz bedeutet geringen Aufwand an Ressourcen. Typische Beispiele: Speichereffizienz
Kapitel 2. Elementare Zahlentheorie Primfaktorzerlegung
Kapitel 2. Elementare Zahlentheorie 2.1. Primfaktorzerlegung Menge der ganzen Zahlen Z = {..., 3, 2, 1, 0, 1, 2, 3,...} Addition Inverse Multiplikation Z Z Z, Z Z, Z Z Z, (a, b) a + b a a (a, b) a b Ausgezeichnete
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Prof. Martin Lercher Institut für Informatik Heinrich-Heine-Universität Düsseldorf Algorithmen und Datenstrukturen Teil 3 Suchen in Listen Version vom: 15. November 2016
Informatik II. Vorlesung am D-BAUG der ETH Zürich. Felix Friedrich & Hermann Lehner FS 2018
1 Informatik II Vorlesung am D-BAUG der ETH Zürich Felix Friedrich & Hermann Lehner FS 2018 23 1. Einführung Algorithmen und Datenstrukturen, erstes Beispiel 24 Ziele der Vorlesung Verständnis des Entwurfs
9. Rekursion. 1 falls n 1 n (n 1)!, andernfalls. Experiment: Die Türme von Hanoi. Links Mitte Rechts. Mathematische Rekursion
Experiment: Die Türme von Hanoi. Rekursion Mathematische Rekursion, Terminierung, der Aufrufstapel, Beispiele, Rekursion vs. Iteration Links Mitte Rechts Mathematische Rekursion Viele mathematische Funktionen
2. Algorithmen und Algorithmisierung Algorithmen und Algorithmisierung von Aufgaben
Algorithmen und Algorithmisierung von Aufgaben 2-1 Algorithmisierung: Formulierung (Entwicklung, Wahl) der Algorithmen + symbolische Darstellung von Algorithmen Formalismen für die symbolische Darstellung
Prof. Dr. Heinrich Müller; Dr. Frank Weichert 7. September 2015
Technische Universität Dortmund Informatik VII (Graphische Systeme) Prof. Dr. Heinrich Müller; Dr. Frank Weichert 7. September 2015 Übungsaufgaben zum Vorkurs Informatik Wintersemester 2015/2016 Teil I
Exponentiation: das Problem Gegeben: (multiplikative) Halbgruppe (H, ), Element a H, n N Aufgabe: berechne das Element
Problemstellung Banale smethode : das Problem Gegeben: (multiplikative) Halbgruppe (H, ), Element a H, n N Aufgabe: berechne das Element a n = } a a a {{ a } H n (schreiben ab jetzt a n statt a n ) Hinweis:
Einführung in die Informatik I
Einführung in die Informatik I LOOP Programme, rekursive Funktionen und der Turm von Hanoi Prof. Dr. Nikolaus Wulff Berechenbarkeit Mitte des 20. Jahrhunderts beantworteten Pioniere, wie Alan M. Turing
Komplexität von Algorithmen
Ziele 2 Komplexität von Algorithmen Zeit- und Speicherplatzbedarf einer Anweisung berechnen können Zeit- und Speicherplatzbedarf einer Methode berechnen können Martin Wirsing Unterschiede der Komplexität
Exponentiation: das Problem
Problemstellung Exponentiation: das Problem Gegeben: (multiplikative) Halbgruppe (H, ), Element a H, n N Aufgabe: berechne das Element a n = } a a a {{ a } H n (schreiben ab jetzt a n statt a n ) Hinweis:
Grundlagen: Algorithmen und Datenstrukturen
Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Dr. Hanjo Täubig Tobias Lieber Sommersemester 2011 Übungsblatt 1 16. September 2011 Grundlagen: Algorithmen und
11. Rekursion. - Wiederholung von Anweisungen: durch Iteration und Rekursion - Anwendungsfälle der Rekursion
11. Rekursion 258 K. Bothe, PI1, WS 2000/01 259 ' ( ) - Wiederholung von Anweisungen: durch Iteration und Rekursion - Anwendungsfälle der Rekursion - induktiv definierte Funktionen - rekursive Problemlösungen
Algorithmen und Datenstrukturen Effizienz und Funktionenklassen
Algorithmen und Datenstrukturen Effizienz und Funktionenklassen Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Lernziele der Vorlesung Algorithmen Sortieren,
Das O-Tutorial. 1 Definition von O, Ω, Θ, o und ω
Definition von O, Ω, Θ, o und ω Das O-Tutorial Seien f und g zwei Funktionen von N nach R 0. Hierbei bezeichne R 0 die nicht-negativen reellen Zahlen. Die Funktionsmengen O, Ω, Θ, o und ω sind wie folgt
Kapitel III Ringe und Körper
Kapitel III Ringe und Körper 1. Definitionen und Beispiele Definition 117 Eine Algebra A = S,,, 0, 1 mit zwei zweistelligen Operatoren und heißt ein Ring, falls R1. S,, 0 eine abelsche Gruppe mit neutralem
2: Restklassen 2.1: Modulare Arithmetik
2: Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32, 64} Prüfziffern mod 10 oder mod 11... 71 S. Lucks Diskr Strukt.
Übung zu Algorithmen und Datenstrukturen (für ET/IT)
Übung zu Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2017 Rüdiger Göbl, Mai Bui Computer Aided Medical Procedures Technische Universität München Fibonacci Zahlen Fibonacci Folge Die Fibonacci
Volker Kaatz. Faktorisierung. Faktorisierung. Problem und Algorithmen. Relevanz in der Kryptographie
Faktorisierung Problem und Algorithmen Relevanz in der Kryptographie Inhalt Begriff Faktorisierung Algorithmen (Übersicht) Strategie und Komplexität Pollard p-1 Algorithmus Pseudocode, mathematische Basis,
11. Rekursion, Komplexität von Algorithmen
nwendung der Rekursion 11. Rekursion, Komplexität von lgorithmen Teil 2 Java-eispiele: Power1.java Hanoi.java Rekursiv definierte Funktionen - Fibonacci-Funktion - Fakultät, Potenz -... Rekursiver ufbau
Kapitel 3 Zur Korrektheit und Effizienz von Algorithmen
Kapitel 3 Zur Korrektheit und Effizienz von Algorithmen Ziel: Kurze Einführung in den Pseudocode zur Beschreibung von Algorithmen Induktionsbeweise als wichtiges Hilfsmittel, um die Korrektheit eines Algorithmus
Übung Algorithmen und Datenstrukturen
Übung Algorithmen und Datenstrukturen Sommersemester 2017 Marc Bux, Humboldt-Universität zu Berlin Agenda 1. Die Landau-Notation (Wiederholung und Vertiefung) 2. Vorbereitung Aufgabenblatt 1, Aufgabe 1
lim log 2n n = > 0 Da es einen Limes gibt, gibt es auch einen Limes inferior, der gleich diesem Limes ist.
Prof. aa Dr. Ir. Joost-Pieter Katoen Christian Dehnert, Jonathan Heinen, Thomas Ströder, Sabrina von Styp Aufgabe 1 (O-Notation): Beweisen oder widerlegen Sie die folgenden Aussagen: (3 + 3 + 4 = 10 Punkte)
2. Grundlagen. Beschreibung von Algorithmen durch Pseudocode. Korrektheit von Algorithmen durch Invarianten.
2. Grundlagen Beschreibung von Algorithmen durch Pseudocode. Korrektheit von Algorithmen durch Invarianten. Laufzeitverhalten beschreiben durch O-Notation. 1 Beispiel Minimum-Suche Eingabe bei Minimum
Übersicht Datenstrukturen und Algorithmen. Literatur. Algorithmus: Wikipedia Definition. Vorlesung 1: Einführung. Prof. Dr.
Übersicht Datenstrukturen und Vorlesung 1: Prof. Dr. Erika Ábrahám Theorie Hybrider Systeme Informatik 2 http://ths.rwth-aachen.de/teaching/ss-14/ datenstrukturen-und-algorithmen/ Diese Präsentation verwendet
Hallo Welt für Fortgeschrittene
Hallo Welt für Fortgeschrittene Zahlentheorie, Arithmetik und Algebra II Benjamin Fischer Informatik 2 Programmiersysteme Martensstraße 3 91058 Erlangen Gliederung Lineare Rekursion BigInteger Chinesischer
Algorithmen und Datenstrukturen 1. EINLEITUNG. Algorithmen und Datenstrukturen - Ma5hias Thimm 1
Algorithmen und Datenstrukturen 1. EINLEITUNG Algorithmen und Datenstrukturen - Ma5hias Thimm ([email protected]) 1 Allgemeines Einleitung Zu den Begriffen: Algorithmen und Datenstrukturen systematische
Algorithmen und Datenstrukturen 04
(17. Mai 2012) 1 Besprechung Blatt 3 Hinweise 2 Induktion Allgemeines Beispiele 3 Rekursion Lineare Rekursion und Endrekursion Entrekursivierung Weitere Rekursionstypen 4 O-Kalkül Allgemein Wichtige Formeln
3.2. Divide-and-Conquer-Methoden
LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS DATABASE 3.2. Divide-and-Conquer-Methoden Divide-and-Conquer-Methoden Einfache Sortieralgorithmen reduzieren die Größe des noch
Software Entwicklung 1
Software Entwicklung 1 Annette Bieniusa AG Softech FB Informatik TU Kaiserslautern Lernziele Rekursive Prozeduren zu charakterisieren. Terminierung von rekursiven Prozeduren mit Hilfe von geeigneten Abstiegsfunktionen
Algorithmik Übung 2 Prof. Dr. Heiner Klocke Winter 11/
Algorithmik Übung 2 Prof. Dr. Heiner Klocke Winter 11/12 23.10.2011 Themen: Asymptotische Laufzeit von Algorithmen Experimentelle Analyse von Algorithmen Aufgabe 1 ( Asymptotische Laufzeit ) Erklären Sie,
Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Definition Algorithmus. Wie beschreibt man Algorithmen?
Programm heute Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2015 1 Einführung Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München 2 Grundlagen von Algorithmen
ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe.
ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe. Das heißt, um den ggt von zwei 1000-Bit-Zahlen zu ermitteln,
Algorithmen und Datenstrukturen (für ET/IT)
Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2016 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm heute 1 Einführung 2 Grundlagen von Algorithmen
UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1. Übung 5. Asymptotische Laufzeitkomplexität Definition Regeln Beispiele
UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1 Übung 5 Asymptotische Laufzeitkomplexität Definition Regeln Beispiele Institut für Pervasive Computing Johannes Kepler Universität Linz Altenberger
Übung zu Algorithmen und Datenstrukturen (für ET/IT)
Übung zu Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2017 Rüdiger Göbl, Mai Bui Computer Aided Medical Procedures Technische Universität München Wiederholung: Validation Validation: nicht-formaler
