2. Effizienz von Algorithmen
|
|
|
- Bernhard Schwarz
- vor 8 Jahren
- Abrufe
Transkript
1 Effizienz von Algorithmen 2. Effizienz von Algorithmen Effizienz von Algorithmen, Random Access Machine Modell, Funktionenwachstum, Asymptotik [Cormen et al, Kap. 2.2,3, Ottman/Widmayer, Kap. 1.1] Ziele Laufzeitverhalten eines Algorithmus maschinenunabhängig quantifizieren. Effizienz von Algorithmen vergleichen. Abhängigkeit von der Eingabegrösse verstehen Technologiemodell Grösse der Eingabedaten Random Access Machine (RAM) Ausführungsmodell: Instruktionen werden der Reihe nach (auf einem Prozessorkern) ausgeführt. Speichermodell: Konstante Zugriffszeit. Elementare Operationen: Rechenoperation (+,,,...), Vergleichsoperationen, Zuweisung / Kopieroperation, Flusskontrolle (Sprünge) Einheitskostenmodell: elementare Operation hat Kosten 1. Datentypen: Fundamentaltypen wie grössenbeschränkte Ganzzahl oder Fliesskommazahl. Typisch: Anzahl Eingabeobjekte (von fundamentalem Typ). Oftmals: Anzahl Bits für eine vernünftige / kostengünstige Repräsentation der Daten
2 Asymptotisches Verhalten Genaue Laufzeit lässt sich selbst für kleine Eingabedaten kaum voraussagen. Betrachten das asymptotische Verhalten eines Algorithmus. Ignorieren alle konstanten Faktoren. Beispiel Eine Operation mit Kosten 20 ist genauso gut wie eine mit Kosten 1. Lineares Wachstum mit Steigung 5 ist genauso gut wie lineares Wachstum mit Steigung Funktionenwachstum O, Θ, Ω [Cormen et al, Kap. 3; Ottman/Widmayer, Kap. 1.1] Oberflächlich Genauer: Asymptotische obere Schranke Gegeben: Funktion f : N R. Verwende die asymptotische Notation zur Kennzeichnung der Laufzeit von Algorithmen Wir schreiben Θ(n 2 ) und meinen, dass der Algorithmus sich für grosse n wie n 2 verhält: verdoppelt sich die Problemgrösse, so vervierfacht sich die Laufzeit. Definition: O(g) = {f : N R c > 0, n 0 N : 0 f(n) c g(n) n n 0 } Schreibweise: O(g(n)) := O(g( )) = O(g)
3 Anschauung Beispiele g(n) = n 2 f O(g) h O(g) O(g) = {f : N R c > 0, n 0 N : 0 f(n) c g(n) n n 0 } f(n) f O(?) Beispiel 3n + 4 O(n) c = 4, n 0 = 4 2n O(n) c = 2, n 0 = 0 n n O(n 2 ) c = 2, n 0 = 100 n + n O(n) c = 2, n 0 = 1 n Eigenschaft Umkehrung: Asymptotische untere Schranke f 1 O(g), f 2 O(g) f 1 + f 2 O(g) Gegeben: Funktion f : N R. Definition: Ω(g) = {f : N R c > 0, n 0 N : 0 c g(n) f(n) n n 0 } 80 81
4 Beispiel Asymptotisch scharfe Schranke h Ω(g) f Ω(g) g(n) = n Gegeben Funktion f : N R. Definition: Θ(g) := Ω(g) O(g). Einfache, geschlossene Form: Übung. n Beispiel Wachstumsbezeichnungen g(n) = n 2 f Θ(n 2 ) h(n) = 0.5 n 2 O(1) beschränkt Array-Zugriff O(log log n) doppelt logarithmisch Binäre sortierte Suche interpoliert O(log n) logarithmisch Binäre sortierte Suche O( n) wie die Wurzelfunktion Primzahltest (naiv) O(n) linear Unsortierte naive Suche O(n log n) superlinear / loglinear Gute Sortieralgorithmen O(n 2 ) quadratisch Einfache Sortieralgorithmen O(n c ) polynomial Matrixmultiplikation O(2 n ) exponentiell Travelling Salesman Dynamic Programming O(n!) faktoriell Travelling Salesman naiv 84 85
5 Kleine n Grössere n 60 n 4 2 n n n n ln n n 4 n 2 log n Grosse n Logarithmen! n 1, n n 4 n log n n 3/2 n log n n log n
6 Zeitbedarf Annahme: 1 Operation = 1µs. Problemgrösse log 2 n 1µs 7µs 13µs 20µs 30µs n 1µs 100µs 1/100s 1s 17 Minuten n log 2 n 1µs 700µs 13/100µs 20s 8.5 Stunden n 2 1µs 1/100s 1.7 Minuten 11.5 Tage 317 Jahrhund. 2 n 1µs Jahrh. Eine gute Strategie?... dann kaufe ich mir eben eine neue Maschine! Wenn ich heute ein Problem der Grösse n lösen kann, dann kann ich mit einer 10 oder 100 mal so schnellen Maschine... Komplexität (speed 10) (speed 100) log 2 n n n 10 n n 100 n n 10 n n 100 n n 2 n 3.16 n n 10 n 2 n n n n n Beispiele Nützliches n O(n 2 ) korrekt, aber ungenau: n O(n) und sogar n Θ(n). 3n 2 O(2n 2 ) korrekt, aber unüblich: Konstanten weglasssen: 3n 2 O(n 2 ). 2n 2 O(n) ist falsch: 2n2 cn = 2 c n n! O(n) O(n 2 ) ist korrekt Θ(n) Θ(n 2 ) ist falsch: n Ω(n 2 ) Θ(n 2 ) Theorem Seien f, g : N R + zwei Funktionen. Dann gilt: f(n) 1 lim n g(n) f(n) 2 lim n g(n) 3 f(n) g(n) = 0 f O(g), O(f) O(g). = C > 0 (C konstant) f Θ(g). n g O(f), O(g) O(f)
7 Zur Notation Algorithmen, Programme und Laufzeit Übliche Schreibweise f = O(g) ist zu verstehen als f O(g). Es gilt nämlich f 1 = O(g), f 2 = O(g) f 1 = f 2! Beispiel n = O(n 2 ), n 2 = O(n 2 ) aber natürlich n n 2. Programm: Konkrete Implementation eines Algorithmus. Laufzeit des Programmes: messbarer Wert auf einer konkreten Maschine. Kann sowohl nach oben, wie auch nach unten abgeschätzt werden. Beispiel Rechner mit 3 GHz. Maximale Anzahl Operationen pro Taktzyklus (z.b. 8). untere Schranke. Einzelne Operation dauert mit Sicherheit nie länger als ein Tag obere Schranke. Asymptotisch gesehen stimmen die Schranken überein Komplexität Komplexität eines Problems P : minimale (asymptotische) Kosten über alle Algorithmen A, die P lösen. Komplexität der Elementarmultiplikation zweier Zahlen der Länge n ist Ω(n) und O(n log 3 2 ) (Karatsuba Ofman). Exemplarisch: Problem Komplexität O(n) O(n) O(n 2 ) Algorithmus Kosten 2 3n 4 O(n) Θ(n 2 ) Programm Laufzeit Θ(n) O(n) Θ(n 2 ) 3. Algorithmenentwurf Maximum Subarray Problem [Ottman/Widmayer, Kap. 1.3] Divide and Conquer [Ottman/Widmayer, Kap S.9; Cormen et al, Kap ] 2 Anzahl Elementaroperationen 96 97
8 Algorithmenentwurf Induktive Entwicklung eines Algorithmus: Zerlegung in Teilprobleme, Verwendung der Lösungen der Teilproblem zum Finden der endgültigen Lösung. Ziel: Entwicklung des asymptotisch effizientesten (korrekten) Algorithmus. Effizienz hinsichtlich der Laufzeitkosten (# Elementaroperationen) oder / und Speicherbedarf. Maximum Subarray Problem Gegeben: ein Array von n rationalen Zahlen (a 1,..., a n ). Gesucht: Teilstück [i, j], 1 i j n mit maximaler positiver Summe j k=i a k. Beispiel: a = (7, 11, 15, 110, 23, 3, 127, 12, 1) k a k = max Naiver Maximum Subarray Algorithmus Input : Eine Folge von n Zahlen (a 1, a 2,..., a n ) Output : I, J mit J k=i a k maximal. M 0; I 1; J 0 for i {1,..., n} do for j {i,..., n} do m = j k=i a k if m > M then M m; I i; J j return I, J Analyse Theorem Der naive Algorithmus für das Maximum Subarray Problem führt Θ(n 3 ) Additionen durch. Beweis: i=1 (j i) = j=i = = 1 2 n i j = i=1 n 1 i=0 j=0 i (i + 1) 2 n i (n i)(n i + 1) j == 2 i=1 j=1 i=1 ( = 1 n 1 ) n 1 i 2 + i 2 i=0 ( Θ(n 3 ) + Θ(n 2 ) ) = Θ(n 3 ). i=
9 Beobachtung Präfixsummen ( j j ) a k = a k k=i k=1 } {{ } S j S i := i a k. k=1 ( i 1 ) a k k=1 } {{ } S i 1 Maximum Subarray Algorithmus mit Präfixsummen Input : Eine Folge von n Zahlen (a 1, a 2,..., a n ) Output : I, J mit J k=j a k maximal. S 0 0 for i {1,..., n} do // Präfixsumme S i S i 1 + a i M 0; I 1; J 0 for i {1,..., n} do for j {i,..., n} do m = S j S i 1 if m > M then M m; I i; J j Analyse Theorem Der Präfixsummen Algorithmus für das Maximum Subarray Problem führt Θ(n 2 ) Additionen und Subtraktionen durch. Beweis: 1 + i=1 i=1 1 = n + j=i (n i + 1) = n + i=1 i = Θ(n 2 ) i=1 divide et impera Teile und (be)herrsche (engl. divide and conquer) Zerlege das Problem in Teilprobleme, deren Lösung zur vereinfachten Lösung des Gesamtproblems beitragen. Problem P P 22 P 2 P 21 S 22 S 21 S 2 Solution P 12 P 1 P 11 S 12 S S
10 Maximum Subarray Divide Maximum Subarray Conquer Sind i, j die Indizes einer Lösung Fallunterscheidung: 1 Lösung in linker Hälfte 1 i j n/2 Rekursion (linke Hälfte) Divide: Teile das Problem in zwei (annähernd) gleiche Hälften auf: (a 1,..., a n ) = (a 1,..., a n/2, a n/2 +1,..., a 1 ) Vereinfachende Annahme: n = 2 k für ein k N. 2 Lösung in rechter Hälfte n/2 < i j n Rekursion (rechte Hälfte) 3 Lösung in der Mitte 1 i n/2 < j n Nachfolgende Beobachtung (1) (3) (2) 1 n/2 n/2 + 1 n Maximum Subarray Beobachtung Annahme: Lösung in der Mitte 1 i n/2 < j n n/2 j j S max = a k = a k + max 1 i n/2 n/2<j n k=i n/2 = max 1 i n/2 k=i a k + max 1 i n/2 n/2<j n k=i j max a k n/2<j n k=n/2+1 = max S n/2 S i 1 + max 1 i n/2 }{{} S j S n/2 n/2<j n }{{} Suffixsumme Präfixsumme k=n/2+1 a k Maximum Subarray Divide and Conquer Algorithmus Input : Eine Folge von n Zahlen (a 1, a 2,..., a n ) Output : Maximales j k=i a k. if n = 1 then return max{a 1, 0} else Unterteile a = (a 1,..., a n ) in A 1 = (a 1,..., a n/2 ) und A 2 = (a n/2+1,..., a n ) Berechne rekursiv beste Lösung W 1 in A 1 Berechne rekursiv beste Lösung W 2 in A 2 Berechne grösste Suffixsumme S in A 1 Berechne grösste Präfixsumme P in A 2 Setze W 3 S + P return max{w 1, W 2, W 3 }
11 Analyse Theorem Der Divide and Conquer Algorithmus für das Maximum Subarray Sum Problem führt Θ(n log n) viele Additionen und Vergleiche durch. Analyse Input : Eine Folge von n Zahlen (a 1, a 2,..., a n ) Output : Maximales j k=i a k. if n = 1 then Θ(1) return max{a 1, 0} else Θ(1) Unterteile a = (a 1,..., a n ) in A 1 = (a 1,..., a n/2 ) und A 2 = (a n/2+1,..., a n ) T (n/2) Berechne rekursiv beste Lösung W 1 in A 1 T (n/2) Berechne rekursiv beste Lösung W 2 in A 2 Θ(n) Berechne grösste Suffixsumme S in A 1 Θ(n) Berechne grösste Präfixsumme P in A 2 Θ(1) Setze W 3 S + P Θ(1) return max{w 1, W 2, W 3 } Analyse Analyse Rekursionsgleichung T (n) = { c falls n = 1 2T ( n 2 ) + a n falls n > 1 Mit n = 2 k : Lösung: T (k) = { c falls k = 0 2T (k 1) + a 2 k falls k > 0 k 1 T (k) = 2 k c + 2 i a 2 k i = c 2 k + a k 2 k = Θ(k 2 k ) i=0 112 also T (n) = Θ(n log n) 113
12 Maximum Subarray Sum Problem Induktiv Annahme: Maximaler Wert M i 1 der Subarraysumme für (a 1,..., a i 1 ) (1 < i n) bekannt. M i 1 R i 1 scan 1 i 1 i n a i : erzeugt höchstens Intervall am Rand (Präfixsumme). R i 1 R i = max{r i 1 + a i, 0} Induktiver Maximum Subarray Algorithmus Input : Eine Folge von n Zahlen (a 1, a 2,..., a n ). Output : max{0, max j i,j k=i a k}. M 0 R 0 for i = 1... n do R R + a i if R < 0 then R 0 if R > M then M R return M; Analyse Theorem Der induktive Algorithmus für das Maximum Subarray Sum Problem führt Θ(n) viele Additionen und Vergleiche durch. Komplexität des Problems? Geht es besser als Θ(n)? Jeder korrekte Algorithmus für das Maximum Subarray Sum Problem muss jedes Element im Algorithmus betrachten. Annahme: der Algorithmus betrachtet nicht a i. 1 Lösung des Algorithmus enthält a i. Wiederholen den Algorithmus mit genügend kleinem a i, so dass die Lösung den Punkt nicht enthalten hätte dürfen. 2 Lösung des Algorithmus enthält a i nicht. Wiederholen den Algorithmus mit genügend grossem a i, so dass die Lösung a i hätten enthalten müssen
13 Komplexität des Maximum Subarray Sum Problems Theorem Das Maximum Subarray Sum Problem hat Komplexität Θ(n). Beweis: Induktiver Algorithmus mit asymptotischer Laufzeit O(n). Jeder Algorithmus hat Laufzeit Ω(n). Somit ist die Komplexität Ω(n) O(n) = Θ(n). 118
Übung Algorithmen und Datenstrukturen
Übung Algorithmen und Datenstrukturen Sommersemester 2016 Patrick Schäfer, Humboldt-Universität zu Berlin Organisation Vorlesung: Montag 11 13 Uhr Marius Kloft RUD 26, 0 115 Mittwoch 11 13 Uhr Marius Kloft
Kostenmodell. Daniel Graf, Tobias Pröger. 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016)
Kostenmodell Daniel Graf, Tobias Pröger 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016) Erklärung: Diese Mitschrift ist als Ergänzung zur Vorlesung gedacht. Wir erheben keinen Anspruch
Algorithmen und Datenstrukturen I Grundlagen
Algorithmen und Datenstrukturen I Grundlagen Prof. Dr. Oliver Braun Letzte Änderung: 01.11.2017 14:15 Algorithmen und Datenstrukturen I, Grundlagen 1/24 Algorithmus es gibt keine präzise Definition Handlungsvorschrift
Algorithmen und Datenstrukturen Effizienz und Funktionenklassen
Algorithmen und Datenstrukturen Effizienz und Funktionenklassen Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Lernziele der Vorlesung Algorithmen Sortieren,
V. Claus, Juli 2005 Einführung in die Informatik II 45
Um die Größenordnung einer reellwertigen oder ganzzahligen Funktion zu beschreiben, verwenden wir die so genannten Landau-Symbole (nach dem deutschen Mathematiker Edmund Landau, 1877-1938). Hierbei werden
Programmiertechnik II
Analyse von Algorithmen Algorithmenentwurf Algorithmen sind oft Teil einer größeren Anwendung operieren auf Daten der Anwendung, sollen aber unabhängig von konkreten Typen sein Darstellung der Algorithmen
Objektorientierte Programmierung VL: Prof. Dr. Marco Block-Berlitz - Freie Universität Berlin Proinformatik III
Objektorientierte Programmierung VL: Prof. Dr. Marco Block-Berlitz - Freie Universität Berlin Proinformatik III Text: Hinnerk van Bruinehsen - Grafiken: Jens Fischer powered by SDS.mint SoSe 2011 1 Teil
Algorithmen und Datenstrukturen
Universität Innsbruck Institut für Informatik Zweite Prüfung 16. Oktober 2008 Algorithmen und Datenstrukturen Name: Matrikelnr: Die Prüfung besteht aus 8 Aufgaben. Die verfügbaren Punkte für jede Aufgabe
Algorithmen und Datenstrukturen 1-1. Seminar -
Algorithmen und Datenstrukturen 1-1. Seminar - Dominic Rose Bioinformatics Group, University of Leipzig Wintersemester 2009/10 Inhalt der ersten beiden Vorlesungen Algorithmenbegriff Komplexität, Asymptotik
8. Sortieren II. 8.1 Heapsort. Heapsort. [Max-]Heap 6. Heapsort, Quicksort, Mergesort. Binärer Baum mit folgenden Eigenschaften
Heapsort, Quicksort, Mergesort 8. Sortieren II 8.1 Heapsort [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6] 9 210 Heapsort [Max-]Heap 6 Inspiration von Selectsort: Schnelles Einfügen Binärer Baum mit
Komplexität. G. Zachmann Clausthal University, Germany Leistungsverhalten von Algorithmen
lausthal Informatik II Komplexität von Algorithmen. Zachmann lausthal University, ermany [email protected] Leistungsverhalten von Algorithmen Speicherplatzkomplexität: Wird primärer & sekundärer
Grundlagen: Algorithmen und Datenstrukturen
Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2010
2. Grundlagen. Beschreibung von Algorithmen durch Pseudocode. Korrektheit von Algorithmen durch Invarianten.
2. Grundlagen Beschreibung von Algorithmen durch Pseudocode. Korrektheit von Algorithmen durch Invarianten. Laufzeitverhalten beschreiben durch O-Notation. 1 Beispiel Minimum-Suche Eingabe bei Minimum
Algorithmen und Datenstrukturen (für ET/IT)
Algorithmen und Datenstrukturen (für ET/IT) Wintersemester 2012/13 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm heute 1 Einführung 2 Mathematische Grundlagen
Algorithmik Kap. 2: Laufzeit von Algorithmen
1. Motivation 1.1 Fallstudie: Sortieralgorithmen 1.2 Fallstudie: Selektionsalgorithmen 2. Laufzeit von Algorithmen 2.1 Grundlagen 2.2 3. Paradigmen des Algorithmenentwurfs 3.1 Dynamisches Programmieren
Algorithmen und Datenstrukturen Kapitel 1 Algorithmen & Algorithmenanalyse
Algorithmen und Datenstrukturen Kapitel 1 Algorithmen & Frank Heitmann [email protected] 14. Oktober 2015 Frank Heitmann [email protected] 1/48 Der Sprung ins Wasser...
Notation für das asymptotische Verhalten von Funktionen
Vorbemerkungen: Notation für das asymptotische Verhalten von Funktionen 1. Aussagen über die Komplexität von Algorithmen und von Problemen sollen (in der Regel) unabhängig von speziellen Maschinenmodellen
Grundlagen: Algorithmen und Datenstrukturen
Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Dr. Hanjo Täubig Tobias Lieber Sommersemester 2011 Übungsblatt 1 16. September 2011 Grundlagen: Algorithmen und
Informatik II. Algorithmen und Datenstrukturen. Vorläufige Version 1 c 2002 Peter Thiemann
Informatik II Algorithmen und Datenstrukturen Vorläufige Version 1 c 2002 Peter Thiemann 1 Einführung 1.1 Inhalt Wichtige Datentypen und ihre Implementierung (Datenstrukturen) Operationen auf Datenstrukturen
UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1. Übung 5. Asymptotische Laufzeitkomplexität Definition Regeln Beispiele
UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1 Übung 5 Asymptotische Laufzeitkomplexität Definition Regeln Beispiele Institut für Pervasive Computing Johannes Kepler Universität Linz Altenberger
Übung Algorithmen und Datenstrukturen
Übung Algorithmen und Datenstrukturen Sommersemester 2017 Marc Bux, Humboldt-Universität zu Berlin Organisatorisches Vorlesung: Montag 11 13 Uhr Ulf Leser RUD 26, 0 115 Mittwoch 11 13 Uhr Ulf Leser RUD
Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g:
TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 2 Prof. Dr. Helmut Seidl, S. Pott,
Effizienz von Algorithmen
Effizienz von Algorithmen Eine Einführung Michael Klauser LMU 30. Oktober 2012 Michael Klauser (LMU) Effizienz von Algorithmen 30. Oktober 2012 1 / 39 Ein einführendes Beispiel Wie würdet ihr einen Stapel
Datenstrukturen und Algorithmen
Datenstrukturen und Algorithmen VO 708.031 27.10.2011 [email protected] 1 Wiederholung Wir vergleichen Algorithmen anhand des ordnungsmäßigen Wachstums von T(n), S(n), Asymptotische Schranken: O-Notation:
Komplexität von Algorithmen
Komplexität von Algorithmen Prof. Dr. Christian Böhm WS 07/08 in Zusammenarbeit mit Gefei Zhang http://www.dbs.informatik.uni-muenchen.de/lehre/nfinfosw Ressourcenbedarf - Größenordnungen Prozesse verbrauchen
Algorithmen und Datenstrukturen
1 Algorithmen und Datenstrukturen Wintersemester 2014/15 3. Vorlesung Laufzeitanalyse Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Recap: Diskutieren Sie mit Ihrer NachbarIn! 1. 2. 3. Was sind
Komplexität von Algorithmen OOPM, Ralf Lämmel
Ganz schön komplex! Komplexität von Algorithmen OOPM, Ralf Lämmel 885 Motivierendes Beispiel Algorithmus Eingabe: ein Zahlen-Feld a der Länge n Ausgabe: Durchschnitt Fragen: sum = 0; i = 0; while (i
3.3 Laufzeit von Programmen
3.3 Laufzeit von Programmen Die Laufzeit eines Programmes T(n) messen wir als die Zahl der Befehle, die für die Eingabe n abgearbeitet werden Betrachten wir unser Programm zur Berechnung von Zweierpotenzen,
Komplexität von Algorithmen:
Komplexität von Algorithmen: Ansatz: Beschreiben/erfassen der Komplexität über eine Funktion, zur Abschätzung des Rechenaufwandes abhängig von der Größe der Eingabe n Uns interessiert: (1) Wie sieht eine
Vorlesung Datenstrukturen
Vorlesung Datenstrukturen Einleitung und Grundlagen Maike Buchin 18.4.2017 Verantwortliche Dozentin Organisation der Übungen Übungsleiter Korrekteure Maike Buchin [email protected] Raum NA 1/70 Sprechzeiten:
Algorithmik Übung 2 Prof. Dr. Heiner Klocke Winter 11/
Algorithmik Übung 2 Prof. Dr. Heiner Klocke Winter 11/12 23.10.2011 Themen: Asymptotische Laufzeit von Algorithmen Experimentelle Analyse von Algorithmen Aufgabe 1 ( Asymptotische Laufzeit ) Erklären Sie,
Informatik I Komplexität von Algorithmen
Informatik I Komplexität von Algorithmen G. Zachmann Clausthal University, Germany [email protected] Leistungsverhalten von Algorithmen Speicherplatzkomplexität: Wird primärer & sekundärer Speicherplatz
Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 3, Donnerstag 6.
Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 3, Donnerstag 6. November 2014 (O-Notation, Theta, Omega) Junior-Prof. Dr. Olaf Ronneberger
Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra
Effiziente Algorithmen und Datenstrukturen I Kapitel 10: Lineare Algebra Christian Scheideler WS 2008 19.02.2009 Kapitel 10 1 Überblick Notation Arithmetik auf großen Zahlen (Addition und Multiplikation)
4 Effizienz und Komplexität 3.1 1
4 Effizienz und Komplexität 3.1 1 Effizienz (efficiency): auf den Ressourcen-Verbrauch bezogene Programmeigenschaft: hohe Effizienz bedeutet geringen Aufwand an Ressourcen. Typische Beispiele: Speichereffizienz
Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?
Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
Achtung: Groß O definiert keine totale Ordnungsrelation auf der Menge aller Funktionen! Beweis: Es gibt positive Funktionen f und g so, dass
Achtung: Groß O definiert keine totale Ordnungsrelation auf der Menge aller Funktionen! Beweis: Es gibt positive Funktionen f und g so, dass f O g und auch g O f. Wähle zum Beispiel und G. Zachmann Informatik
Abschnitt: Algorithmendesign und Laufzeitanalyse
Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher
Datenstrukturen, Algorithmen und Programmierung 2
Datenstrukturen, Algorithmen und Programmierung 2 Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 2. VO SS 2009 16. April 2009 1 Überblick Asymptotische Schranken
1 Minimumssuche k = n Maximumssuche n. Median
Kapitel 1 Einführung Anhand des folgenden Problems soll deutlich gemacht werden, welche Schwierigkeiten beim Vergleich verschiedener Lösungsansätze auftreten können, um dann einige sinnvolle Kriterien
2 Wachstumsverhalten von Funktionen
Algorithmen und Datenstrukturen 40 2 Wachstumsverhalten von Funktionen Beim Vergleich der Worst-Case-Laufzeiten von Algorithmen in Abhängigkeit von der Größe n der Eingabedaten ist oft nur deren Verhalten
Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3)
Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Technische Universität München Motivation: IT gestützte Steuerung, Überwachung, Fertigung, Produktion,. : erfordert effiziente Berechnungsvorschriften
Informatik I Komplexität von Algorithmen
Leistungsverhalten von Algorithmen Informatik I Komplexität von Algorithmen G. Zachmann Clausthal University, Germany [email protected] Speicherplatzkomplexität: Wird primärer & sekundärer Speicherplatz
Isomorphismus. Definition Gruppen-Isomorphismus. Seien (G, +) und (G, ) Gruppen. Die Abbildung f : G G heißt Gruppen-Isomorphismus, falls gilt
Isomorphismus Definition Gruppen-Isomorphismus Seien (G, +) und (G, ) Gruppen. Die Abbildung f : G G heißt Gruppen-Isomorphismus, falls gilt 1 f ist bijektiv f (u + v) = f (u) f (v) für alle u, v G, die
( )= c+t(n-1) n>1. Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3)
Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Motivation: IT gestützte Steuerung, Überwachung, Fertigung, Produktion,. : erfordert effiziente Berechnungsvorschriften Ziel: Methoden kennen
f 1 (n) = log(n) + n 2 n 5 f 2 (n) = n 3 + n 2 f 3 (n) = log(n 2 ) f 4 (n) = n n f 5 (n) = (log(n)) 2
Prof. aa Dr. E. Ábrahám Datenstrukturen und Algorithmen SS Lösung - Präsenzübung.05.0 F. Corzilius, S. Schupp, T. Ströder Aufgabe (Asymptotische Komplexität): (6 + 0 + 6 = Punkte) a) Geben Sie eine formale
Prof. Dr. Margarita Esponda
Die O-Notation Analyse von Algorithmen Die O-Notation Prof. Dr. Margarita Esponda Freie Universität Berlin ALP II: Margarita Esponda, 5. Vorlesung, 26.4.2012 1 Die O-Notation Analyse von Algorithmen Korrektheit
Divide & Conquer. Problem in Teilprobleme aufteilen Teilprobleme rekursiv lösen Lösung aus Teillösungen zusammensetzen
Teile & Herrsche: Divide & Conquer Problem in Teilprobleme aufteilen Teilprobleme rekursiv lösen Lösung aus Teillösungen zusammensetzen Probleme: Wie setzt man zusammen? [erfordert algorithmisches Geschick
Kapitel 5: Paradigmen des Algorithmenentwurfs. Gliederung
Gliederung 1. Grundlagen 2. Analyse der Laufzeit von Algorithmen 3. Untere Schranken für algorithmische Probleme 4. Sortier- und Selektionsverfahren 5. Paradigmen des Algorithmenentwurfs 6. Ausgewählte
Kapitel 2: Analyse der Laufzeit von Algorithmen Gliederung
Gliederung 1. Motivation / Einordnung / Grundlagen 2. Analyse der Laufzeit von Algorithmen 3. Untere Schranken für algorithmische Probleme 4. Sortier- und Selektionsverfahren 5. Paradigmen des Algorithmenentwurfs
Laufzeit und Komplexität
Laufzeit und Komplexität Laufzeit eines Algorithmus Benchmarking versus Analyse Abstraktion Rechenzeit, Anzahl Schritte Bester, Mittlerer, Schlechtester Fall Beispiel: Lineare Suche Komplexitätsklassen
5. Übungsblatt zu Algorithmen I im SoSe 2016
Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Dennis Hofheinz Lukas Barth, Lisa Kohl 5. Übungsblatt zu Algorithmen I im SoSe 2016 https://crypto.iti.kit.edu/index.php?id=algo-sose16
16. All Pairs Shortest Path (ASPS)
. All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e
es gibt Probleme, die nicht berechenbar sind (z.b. Menge aller Funktionen N N und die Menge aller Sprachen sind überabzählbar)
Komplexitätstheorie es gibt Probleme, die nicht berechenbar sind (z.b. Menge aller Funktionen N N und die Menge aller Sprachen sind überabzählbar) andere Probleme sind im Prinzip berechenbar, möglicherweise
Randomisierte Algorithmen 2. Erste Beispiele
Randomisierte Algorithmen Randomisierte Algorithmen 2. Erste Beispiele Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2016/2017 1 / 35 Randomisierter Identitätstest
3.2. Korrektheit und Komplexität am Beispiel: Sortieren Sortieren ist eine wichtige Basis-Operation für komplexe Algorithmen
3.2. Korrektheit und Komplexität am Beispiel: Sortieren Sortieren ist eine wichtige Basis-Operation für komplexe Algorithmen Sortierproblem Eingabe: Folge von n natürlichen Zahlen a 1, a 2,, a n, die Folge
Kapitel 3 Zur Korrektheit und Effizienz von Algorithmen
Kapitel 3 Zur Korrektheit und Effizienz von Algorithmen Ziel: Kurze Einführung in den Pseudocode zur Beschreibung von Algorithmen Induktionsbeweise als wichtiges Hilfsmittel, um die Korrektheit eines Algorithmus
Suchen und Sortieren
Suchen und Sortieren Suchen Sortieren Mischen Zeitmessungen Bewertung von Sortier-Verfahren Seite 1 Suchverfahren Begriffe Suchen = Bestimmen der Position (Adresse) eines Wertes in einer Datenfolge Sequentielles
2. Algorithmen und Algorithmisierung Algorithmen und Algorithmisierung von Aufgaben
Algorithmen und Algorithmisierung von Aufgaben 2-1 Algorithmisierung: Formulierung (Entwicklung, Wahl) der Algorithmen + symbolische Darstellung von Algorithmen Formalismen für die symbolische Darstellung
lim log 2n n = > 0 Da es einen Limes gibt, gibt es auch einen Limes inferior, der gleich diesem Limes ist.
Prof. aa Dr. Ir. Joost-Pieter Katoen Christian Dehnert, Jonathan Heinen, Thomas Ströder, Sabrina von Styp Aufgabe 1 (O-Notation): Beweisen oder widerlegen Sie die folgenden Aussagen: (3 + 3 + 4 = 10 Punkte)
Schnelle Multiplikation
Informationsblatt für die Lehrkraft Schnelle Multiplikation $&*&*& 999 3 x 3 =? 10001110 π/3 7 X 6 14 666 x 987 Informationsblatt für die Lehrkraft Thema: Schultyp: Vorkenntnisse: Bearbeitungsdauer: Schnelle
Kapitel 9. Komplexität von Algorithmen und Sortieralgorithmen
1 Kapitel 9 Komplexität von Algorithmen und Sortieralgorithmen Ziele 2 Komplexität von Algorithmen bestimmen können (in Bezug auf Laufzeit und auf Speicherplatzbedarf) Sortieralgorithmen kennenlernen:
Datenstrukturen und Algorithmen. 7. Suchen in linearen Feldern
Datenstrukturen und Algorithmen 7. Suchen in linearen Feldern VO 708.031 Suchen in linearen Feldern [email protected] 1 Inhalt der Vorlesung 1. Motivation, Einführung, Grundlagen 2. Algorithmische
Lösungsvorschlag Serie 2 Rekursion
(/) Lösungsvorschlag Serie Rekursion. Algorithmen-Paradigmen Es gibt verschiedene Algorithmen-Paradigmen, also grundsätzliche Arten, wie man einen Algorithmus formulieren kann. Im funktionalen Paradigma
Algorithmen und Datenstrukturen Heapsort
Algorithmen und Datenstrukturen 2 5 Heapsort In diesem Kapitel wird Heapsort, ein weiterer Sortieralgorithmus, vorgestellt. Dieser besitzt wie MERGE-SORT eine Laufzeit von O(n log n), sortiert jedoch das
Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / Vorlesung 9, Donnerstag 18.
Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 9, Donnerstag 18. Dezember 2014 (Teile und Herrsche, Mastertheorem) Junior-Prof. Dr.
Algorithmenbegriff: Berechenbarkeit. Algorithmenanalyse. (Berechnung der Komplexität)
Über-/Rückblick Algorithmenbegriff: Berechenbarkeit Turing-Maschine RAM µ-rekursive Funktionen Zeit Platz Komplexität Algorithmentechniken Algorithmenanalyse (Berechnung der Komplexität) Rekursion Iteration
1. Asymptotische Notationen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. String Matching 5. Ausgewählte Datenstrukturen
Gliederung 1. Asymptotische Notationen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. String Matching 5. Ausgewählte Datenstrukturen 1/1, Folie 1 2009 Prof. Steffen Lange - HDa/FbI - Effiziente
8 Komplexitätstheorie
8 Komplexitätstheorie Formale Grundlagen der Informatik I Herbstsemester 2012 Robert Marti Vorlesung teilweise basierend auf Unterlagen von Prof. emer. Helmut Schauer Grundidee der Komplexitätstheorie
Numerische Verfahren und Grundlagen der Analysis
Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 16 4. Groß-O R. Steuding (HS-RM)
Einstieg in die Informatik mit Java
1 / 32 Einstieg in die Informatik mit Java Effizienz Gerd Bohlender Institut für Angewandte und Numerische Mathematik Gliederung 2 / 32 1 Überblick: was ist Effizienz? 2 Landau-Symbole 3 Eier im Korb 4
Übung Algorithmen I
Übung Algorithmen I 20.5.15 Christoph Striecks [email protected] (Mit Folien von Julian Arz, Timo Bingmann und Sebastian Schlag.) Roadmap Organisation Mergesort, Quicksort Dual Pivot Quicksort
Kapitel 9. Komplexität von Algorithmen und Sortieralgorithmen
Kapitel 9 Komplexität von Algorithmen und Sortieralgorithmen Arrays 1 Ziele Komplexität von Algorithmen bestimmen können (in Bezug auf Laufzeit und auf Speicherplatzbedarf) Sortieralgorithmen kennenlernen:
Datenstrukturen & Algorithmen
Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Dynamische Programmierung Einführung Ablaufkoordination von Montagebändern Längste gemeinsame Teilsequenz Optimale
Algorithmentheorie Randomisierung. Robert Elsässer
Algorithmentheorie 03 - Randomisierung Robert Elsässer Randomisierung Klassen von randomisierten Algorithmen Randomisierter Quicksort Randomisierter Primzahltest Kryptographie 2 1. Klassen von randomisierten
Kostenmaße. F3 03/04 p.188/395
Kostenmaße Bei der TM nur ein Kostenmaß: Ein Schritt (Konfigurationsübergang) kostet eine Zeiteinheit; eine Bandzelle kostet eine Platzeinheit. Bei der RAM zwei Kostenmaße: uniformes Kostenmaß: (wie oben);
Uebersicht. Webpage & Ilias. Administratives. Lehrbuch. Vorkenntnisse. Datenstrukturen & Algorithmen
Datenstrukturen & Algorithmen Uebersicht Administratives Einleitung Ein einführendes Beispiel Matthias Zwicker Universität Bern Frühling 2010 2 Administratives Dozent Prof. Zwicker, [email protected]
Algorithmen und Datenstrukturen Tutorium I
Algorithmen und Datenstrukturen Tutorium I 20. - 25. 04. 2016 AlgoDat - Tutorium I 1 1 Organisatorisches Kontakt 2 Landau-Notation Definiton von O Logarithmen Gesetze & Ableitung Satz von l Hôpital 3 Algorithmen
Vorlesung: Algorithmische Diskrete Mathematik
Vorlesung: Algorithmische Diskrete Mathematik Raymond Hemmecke Vertretungsprofessor für Algorithmische Diskrete Mathematik SS 2009 TU Darmstadt Raymond Hemmecke 1 Inhalt der Vorlesung Komplexitätstheorie
Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Rekursion
Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005 Rekursion Rekursion Neue Denkweise Wikipedia: Als Rekursion bezeichnet man den Aufruf
UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1. Übung 5. Asymptotische Laufzeitkomplexität Definition Regeln Beispiele
UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1 Übung 5 Asymptotische Laufzeitkomplexität Definition Regeln Beispiele Institut für Pervasive Computing Johannes Kepler Universität Linz Altenberger
Übung zur Vorlesung Berechenbarkeit und Komplexität
RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Übungsblatt 7 26.11.2012 Übung zur Vorlesung Berechenbarkeit und Komplexität Aufgabe T15 Entwickeln Sie ein
Christoph Niederseer, Michaela Mayr, Alexander Aichinger, Fabian Küppers. Wissenschaftl. Arbeitstechniken und Präsentation
Christoph Niederseer, Michaela Mayr, Alexander Aichinger, Fabian Küppers 1. Was ist paralleles Programmieren 2. Bitoner Sortieralgorithmus 3. Quicksort a) sequenzielles Quicksort b) paralleles Quicksort
Kapitel 6. Komplexität von Algorithmen. Xiaoyi Jiang Informatik I Grundlagen der Programmierung
Kapitel 6 Komplexität von Algorithmen 1 6.1 Beurteilung von Algorithmen I.d.R. existieren viele Algorithmen, um dieselbe Funktion zu realisieren. Welche Algorithmen sind die besseren? Betrachtung nicht-funktionaler
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Große Übung #6 Phillip Keldenich, Arne Schmidt 26.02.2017 Heute: Master-Theorem Phillip Keldenich, Arne Schmidt Große Übung 2 Vorbetrachtungen Wir betrachten rekursive Gleichungen
Kapitel 3. Konvergenz von Folgen und Reihen
Kapitel 3. Konvergenz von Folgen und Reihen 3.1. Normierte Vektorräume Definition: Sei V ein Vektorraum (oder linearer Raum) über (dem Körper) R. Eine Abbildung : V [0, ) heißt Norm auf V, falls die folgenden
Grundlagen: Algorithmen und Datenstrukturen
Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Dr. Hanjo Täubig Tobias Lieber Sommersemester 2011 Übungsblatt 5 14. Juni 2011 Grundlagen: Algorithmen und Datenstrukturen
4. Sortieren 4.1 Vorbemerkungen
. Seite 1/21 4. Sortieren 4.1 Vorbemerkungen allgemeines Sortierproblem spezielle Sortierprobleme Ordne a 1,..., a n so um, dass Elemente in aufsteigender Reihenfolge stehen. Die a i stammen aus vollständig
Programmierung 1 (Wintersemester 2012/13) Lösungsblatt 10 (Kapitel 11)
Fachrichtung 6.2 Informatik Universität des Saarlandes Tutorenteam der Vorlesung Programmierung 1 Programmierung 1 (Wintersemester 2012/13) Lösungsblatt 10 (Kapitel 11) Hinweis: Dieses Übungsblatt enthält
ADS: Algorithmen und Datenstrukturen
ADS: Algorithmen und Datenstrukturen Akuter Denk-Stau Peter F. Stadler & Konstantin Klemm Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, University of Leipzig
Kapitel 6 Elementare Sortieralgorithmen
Kapitel 6 Elementare Sortieralgorithmen Ziel: Kennenlernen elementarer Sortierverfahren und deren Effizienz Zur Erinnerung: Das Sortier-Problem Gegeben: Folge A von n Elementen a 1, a 2,..., a n ; Eine
1. Übung Algorithmen I
Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der
Algorithmen und Datenstrukturen Wintersemester 2004/ November T(n) = T(n a) + T(a) + n
Lehrstuhl für Praktische Informatik III Norman May B6, 29, Raum C0.05 68131 Mannheim Telefon: (0621) 181 2517 Email: [email protected] Matthias Brantner B6, 29, Raum C0.05 68131 Mannheim
Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)).
8. Untere Schranken für Sortieren Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). Werden nun gemeinsame Eigenschaften dieser Algorithmen untersuchen. Fassen gemeinsame
Theoretische Informatik. Exkurs: Komplexität von Optimierungsproblemen. Optimierungsprobleme. Optimierungsprobleme. Exkurs Optimierungsprobleme
Theoretische Informatik Exkurs Rainer Schrader Exkurs: Komplexität von n Institut für Informatik 13. Mai 2009 1 / 34 2 / 34 Gliederung Entscheidungs- und Approximationen und Gütegarantien zwei Greedy-Strategien
