Divide & Conquer. Problem in Teilprobleme aufteilen Teilprobleme rekursiv lösen Lösung aus Teillösungen zusammensetzen

Größe: px
Ab Seite anzeigen:

Download "Divide & Conquer. Problem in Teilprobleme aufteilen Teilprobleme rekursiv lösen Lösung aus Teillösungen zusammensetzen"

Transkript

1 Teile & Herrsche: Divide & Conquer Problem in Teilprobleme aufteilen Teilprobleme rekursiv lösen Lösung aus Teillösungen zusammensetzen Probleme: Wie setzt man zusammen? [erfordert algorithmisches Geschick und Übung] Laufzeitanalse (Auflösen der Rekursion) [ist normalerweise nach Standardschema; erfordert ebenfalls Übung] 1

2 Divide & Conquer Teile & Herrsche: Problem in Teilprobleme aufteilen Teilprobleme rekursiv lösen Lösung aus Teillösungen zusammensetzen Algorithmen: Merge Sort Quick Sort 2

3 = 3

4 = 4

5 Teile & Herrsche: Problem: Berechne das Produkt zweier n n Matrizen Eingabe: Matrizen X,Y Ausgabe: Matrix Z = X Y X = x x 1,1 2,1 x x 1,2 2,2 x x 1,3 2,3 x x 1,4 2,4 x3,1 x3,2 x3,3 x3,4 x 4,1 x 4,2 x 4,3 x 4,4, Y = 1,1 2,1 3,1 1,2 2,2 3,2 1,3 2,3 3,3 1,4 2,4 3,4 4,1 4,2 4,3 4,4 5

6 MatrixMultiplikation(Arra X, Y, n) 1. new arra Z[1,..,n][1,..,n] 2. for i 1 to n do 3. for j 1 to n do 4. Z[i][j] 0 5. for k 1 to n do 6. Z[i][j] Z[i][j] + X[i][k] Y[k][j] 7. return Z 6

7 MatrixMultiplikation(Arra X, Y, n) Laufzeit: 1. new arra Z[1,..,n][1,..,n] Θ(n²) 2. for i 1 to n do 3. for j 1 to n do 4. Z[i][j] 0 5. for k 1 to n do 6. Z[i][j] Z[i][j] + X[i][k] Y[k][j] 7. return Z 7

8 MatrixMultiplikation(Arra X, Y, n) Laufzeit: 1. new arra Z[1,..,n][1,..,n] Θ(n²) 2. for i 1 to n do Θ(n) 3. for j 1 to n do 4. Z[i][j] 0 5. for k 1 to n do 6. Z[i][j] Z[i][j] + X[i][k] Y[k][j] 7. return Z 8

9 MatrixMultiplikation(Arra X, Y, n) Laufzeit: 1. new arra Z[1,..,n][1,..,n] Θ(n²) 2. for i 1 to n do Θ(n) 3. for j 1 to n do Θ(n²) 4. Z[i][j] 0 5. for k 1 to n do 6. Z[i][j] Z[i][j] + X[i][k] Y[k][j] 7. return Z 9

10 MatrixMultiplikation(Arra X, Y, n) Laufzeit: 1. new arra Z[1,..,n][1,..,n] Θ(n²) 2. for i 1 to n do Θ(n) 3. for j 1 to n do Θ(n²) 4. Z[i][j] 0 Θ(n²) 5. for k 1 to n do 6. Z[i][j] Z[i][j] + X[i][k] Y[k][j] 7. return Z 10

11 MatrixMultiplikation(Arra X, Y, n) Laufzeit: 1. new arra Z[1,..,n][1,..,n] Θ(n²) 2. for i 1 to n do Θ(n) 3. for j 1 to n do Θ(n²) 4. Z[i][j] 0 Θ(n²) 5. for k 1 to n do Θ(n³) 6. Z[i][j] Z[i][j] + X[i][k] Y[k][j] 7. return Z 11

12 MatrixMultiplikation(Arra X, Y, n) Laufzeit: 1. new arra Z[1,..,n][1,..,n] Θ(n²) 2. for i 1 to n do Θ(n) 3. for j 1 to n do Θ(n²) 4. Z[i][j] 0 Θ(n²) 5. for k 1 to n do Θ(n³) 6. Z[i][j] Z[i][j] + X[i][k] Y[k][j] Θ(n 3 ) 7. return Z 12

13 MatrixMultiplikation(Arra X, Y, n) Laufzeit: 1. new arra Z[1,..,n][1,..,n] Θ(n²) 2. for i 1 to n do Θ(n) 3. for j 1 to n do Θ(n²) 4. Z[i][j] 0 Θ(n²) 5. for k 1 to n do Θ(n³) 6. Z[i][j] Z[i][j] + X[i][k] Y[k][j] Θ(n 3 ) 7. return Z Θ(1) 13

14 MatrixMultiplikation(Arra X, Y, n) Laufzeit: 1. new arra Z[1,..,n][1,..,n] Θ(n²) 2. for i 1 to n do Θ(n) 3. for j 1 to n do Θ(n²) 4. Z[i][j] 0 Θ(n²) 5. for k 1 to n do Θ(n³) 6. Z[i][j] Z[i][j] + X[i][k] Y[k][j] Θ(n 3 ) 7. return Z Θ(1) Θ(n³) 14

15 Teile und Herrsche: Matrix Multiplikation A B E F AE+ BG AF+ BH C D G H = CE+ DG CF+ DH Aufwand: 8 Multiplikationen von n/2 n/2 Matrizen 4 Additionen von n/2 n/2 Matrizen 15

16 Teile und Herrsche: Matrix Multiplikation A B E F AE+ BG AF+ BH C D G H = CE+ DG CF+ DH Aufwand: 8 Multiplikationen von n/2 n/2 Matrizen 4 Additionen von n/2 n/2 Matrizen Laufzeit: T(n) = 8 T(n/2) + Θ(n²) 16

17 Laufzeit: T(n) = 8 T(n/2) + k n² a b f(n) Master Theorem: f(n) = k n² Matrix Multiplikation 17

18 Laufzeit: T(n) = 8 T(n/2) + k n² a b f(n) Master Theorem: f(n) = k n² Matrix Multiplikation log a Fall 1: Laufzeit Θ(n b ) = Θ(n³) 18

19 Laufzeit: T(n) = 8 T(n/2) + k n² a b f(n) Master Theorem: f(n) = k n² Matrix Multiplikation log a Fall 1: Laufzeit Θ(n b ) = Θ(n³) Formaler Beweis durch Induktion!! 19

20 Laufzeit: T(n) = 8 T(n/2) + k n² a b f(n) Master Theorem: f(n) = k n² Matrix Multiplikation log a Fall 1: Laufzeit Θ(n b ) = Θ(n³) Formaler Beweis durch Induktion!! Nicht besser als einfacher Algorithmus 20

21 Teile und Herrsche (Algorithmus von Strassen): A C B D E G F H = AE+ BG AF+ CE+ DG CF+ BH DH Trick: P = A (F-H) P = (A+D) (E+H) 1 P = (A+B) H P = (B-D) (G+H) 2 P = (C+D) E P = (A-C) (E+F) 3 P = D (G-E)

22 Teile und Herrsche (Algorithmus von Strassen): A C B D E G F H = AE+ BG AF+ CE+ DG CF+ BH DH Trick: P = A (F-H) P = (A+D) (E+H) AE+BG = P + P - P + P 1 P = (A+B) H P = (B-D) (G+H) AF+BH = P + P P = (C+D) E P = (A-C) (E+F) CE+DG = P + P 3 P = D (G-E) CF+DH = P + P - P - P

23 Teile und Herrsche: Matrix Multiplikation A C B D E G F H = AE+ BG AF+ CE+ DG CF+ BH DH Trick: P = A (F-H) P = (A+D) (E+H) AE+BG = P + P - P + P 1 P = (A+B) H P = (B-D) (G+H) AF+BH = P + P P = (C+D) E P = (A-C) (E+F) CE+DG = P + P 3 P = D (G-E) CF+DH = P + P - P - P Multiplikationen!!!

24 Laufzeit: T(n) = 7 T(n/2) + k n² a b f(n) Master Theorem: f(n) = k n² 24

25 Laufzeit: T(n) = 7 T(n/2) + k n² a b f(n) Master Theorem: f(n) = k n² log a Fall 1: Laufzeit Θ(n b ) 25

26 Laufzeit: T(n) = 7 T(n/2) + k n² a b f(n) Master Theorem: f(n) = k n² log a b log 7 Fall 1: Laufzeit Θ(n )=Θ(n 2 ) 26

27 Laufzeit: T(n) = 7 T(n/2) + k n² a b f(n) Master Theorem: f(n) = k n² log a b log 7 2,81 2 Fall 1: Laufzeit Θ(n )=Θ(n ) = Θ(n ) Verbesserter Algorithmus! (Erheblicher Unterschied für große Eingaben) 27

28 Satz ,81 Das Produkt zweier n n n Matrizen kann in Θ(n ) Laufzeit berechnet werden. 28

16. All Pairs Shortest Path (ASPS)

16. All Pairs Shortest Path (ASPS) . All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e

Mehr

Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität

Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität Datenstrukturen und Algorithmen Christian Sohler FG Algorithmen & Komplexität 1 Geometrisches Problem: Problem: Nächstes Paar Eingabe: n Punkte in der Ebene Ausgabe: Das Paar q,r mit geringstem Abstand

Mehr

Proseminar Effiziente Algorithmen

Proseminar Effiziente Algorithmen Proseminar Effiziente Algorithmen Kapitel 9: Divide & Conquer und Prof. Dr. Christian Scheideler WS 218 Generische Optimierungsverfahren: Systematische Suche lass nichts aus Divide and Conquer löse das

Mehr

Algorithmen und Datenstrukturen SoSe 2008 in Trier. Henning Fernau Universität Trier

Algorithmen und Datenstrukturen SoSe 2008 in Trier. Henning Fernau Universität Trier Algorithmen und Datenstrukturen SoSe 2008 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Algorithmen und Datenstrukturen Gesamtübersicht Organisatorisches / Einführung Grundlagen: RAM,

Mehr

Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität

Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität Datenstrukturen und Algorithmen Christian Sohler FG Algorithmen & Komplexität 1 Klausur Wichtige Hinweise: 2.7.07, Beginn 9 Uhr Bitte spätestens 8:4 Uhr vor Ort sein Sporthalle + Audimax Informationen

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 017 Marc Bux, Humboldt-Universität zu Berlin Agenda 1. Vorrechnen von Aufgabenblatt 1. Wohlgeformte Klammerausdrücke 3. Teile und Herrsche Agenda 1.

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (03 Verschiedene Algorithmen für dasselbe Problem) Prof. Dr. Susanne Albers Das Maximum-Subarray Problem Das Maximum-Subarray Problem: Gegeben: Folge

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Große Übung #6 Phillip Keldenich, Arne Schmidt 26.02.2017 Heute: Master-Theorem Phillip Keldenich, Arne Schmidt Große Übung 2 Vorbetrachtungen Wir betrachten rekursive Gleichungen

Mehr

Das Divide - and - Conquer Prinzip. Quicksort Formulierung und Analyse des Prinzips Geometrisches Divide and Conquer - Closest-Pair - Segmentschnitt

Das Divide - and - Conquer Prinzip. Quicksort Formulierung und Analyse des Prinzips Geometrisches Divide and Conquer - Closest-Pair - Segmentschnitt Divide and Conquer Das Divide - and - Conquer Prinzip Quicksort Formulierung und Analyse des Prinzips Geometrisches Divide and Conquer - Closest-Pair - Segmentschnitt 2 Quicksort: Sortieren durch Teilen

Mehr

Übung zu Algorithmen und Datenstrukturen (für ET/IT)

Übung zu Algorithmen und Datenstrukturen (für ET/IT) Übung zu Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2017 Rüdiger Göbl, Mai Bui Computer Aided Medical Procedures Technische Universität München Fibonacci Zahlen Fibonacci Folge Die Fibonacci

Mehr

1 Divide-and-Conquer-Algorithmen

1 Divide-and-Conquer-Algorithmen 1 Divide-and-Conquer-Algorithmen 1.1 Multiplikation ganzer Zahlen Wir multiplizieren zwei ganze Zahlen x und y, die in Binärdarstellung gegeben sind. Der Einfachheit halber nehmen wir an, die beiden Zahlen

Mehr

G. Zachmann Clausthal University, Germany Die wichtigsten Entwurfsverfahren für Algorithmen:

G. Zachmann Clausthal University, Germany Die wichtigsten Entwurfsverfahren für Algorithmen: lausthal Informatik II Divide & onquer. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Algorithmen-Design-Techniken Die wichtigsten Entwurfsverfahren für Algorithmen: 1. Divide and onquer

Mehr

Kapitel 5: Paradigmen des Algorithmenentwurfs. Gliederung

Kapitel 5: Paradigmen des Algorithmenentwurfs. Gliederung Gliederung 1. Grundlagen 2. Analyse der Laufzeit von Algorithmen 3. Untere Schranken für algorithmische Probleme 4. Sortier- und Selektionsverfahren 5. Paradigmen des Algorithmenentwurfs 6. Ausgewählte

Mehr

Sortieren & Co. KIT Institut für Theoretische Informatik

Sortieren & Co. KIT Institut für Theoretische Informatik Sortieren & Co KIT Institut für Theoretische Informatik 1 Formaler Gegeben: Elementfolge s = e 1,...,e n Gesucht: s = e 1,...,e n mit s ist Permutation von s e e 1 n für eine Totalordnung ` ' KIT Institut

Mehr

Rekursionsbäume Aufstellen eines Baumes dessen Knoten die Laufzeit auf jeder Rekursionsstufe darstellen und Aufsummieren

Rekursionsbäume Aufstellen eines Baumes dessen Knoten die Laufzeit auf jeder Rekursionsstufe darstellen und Aufsummieren Algorithmen und Datenstrukturen 74 3 Rekursionen Vor allem bei rekursiven Algorithmen besitzt die Laufzeitfunktion eine naheliegende rekursive Formulierung, d.h. die Laufzeitfunktion ist konstant für den

Mehr

Grundlagen der Algorithmen und Datenstrukturen Kapitel 12

Grundlagen der Algorithmen und Datenstrukturen Kapitel 12 Grundlagen der Algorithmen und Datenstrukturen Kapitel 12 Christian Scheideler + Helmut Seidl SS 2009 28.06.09 Kapitel 12 1 Generische Optimierungsverfahren Techniken: Systematische Suche lass nichts aus

Mehr

2. Algorithmische Methoden 2.1 Rekursion. 18. April 2017

2. Algorithmische Methoden 2.1 Rekursion. 18. April 2017 2. Algorithmische Methoden 2.1 Rekursion 18. April 2017 Rekursiver Algorithmus Ein rekursiver Algorithmus löst ein Problem, indem er eine oder mehrere kleinere Instanzen des gleichen Problems löst. Beispiel

Mehr

Grundlagen Theoretischer Informatik 3 SoSe 2012 in Trier. Henning Fernau Universität Trier

Grundlagen Theoretischer Informatik 3 SoSe 2012 in Trier. Henning Fernau Universität Trier Grundlagen Theoretischer Informatik 3 SoSe 2012 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Grundlagen Theoretischer Informatik 3 Gesamtübersicht Organisatorisches; Einführung Algorithmenanalyse:

Mehr

Formaler. Gegeben: Elementfolge s = e 1,...,e n. s ist Permutation von s e 1 e n für eine lineare Ordnung ` '

Formaler. Gegeben: Elementfolge s = e 1,...,e n. s ist Permutation von s e 1 e n für eine lineare Ordnung ` ' Sortieren & Co 164 165 Formaler Gegeben: Elementfolge s = e 1,...,e n Gesucht: s = e 1,...,e n mit s ist Permutation von s e 1 e n für eine lineare Ordnung ` ' 166 Anwendungsbeispiele Allgemein: Vorverarbeitung

Mehr

Übersicht. 1 Einführung. 2 Suchen und Sortieren. 3 Graphalgorithmen. 4 Algorithmische Geometrie. 5 Textalgorithmen. 6 Paradigmen

Übersicht. 1 Einführung. 2 Suchen und Sortieren. 3 Graphalgorithmen. 4 Algorithmische Geometrie. 5 Textalgorithmen. 6 Paradigmen Übersicht 1 Einführung 2 Suchen und Sortieren 3 Graphalgorithmen 4 Algorithmische Geometrie 5 6 Paradigmen Übersicht 5 Editdistanz (Folie 446, Seite 83 im Skript) Eingabe: Zwei Strings v und w Frage: Kommt

Mehr

6 Quicksort. die mittlere Laufzeit Θ(n log n) beträgt und. die in der asymptotischen Notation verborgenen Konstanten sehr klein sind.

6 Quicksort. die mittlere Laufzeit Θ(n log n) beträgt und. die in der asymptotischen Notation verborgenen Konstanten sehr klein sind. Algorithmen und Datenstrukturen 132 6 Quicksort In diesem Abschnitt wird Quicksort, ein weiterer Sortieralgorithmus, vorgestellt. Trotz einer eher langsamen Worst-Case Laufzeit von Θ(n 2 ) ist Quicksort

Mehr

Rekursion. Rekursive Funktionen, Korrektheit, Terminierung, Rekursion vs. Iteration, Sortieren

Rekursion. Rekursive Funktionen, Korrektheit, Terminierung, Rekursion vs. Iteration, Sortieren Rekursion Rekursive Funktionen, Korrektheit, Terminierung, Rekursion vs. Iteration, Sortieren Mathematische Rekursion o Viele mathematische Funktionen sind sehr natürlich rekursiv definierbar, d.h. o die

Mehr

Rekursion. Rekursive Funktionen, Korrektheit, Terminierung, Rekursion vs. Iteration, Sortieren

Rekursion. Rekursive Funktionen, Korrektheit, Terminierung, Rekursion vs. Iteration, Sortieren Rekursion Rekursive Funktionen, Korrektheit, Terminierung, Rekursion vs. Iteration, Sortieren Mathematische Rekursion o Viele mathematische Funktionen sind sehr natürlich rekursiv definierbar, d.h. o die

Mehr

Exponentiation: das Problem Gegeben: (multiplikative) Halbgruppe (H, ), Element a H, n N Aufgabe: berechne das Element

Exponentiation: das Problem Gegeben: (multiplikative) Halbgruppe (H, ), Element a H, n N Aufgabe: berechne das Element Problemstellung Banale smethode : das Problem Gegeben: (multiplikative) Halbgruppe (H, ), Element a H, n N Aufgabe: berechne das Element a n = } a a a {{ a } H n (schreiben ab jetzt a n statt a n ) Hinweis:

Mehr

Exponentiation: das Problem

Exponentiation: das Problem Problemstellung Exponentiation: das Problem Gegeben: (multiplikative) Halbgruppe (H, ), Element a H, n N Aufgabe: berechne das Element a n = } a a a {{ a } H n (schreiben ab jetzt a n statt a n ) Hinweis:

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen Lerneinheit : Dynamisches Programmieren Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester.. Einleitung Diese Lerneinheit widmet sich einer

Mehr

Algebraische und arithmetische Algorithmen

Algebraische und arithmetische Algorithmen Kapitel 1 Algebraische und arithmetische Algorithmen 1.1 Das algebraische Berechnungsmodell Struktur: Körper (oder Ring) mit den Operationen +,,, (/) Eingabe: endliche Folge von Zahlen Ausgabe: endliche

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra Effiziente Algorithmen und Datenstrukturen I Kapitel 10: Lineare Algebra Christian Scheideler WS 2008 19.02.2009 Kapitel 10 1 Überblick Notation Arithmetik auf großen Zahlen (Addition und Multiplikation)

Mehr

Praktische Informatik I - Algorithmen und Datenstrukturen Wintersemester 2006/ Algorithmen und ihre formalen Eigenschaften, Datenstrukturen

Praktische Informatik I - Algorithmen und Datenstrukturen Wintersemester 2006/ Algorithmen und ihre formalen Eigenschaften, Datenstrukturen 1 Grundlagen 1.1 Algorithmen und ihre formalen Eigenschaften, Datenstrukturen Ein Algorithmus ist ein mit formalen Mitteln beschreibbares, mechanisch nachvollziehbares Verfahren zur Lösung einer Klasse

Mehr

Übersicht. Datenstrukturen und Algorithmen. Die Teile-und-Beherrsche-Methode. Übersicht. Vorlesung 3: Rekursionsgleichungen (K4)

Übersicht. Datenstrukturen und Algorithmen. Die Teile-und-Beherrsche-Methode. Übersicht. Vorlesung 3: Rekursionsgleichungen (K4) Datenstrukturen und Algorithmen Vorlesung 3: (K4) 1 e für rekursive Algorithmen Prof. Dr. Erika Ábrahám 2 Theorie Hybrider Systeme Informatik 2 http://ths.rwth-aachen.de/teaching/ss-14/ datenstrukturen-und-algorithmen/

Mehr

Algebraische und arithmetische Algorithmen

Algebraische und arithmetische Algorithmen Kapitel 1 Algebraische und arithmetische Algorithmen 1.1 Das algebraische Berechnungsmodell Struktur: Körper (oder Ring) mit den Operationen +,,, (/) Eingabe: endliche Folge von Zahlen Ausgabe: endliche

Mehr

Übung zu Algorithmen und Datenstrukturen (für ET/IT)

Übung zu Algorithmen und Datenstrukturen (für ET/IT) Übung zu Algorithmen und Datenstrukturen (für ET/IT) Wintersemester 2012/13 Jakob Vogel Computer-Aided Medical Procedures Technische Universität München Komplexität von Programmen Laufzeit kann näherungsweise

Mehr

Algorithmik Kap. 2: Laufzeit von Algorithmen

Algorithmik Kap. 2: Laufzeit von Algorithmen 1. Motivation 1.1 Fallstudie: Sortieralgorithmen 1.2 Fallstudie: Selektionsalgorithmen 2. Laufzeit von Algorithmen 2.1 Grundlagen 2.2 3. Paradigmen des Algorithmenentwurfs 3.1 Dynamisches Programmieren

Mehr

Kapitel 2: Analyse der Laufzeit von Algorithmen Gliederung

Kapitel 2: Analyse der Laufzeit von Algorithmen Gliederung Gliederung 1. Motivation / Einordnung / Grundlagen 2. Analyse der Laufzeit von Algorithmen 3. Untere Schranken für algorithmische Probleme 4. Sortier- und Selektionsverfahren 5. Paradigmen des Algorithmenentwurfs

Mehr

Datenstrukturen und Algorithmen (SS 2013)

Datenstrukturen und Algorithmen (SS 2013) Datenstrukturen und Algorithmen (SS 2013) Übungsblatt 4 Abgabe: Montag, 13.05.2013, 14:00 Uhr Die Übungen sollen in Gruppen von zwei bis drei Personen bearbeitet werden. Schreiben Sie die Namen jedes Gruppenmitglieds

Mehr

2. Effizienz von Algorithmen

2. Effizienz von Algorithmen Effizienz von Algorithmen 2. Effizienz von Algorithmen Effizienz von Algorithmen, Random Access Machine Modell, Funktionenwachstum, Asymptotik [Cormen et al, Kap. 2.2,3,4.2-4.4 Ottman/Widmayer, Kap. 1.1]

Mehr

19. Dynamic Programming I

19. Dynamic Programming I 495 19. Dynamic Programming I Fibonacci, Längste aufsteigende Teilfolge, längste gemeinsame Teilfolge, Editierdistanz, Matrixkettenmultiplikation, Matrixmultiplikation nach Strassen [Ottman/Widmayer, Kap.

Mehr

3.5 Schnelle Fouriertransformation (FFT, DFT)

3.5 Schnelle Fouriertransformation (FFT, DFT) 3.5 Schnelle Fouriertransformation (FFT, DFT) 3.5.1 Grundlagen Ein Polynom P = i a ix i C[x] vom Grad n ist eindeutig durch seine Koeffizienten a i bestimmt, d.h. man hat eine Bijektion {Polynome C[x]

Mehr

Algorithmenbegriff: Berechenbarkeit. Algorithmenanalyse. (Berechnung der Komplexität)

Algorithmenbegriff: Berechenbarkeit. Algorithmenanalyse. (Berechnung der Komplexität) Über-/Rückblick Algorithmenbegriff: Berechenbarkeit Turing-Maschine RAM µ-rekursive Funktionen Zeit Platz Komplexität Algorithmentechniken Algorithmenanalyse (Berechnung der Komplexität) Rekursion Iteration

Mehr

III Das Symmetrische Eigenwertproblem (SEP)

III Das Symmetrische Eigenwertproblem (SEP) III Das Symmetrische Eigenwertproblem (SEP) III3 Algorithmen für symmetrische tridiagonale Eigenwertprobleme Sei im folgenden a b A = b a b b n a n b n b n a n R n n, zb nach Householder- oder Lanczos(im

Mehr

19. Dynamic Programming I

19. Dynamic Programming I 495 19. Dynamic Programming I Fibonacci, Längste aufsteigende Teilfolge, längste gemeinsame Teilfolge, Editierdistanz, Matrixkettenmultiplikation, Matrixmultiplikation nach Strassen [Ottman/Widmayer, Kap.

Mehr

Abgabe: (vor der Vorlesung) Aufgabe 3.1 (P) Master-Theorem

Abgabe: (vor der Vorlesung) Aufgabe 3.1 (P) Master-Theorem TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 3 Prof. Dr. Helmut Seidl, S. Pott,

Mehr

Beispiel: Quicksort. Theoretische Informatik III (Winter 2018/19) Prof. Dr. Ulrich Hertrampf. quicksort(a 1,...,a n ): IF n 2 THEN

Beispiel: Quicksort. Theoretische Informatik III (Winter 2018/19) Prof. Dr. Ulrich Hertrampf. quicksort(a 1,...,a n ): IF n 2 THEN Als zweites Beispiel betrachten wir ein weiteres Sortierverfahren, das unter dem Namen quicksort bekannt ist. Eingabe ist wieder ein Array a 1,...,a n AUFGABE: Sortiere a 1,...,a n nach vorgegebenem Schlüssel!

Mehr

Informatik II, SS 2018

Informatik II, SS 2018 Informatik II - SS 2018 (Algorithmen & Datenstrukturen) Vorlesung 4 (30.4.2018) Sortieren IV Algorithmen und Komplexität Analyse Merge Sort Laufzeit T(n) setzt sich zusammen aus: Divide und Merge: O n

Mehr

Teile und Herrsche Teil 2

Teile und Herrsche Teil 2 Teile und Herrsche Teil 2 binär Suchen und schnell Multiplizieren Markus Fleck Manuel Mauky Hochschule Zittau/Görlitz 19. April 2009 Suchen in langen Listen (0, 1, 2, 7, 8, 9, 9, 13, 13, 14, 14, 14, 16,

Mehr

Datenstrukturen. Mariano Zelke. Sommersemester 2012

Datenstrukturen. Mariano Zelke. Sommersemester 2012 Datenstrukturen Mariano Zelke Sommersemester 2012 Mariano Zelke Datenstrukturen 2/19 Das Teilfolgenproblem: Algorithmus A 3 A 3 (i, j bestimmt den Wert einer maximalen Teilfolge für a i,..., a j. (1 Wenn

Mehr

Laufzeitanalyse (1) demogr.

Laufzeitanalyse (1) demogr. Laufzeitanalyse (1) demogr. for (int j = 1; j

Mehr

Komplexität von Algorithmen:

Komplexität von Algorithmen: Komplexität von Algorithmen: Ansatz: Beschreiben/erfassen der Komplexität über eine Funktion, zur Abschätzung des Rechenaufwandes abhängig von der Größe der Eingabe n Uns interessiert: (1) Wie sieht eine

Mehr

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / Vorlesung 9, Donnerstag 18.

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / Vorlesung 9, Donnerstag 18. Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 9, Donnerstag 18. Dezember 2014 (Teile und Herrsche, Mastertheorem) Junior-Prof. Dr.

Mehr

Parallel Computing. Einsatzmöglichkeiten und Grenzen. Prof. Dr. Nikolaus Wulff

Parallel Computing. Einsatzmöglichkeiten und Grenzen. Prof. Dr. Nikolaus Wulff Parallel Computing Einsatzmöglichkeiten und Grenzen Prof. Dr. Nikolaus Wulff Vorüberlegungen Wann ist paralleles Rechnen sinnvoll? Wenn die Performance/Geschwindigkeit steigt. Wenn sich größere Probleme

Mehr

Algorithmen I - Tutorium 28 Nr. 2

Algorithmen I - Tutorium 28 Nr. 2 Algorithmen I - Tutorium 28 Nr. 2 11.05.2017: Spaß mit Invarianten (die Zweite), Rekurrenzen / Mastertheorem und Merging Marc Leinweber marc.leinweber@student.kit.edu INSTITUT FÜR THEORETISCHE INFORMATIK

Mehr

Abschnitt: Algorithmendesign und Laufzeitanalyse

Abschnitt: Algorithmendesign und Laufzeitanalyse Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher

Mehr

Informatik II, SS 2016

Informatik II, SS 2016 Informatik II - SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 2 (22.4.2016) Sortieren II Algorithmen und Komplexität SelectionSort: Programm Schreiben wir doch das gleich mal als Java/C++ - Programm

Mehr

Erinnerung VL vom

Erinnerung VL vom Erinnerung VL vom 09.05.2016 Analyse von Hashtabellen mit verketteten Listen Erwartete Laufzeit O(1) bei zuf. Hashfkt. und falls M O(m) Guter Ersatz (hier) für zuf. Hashfkt.: universelle Hashfunktionen

Mehr

19. Dynamic Programming I

19. Dynamic Programming I 502 19. Dynamic Programming I Fibonacci, Längste aufsteigende Teilfolge, längste gemeinsame Teilfolge, Editierdistanz, Matrixkettenmultiplikation, Matrixmultiplikation nach Strassen [Ottman/Widmayer, Kap.

Mehr

Schnelle Multiplikation

Schnelle Multiplikation Informationsblatt für die Lehrkraft Schnelle Multiplikation $&*&*& 999 3 x 3 =? 10001110 π/3 7 X 6 14 666 x 987 Informationsblatt für die Lehrkraft Thema: Schultyp: Vorkenntnisse: Bearbeitungsdauer: Schnelle

Mehr

Algorithmen und Datenstrukturen 4. Vorlesung

Algorithmen und Datenstrukturen 4. Vorlesung Algorithmen und Datenstrukturen 4 Vorlesung Karl-Heinz Niggl 25 April 26 FG KTuEA, TU Ilmenau AuD 25426 Lösen von Rekursionsgleichungen Die worst-case Laufzeit T A eines rekursiven Algorithmus A ist oft

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

Range-Search. Operationen: Welche Datenstrukturen sind geeignet? Arrays? Listen? AVL-Bäume? Splay-Bäume?

Range-Search. Operationen: Welche Datenstrukturen sind geeignet? Arrays? Listen? AVL-Bäume? Splay-Bäume? Algorithmische Geometrie Die Technik der Sweepline Range-Search (Folie 431, Seite 79 im Skript) Operationen: 1 Einfügen einer Zahl x 2 Löschen einer Zahl x 3 Ausgabe aller gespeicherter Zahlen in [a, b]

Mehr

Isomorphismus. Definition Gruppen-Isomorphismus. Seien (G, +) und (G, ) Gruppen. Die Abbildung f : G G heißt Gruppen-Isomorphismus, falls gilt

Isomorphismus. Definition Gruppen-Isomorphismus. Seien (G, +) und (G, ) Gruppen. Die Abbildung f : G G heißt Gruppen-Isomorphismus, falls gilt Isomorphismus Definition Gruppen-Isomorphismus Seien (G, +) und (G, ) Gruppen. Die Abbildung f : G G heißt Gruppen-Isomorphismus, falls gilt 1 f ist bijektiv f (u + v) = f (u) f (v) für alle u, v G, die

Mehr

Rückblick: divide and conquer

Rückblick: divide and conquer Rückblick: divide and conquer pi = (xi,yi) } p å } ' }d(p,p) p ''=min(, ') F 0/0 p./95 weitere Algorithmentechniken Greedy-Algorithmen dynamische Programmierung Backtracking branch and bound Heuristiken

Mehr

Musterlösung zur 7. Übung

Musterlösung zur 7. Übung Universität des Saarlandes FR 6.2 Informatik Prof. Dr. Hans-Peter Lenhof Dipl. Inform. Andreas Hildebrandt Programmierung II, SS 2003 Musterlösung zur 7. Übung Aufgabe 1: Rekurrenz, Substitutionsmethode

Mehr

Kürzeste Wege in Graphen

Kürzeste Wege in Graphen Kürzeste Wege in Graphen Algorithmische Paradigmen In diesem Abschnitt wollen wir nicht nur neue Algorithmen vorstellen, sondern auch den Blick auf Gemeinsamkeiten und prinzipielle Unterschiede zwischen

Mehr

Informatik II, SS 2018

Informatik II, SS 2018 Informatik II - SS 2018 (Algorithmen & Datenstrukturen) Vorlesung 2 (23.4.2018) Sortieren II, Asymptotische Analyse, O-Notation Algorithmen und Komplexität Laufzeit Zeitmessung SelectionSort n 2 Laufzeit/n

Mehr

2. Grundlagen. Beschreibung von Algorithmen durch Pseudocode. Korrektheit von Algorithmen durch Invarianten.

2. Grundlagen. Beschreibung von Algorithmen durch Pseudocode. Korrektheit von Algorithmen durch Invarianten. 2. Grundlagen Beschreibung von Algorithmen durch Pseudocode. Korrektheit von Algorithmen durch Invarianten. Laufzeitverhalten beschreiben durch O-Notation. 1 Beispiel Minimum-Suche Eingabe bei Minimum

Mehr

Build-Max-Heap. Build-Max-HeappAq. Satz Nach Ablauf von Build-Max-Heap ist A ein Heap. Build-Max-Heap hat Laufzeit Opnq.

Build-Max-Heap. Build-Max-HeappAq. Satz Nach Ablauf von Build-Max-Heap ist A ein Heap. Build-Max-Heap hat Laufzeit Opnq. C. Komusiewicz 3.1 Sortieren und Selektion: Heap-Sort 45 Build-Max-Heap Aufgabe: Baue unsortiertes Array A der Länge n in einen Max-Heap um Idee: Blätter stehen in Artn{2u ` 1..ns und sind bereits zu Beginn

Mehr

IX. Das symmetrische Eigenwertproblem (SEP)

IX. Das symmetrische Eigenwertproblem (SEP) IX. Das symmetrische Eigenwertproblem (SEP IX.3. Algorithmen für symmetrische tridiagonale Matrizen Sei a b. b A =........ a n b n (IX. b n a n z. B. nach Householder- oder Lanczos-Triagonalisierung (Kapitel

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Datenstrukturen und Algorithmen VO 708.031 27.10.2011 stefan.klampfl@tugraz.at 1 Wiederholung Wir vergleichen Algorithmen anhand des ordnungsmäßigen Wachstums von T(n), S(n), Asymptotische Schranken: O-Notation:

Mehr

Gierige Algorithmen Interval Scheduling

Gierige Algorithmen Interval Scheduling Gierige Algorithmen Interval Scheduling IntervalScheduling(s,f). n length[s] 2. A {} 3. j 4. for i 2 to n do 5. if s[i] f[j] then 6. A A {i} 7. j i 8. return A Gierige Algorithmen Interval Scheduling Beweisidee:

Mehr

Tutorium 23 Grundbegriffe der Informatik (9. Sitzung)

Tutorium 23 Grundbegriffe der Informatik (9. Sitzung) Tutorium 23 Grundbegriffe der Informatik (9. Sitzung) Tutor: Felix Stahlberg SOFTWARE DESIGN AND QUALITY GROUP Source: pixelio.de KIT The cooperation of Forschungszentrum Karlsruhe GmbH and Universität

Mehr

9. Rekursion. 1 falls n 1 n (n 1)!, andernfalls. Experiment: Die Türme von Hanoi. Links Mitte Rechts. Mathematische Rekursion

9. Rekursion. 1 falls n 1 n (n 1)!, andernfalls. Experiment: Die Türme von Hanoi. Links Mitte Rechts. Mathematische Rekursion Experiment: Die Türme von Hanoi. Rekursion Mathematische Rekursion, Terminierung, der Aufrufstapel, Beispiele, Rekursion vs. Iteration Links Mitte Rechts Mathematische Rekursion Viele mathematische Funktionen

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2012/13 25. Vorlesung Dynamisches Programmieren Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Klausurvorbereitung Tipp: Schreiben Sie sich alle Fragen

Mehr

1. Übung zur Vorlesung Algorithmentechnik am

1. Übung zur Vorlesung Algorithmentechnik am 1. Übung zur Vorlesung Algorithmentechnik am 23.10.2008 1/ 52 Übersicht Organisatorisches Landau-Symbole & Laufzeiten Amortisierte Analyse Rekursionsauflösung Heaps und Fibonacci Heaps 2/ 52 Organisatorisches

Mehr

Übungen zu Algorithmentechnik WS 09/10

Übungen zu Algorithmentechnik WS 09/10 Übungen zu Algorithmentechnik WS 09/10 1. Kurzsitzung Thomas Pajor 22. Oktober 2009 1/ 25 Eure Übungsleiter Tanja Hartmann t.hartmann@kit.edu Raum 306, Gebäude 50.34 Thomas Pajor pajor@kit.edu Raum 322,

Mehr

Informatik II, SS 2016

Informatik II, SS 2016 Informatik II - SS 2016 (Algorithmen & Datenstrukturen) Vorlesung 3 (27.4.2014) O-Notation, Asymptotische Analyse, Sortieren III Algorithmen und Komplexität Selection Sort Algorithmus SelectionSort (informell):

Mehr

Top-down Bottom-up Divide & Conquer Dynamisches Programmieren Caching (Memoization) Branch-and-Bound Greedy

Top-down Bottom-up Divide & Conquer Dynamisches Programmieren Caching (Memoization) Branch-and-Bound Greedy 2.2 Entwurfsparadigmen Top-down Bottom-up Divide & Conquer Dynamisches Programmieren Caching (Memoization) Branch-and-Bound Greedy 1 Top-Down Zerlege das gegebene Problem in Teilschritte Zerlege Teilschritte

Mehr

Wiederholung. Divide & Conquer Strategie

Wiederholung. Divide & Conquer Strategie Wiederholung Divide & Conquer Strategie Binäre Suche O(log n) Rekursives Suchen im linken oder rechten Teilintervall Insertion-Sort O(n 2 ) Rekursives Sortieren von a[1..n-1], a[n] Einfügen von a[n] in

Mehr

Übung Algorithmen I

Übung Algorithmen I Übung Algorithmen I 20.5.15 Christoph Striecks Christoph.Striecks@kit.edu (Mit Folien von Julian Arz, Timo Bingmann und Sebastian Schlag.) Roadmap Organisation Mergesort, Quicksort Dual Pivot Quicksort

Mehr

1.3 Erinnerung: Mergesort

1.3 Erinnerung: Mergesort Mergesort 1.3 Erinnerung: Mergesort Um n Zahlen/Objekte a 1,..., a n zu sortieren, geht der Mergesort-Algorithmus so vor: Falls n n 0 : Sortiere mit einem naiven Algorithmus (z. B. Insertion Sort). Sonst:

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 17: Quantitative Aspekte von Algorithmen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut

Mehr

Bitte füllen Sie den untenstehenden Abschnitt nicht aus

Bitte füllen Sie den untenstehenden Abschnitt nicht aus Institut für Informatik Prof. Dr. Michael Böhlen Binzmühlestrasse 14 8050 Zurich Telefon: +41 44 635 4333 Email: boehlen@ifi.uzh.ch AlgoDat Midterm1 Frühjahr 2014 28.03.2014 Name: Matrikelnummer: Hinweise

Mehr

VL-04: Rekursionsgleichungen. (Datenstrukturen und Algorithmen, SS 2017) Gerhard Woeginger

VL-04: Rekursionsgleichungen. (Datenstrukturen und Algorithmen, SS 2017) Gerhard Woeginger VL-04: Rekursionsgleichungen (Datenstrukturen und Algorithmen, SS 2017) Gerhard Woeginger SS 2017, RWTH DSAL/SS 2017 VL-04: Rekursionsgleichungen 1/37 Organisatorisches Vorlesung: Gerhard Woeginger (Zimmer

Mehr

Bemerkung: der goldene Schnitt ϕ ist die positive Lösung der Gleichung: x 2 = 1 + x

Bemerkung: der goldene Schnitt ϕ ist die positive Lösung der Gleichung: x 2 = 1 + x Rekursive Definition der Fibonacci-Zahlen Erste Werte f 0 = 0, f 1 = 1, f n = f n 1 + f n 2 (n 2) n 0 1 2 3 4 5 6 7 8 9 10... 25... f n 0 1 1 2 3 5 8 13 21 34 55... 75025... Exakte Formel (de Moivre, 1718)

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Martin Hofmann Sommersemester 2009 1 Überblick über die Vorlesung Was sind Algorithmen, wieso Algorithmen? Ein Algorithmus ist eine genau festgelegte Berechnungsvorschrift,

Mehr

3. Suchen. Das Suchproblem. Suche in Array. Lineare Suche. 1 n. i = n Gegeben Menge von Datensätzen.

3. Suchen. Das Suchproblem. Suche in Array. Lineare Suche. 1 n. i = n Gegeben Menge von Datensätzen. Das Suchproblem Gegeben Menge von Datensätzen. 3. Suchen Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle Jeder Datensatz hat einen Schlüssel k. Schlüssel sind vergleichbar: eindeutige Antwort auf

Mehr

Suchen und Sortieren Sortieren. Mergesort

Suchen und Sortieren Sortieren. Mergesort Suchen und Mergesort (Folie 142, Seite 55 im Skript) Algorithmus procedure mergesort(l, r) : if l r then return fi; m := (r + l)/2 ; mergesort(l, m 1); mergesort(m, r); i := l; j := m; k := l; while k

Mehr

Modul Algorithmik, T-Katalog

Modul Algorithmik, T-Katalog Modul Algorithmik, T-Katalog Sommersemester 2017 Steffen Lange 1/1, Folie 1 2017 Prof. Steffen Lange - HDa/FbI - Algorithmik Organisatorisches u Vorlesung Folien im Netz u Übung eine Übung alle 14 Tage

Mehr

Schulmethode zur Multiplikation von n-stelligen Binärzahlen a und b: (evtl. fallen Zeilen weg, wenn das zugehörige Bit des Multiplikators 0 ist).

Schulmethode zur Multiplikation von n-stelligen Binärzahlen a und b: (evtl. fallen Zeilen weg, wenn das zugehörige Bit des Multiplikators 0 ist). 4-1 4. Algorithmen auf Zahlen Themen: Multiplikation von binären Zahlen Matrixmultiplikation 4.1 Multiplikation ganzer Zahlen Schulmethode zur Multiplikation von n-stelligen Binärzahlen a und b: n=8: aaaaaaaa

Mehr

1. Musterlösung. Problem 1: Average-case-Laufzeit vs. Worst-case-Laufzeit ** i=1

1. Musterlösung. Problem 1: Average-case-Laufzeit vs. Worst-case-Laufzeit ** i=1 Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 05/06 ITI Wagner. Musterlösung Problem : Average-case-Laufzeit vs. Worst-case-Laufzeit ** (a) Im schlimmsten Fall werden für jedes Element

Mehr

Vorlesung Algorithmische Geometrie Konvexe Hülle in R 3

Vorlesung Algorithmische Geometrie Konvexe Hülle in R 3 Vorlesung Algorithmische Geometrie Konvexe Hülle in R 3 INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 15.07.2014 1 Wdh: Konvexe Hülle in R 2 (VL1) Def: Eine Menge S R 2

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2016 Patrick Schäfer, Humboldt-Universität zu Berlin Organisation Vorlesung: Montag 11 13 Uhr Marius Kloft RUD 26, 0 115 Mittwoch 11 13 Uhr Marius Kloft

Mehr

Endliche Automaten. Minimierung. Karin Haenelt. Karin Haenelt, 2004, FSA-Minimierung, ( )

Endliche Automaten. Minimierung. Karin Haenelt. Karin Haenelt, 2004, FSA-Minimierung, ( ) Endliche Automaten Minimierung Karin Haenelt 1 Inhalt Vorteile eines Minimalautomaten Fälle für die Minimierung Minimierungsalgorithmus für deterministische endliche Automaten (mit totaler Übergangsfunktion)

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Berechenbarkeit und Komplexität Prof. Dr. Nikolaus Wulff Berechenbarkeit Im Rahmen der Turingmaschine fiel zum ersten Mal der Begriff Berechenbarkeit. Ein Funktion f heißt

Mehr

Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)).

Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). 8. Untere Schranken für Sortieren Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). Werden nun gemeinsame Eigenschaften dieser Algorithmen untersuchen. Fassen gemeinsame

Mehr

Vorlesung Programmieren

Vorlesung Programmieren Vorlesung Programmieren 11 Rekursion Jun.-Prof. Dr.-Ing. Anne Koziolek Version 1.1 ARBEITSGRUPPE ARCHITECTURE-DRIVEN REQUIREMENTS ENGINEERING (ARE) INSTITUT FÜR PROGRAMMSTRUKTUREN UND DATENORGANISATION

Mehr

2. Hausübung Algorithmen und Datenstrukturen

2. Hausübung Algorithmen und Datenstrukturen Prof. Dr. Gerd Stumme, Folke Eisterlehner, Dominik Benz Fachgebiet Wissensverarbeitung 7.4.009. Hausübung Algorithmen und Datenstrukturen Sommersemester 009 Abgabetermin: Montag, 04.05.009, 10:00 Uhr 1

Mehr

Vorlesung Algorithmische Geometrie Konvexe Hülle im R 3

Vorlesung Algorithmische Geometrie Konvexe Hülle im R 3 Vorlesung Algorithmische Geometrie Konvexe Hülle im R 3 LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Andreas Gemsa 26.06.2012 Prüfung! Termine: 20. Juli 27.

Mehr