III Das Symmetrische Eigenwertproblem (SEP)

Größe: px
Ab Seite anzeigen:

Download "III Das Symmetrische Eigenwertproblem (SEP)"

Transkript

1 III Das Symmetrische Eigenwertproblem (SEP) III3 Algorithmen für symmetrische tridiagonale Eigenwertprobleme Sei im folgenden a b A = b a b b n a n b n b n a n R n n, zb nach Householder- oder Lanczos(im Kapitel IV)-Tridiagonalisierung (III) Bisektionsverfahren Sei A R n n ; definiere A r := A( : r, : r) für r =,, n mit charakteristischem Polynom p r (x) = det(a r λi) Definiert man weiter p (x), sowie p (x), dann folgt p r (x) = (a r x)p r (x) b r p r (x), denn a λ b b a λ b det(a r λi) = det b r a r λ b r b r a r λ a λ b b a λ b Entw nach = (a r λ) det(a r λi) b r det letzter Zeile b r 3 a r λ = (a r λ) det(a r λi) b r det(a r λi) b r b r }{{} Entw nach = letzter Spalte b r det(a r λi)

2 Diese Rekursionsformel erlaubt die Auswertung von p n (x) = χ A (x) in O(n) flops Die Berechnung der Eigenwerte durch Bisektion (Intervallschachtelung, Algorithmus III6) liefert damit ein Verfahren die Eigenwerte direkt aus dem charakteristischen Polynom zu bestimmen Algorithmus III6 Bisektionsverfahren Input: y < z R mit p n (y)p n (z) < ( ξ (y, z) : p n (ξ) = ) Output: ξ mit p n (ξ) = while z y > T OL( y + z ) do x= (y+z)/ if p n (x)p n (y) < then z = x else y = x end if end while Die Konvergenz im Algorithmus III6 ist linear, denn λ x k+ λ x k Der folgende Satz liefert uns eine Möglichkeit bestimmte Eigenwerte von A zu berechnen Suchen wir zb zu µ R den nächstkleineren Eigenwert, dann können wir im Algorithmus III6 z = µ wählen und mit dem Satz y so bestimmen, dass genau eine Nullstelle zwischen y und z liegt (also eine weniger links von y als links von z) Seien im folgenden die Eigenwerte immer angeordnet nach λ λ λ n Satz III7 (Sturm sche Folge) Sei A = A n unreduzierte symmetrische Tridiagonalmatrix, dann separieren die Eigenwerte von A r die Eigenwerte von A r derart, dass Weiter sei λ r (A r ) < λ r (A r ) < λ r (A r ) < < λ (A r ) < λ (A r ) < λ (A r ) a(µ) = Anzahl Vorzeichenwechsel in {p (µ), p (µ),, p n (µ)} mit der Konvention, dass eine Nullstelle (p j (µ) = ) einem Vorzeichenwechsel entspricht, dann gilt a(µ) = #{λ Λ(A) λ < µ} Beweis [GV96, Theorem 85] Bemerkung (Trennungseigenschaft) Es gilt A = A T, A r := A( : r, : r): λ r+ (A r+ ) λ r (A r ) λ r (A r+ ) λ (A r+ ) λ (A r ) λ (A r+ ) Beispiel III8 Sei µ = wir suchen die Anzahl der Eigenwerte links von µ zu A = 3 µ= 4 p () = p () = ( ) ( ) = p () = ( )( ) ( ) = p 3 () = (3 )( ) ( ) ( ) = p 4 () = (4 ) ( ) ( ) =

3 Vorzeichenwechsel Eigenwerte von A kleiner als In der Tat ist Λ(A) {54, 83, 377, 4745} Mit Hilfe des Satzes von Gershgorin: Λ(A) n [a ii r i, a ii + r i ] mit r i = i= n a ij ) angewendet auf A tridiagonal wie in (III) erhalten wir eine einfache Methode y und z so zu bestimmen, dass Λ(A) [y, z]: Wähle y = min ({a b, a n b n } {a i b i b i : < i < n}), sowie z = max ({a + b, a n + b n } {a i + b i + b i : < i < n}) III4 Divide-and-Conquer Algorithmus Der (schnellste) Algorithmus zur Berechnung aller Eigenwerte und Eigenvektoren einer tridiagonalen, symmetrischen Matrix A R n n wie in (III) für n > 5 ist derzeit der Divide-and-Conquer Algorithmus Wir möchten dabei wieder Q T AQ = diag(λ,, λ n ) mit Q T Q = I berechnen Dabei wollen wir das Problem rekursiv in Teilprobleme für Matrizen T R m m und T R n m n m zerlegen, bis m = und damit das Eigenwertproblem trivial ist A = a b b bm b m a m b m b m a m+ b m+ b m+ bn (unreduziert) = a b b bm b n b m a m b m a m+ b m b m+ a n b m+ bn + b m b m b m b m b n a n 3

4 [ ] T =: + b T m [ ] }{{} =:v T [ ] T = + b T m vv T Angenommen, Q T i T iq i = D i = [ ] sind die Eigenwertzerlegungen der T i, dann [ Q D A = Q T ] Q D Q T + b m vv T [ ] ([ ] ) [ ] T Q D = + b m uu T Q Q Q D Dabei ist und es gilt u := [ Q T Q T ] [ ] Q T v = (:,n) Q T (:,) = [ ] Q (n,:) Q (,:) [ [ ] d Λ(A) = Λ(D + ϱuu T ), mit D = D D = d n ] und ϱ = b m Wir wenden das Verfahren rekursiv an, bis T, T R Dabei müssen wir die Eigenwerte von D + ϱuu T berechnen Benötigen billige Berechnung von Spektra für Diagonalmatrizen mit Rang--Aufdatierungen Dazu nehmen wir obda an, dass d > d > > d n und setzen λ d j j Dann folgt: det(d + ϱuu T λi) = det ( (D λi)(i + ϱ(d λi) uu T ) ) und wir sehen, dass det(i + ϱ(d λi) uu T ) = λ Λ(A) (III) Zur Bestimmung der Determinante müssen wir Determinanten der Form det(i + xy T ) für x, y R n berechnen Dabei hilft uns das folgende Lemma Lemma III9 Seien x, y R n Dann gilt: det(i + xy T ) = + y T x 4

5 Beweis Sei {λ,, λ r } = Λ(I + xy T ); Dann ist λ j (I + xy T ) = λ j (xy T ) + Andererseits hat xy T Rang und es gilt Λ(xy T ) = {y T x,,, }, denn (xy T )x = x(y T x) = (y T x)x x ist Eigenvektor zum Eigenwert y T x }{{} R Es folgt also Λ(I + xy T ) = {y T x,,, } und damit det(i + xy T ) = + y T x Definiere f(λ) := + ϱ n i= u i d i λ Es gilt f(λ) = + ϱ[u,, u n ] d λ u d n λ u n ( ) Lemma III9 = det I + ϱ (D λi) uu T, = + ϱu T (D λi) u }{{}}{{} =:y T =:x dh f(λ) = λ Λ(A) Wir suchen also die Nullstellen von f Falls u i (sonst ist nichts zu tun)und ϱ >, dann ist wegen λ d i n f u i (λ) = ϱ (d i λ) > Nach Definition gilt damit: außerdem i= lim f(λ) = und lim f(λ) = λ λ λ < d m f(λ) > und λ > d f(λ) > Siehe etwa Abbildung III für ein Beispiel mit n = 4 Insgesamt erhalten wir damit: In jedem Intervall (d j+, d j ), j = n,, liegt genau eine Nullstelle von f falls ϱ > liegt eine weitere Nullstelle rechts von d, für ϱ < liegt eine weitere Nullstelle links von d n Wir setzen daher ein Newton Verfahren zum Berechnen der Nullstellen ˆ= Eigenwerte auf jedem Intervall an Auswertungen von f(λ) und f (λ) kosten O(n) flops Damit liegt der Aufwand zur Berechnung aller Eigenwerte bei O(n ) Falls nur die Eigenwerte gesucht sind ist dieses Verfahren also teurer als der symmetrische QR Algorithmus! Allerdings kann der zu λ Λ(A) gehörige Eigenvektor günstig wie folgt bestimmt werden: Lemma III λ Λ(D + ϱuu T ) (D λi) u ist der zugehörige Eigenvektor 5

6 5 f(x) =+3/( x)+3/(3 x)+4/(7 x) Abbildung III: Beispielgraph für n = 4 Beweis (D + ϱuu T )(D λi) u = (D λi + λi + ϱuu T )(D λi) u = u + λ(d λi) u + u[ϱu T (D λi) u] }{{} =f(λ) }{{} = = λ(d λi) u Die Kosten zur Berechnung aller Eigenvektoren belaufen sich damit also auf n Wir haben bisher vorausgesetzt, dass d i d i+ und u i gilt Im Fall u i = folgt aber sofort d i Λ(D + ϱuu T ), denn (D + ϱuu T )e i = d i e i Im Fall d i = d i+ definiere U = G(i, i +, θ) so, dass G T (i, i +, θ)u = u u i ũ i u i+ u n 6

7 U T (D + ϱuu T )U = D + ϱũũ T mit ũ i+ = Ue i+ ist Eigenvektor von D + ϱuu T zum Eigenwert d i+ In beiden Fällen kann d i abgespalten werden und wir fahren dann mit dem verkleinerten Problem fort Der Divide-and-Conquer Algorithmus besteht nun darin, die Teilungsprozedur rekursiv anzuwenden bis T, T R gilt Bemerkung Die Berechnung der Eigenvektoren mit Lemma III ist numerisch instabil, falls λ d i Ein numerisch stabiler Algorithmus nach [GE94] verwendet den ( ) d Satz III (von Löwner) Sei D = und α,, α n R so, dass d n < α n < d n < < d < α Mit d n (α j d j ) û i = ± (d j d i ), û = û û n gilt: Λ ( D + ûû T ) = {α,, α n } Wir berechnen also die Eigenwerte wie zuvor, wenden aber Lemma III auf D + ûû T an Diese Lösung ist dann numerisch stabil, da (D λ i I) û orthogonaler ist, als (D λ i I) u Beweis zum Satz von Löwner Setze ˆD = D + ûû T p ˆD(λ) = det( ˆD λi) =: Andererseits gilt unter Verwendung von Lemma III9: (α j λ) det( ˆD λi) = det(d λi) det(i + (D λi) ûû T ) n û = (d j λ) j + d j λ n = (d j λ) + û j n d j λ + (d j λ)û i 7

8 Setzt man nun λ = d i, dann folgt n (α j d j ) = (d j d i ) + û i d j d i + n (d j d i )û i }{{} und damit: = = (d j d i )û i û i = (α j d i )û i (d j d i )û i Der Quotient ist positiv, da sowohl im Zähler als auch im Nenner genau n i negative Faktoren auftreten > 8

9 Algorithmus III7 Divide-and-Conquer (dcsep) Input: A = A T R n n tridiagonal Output: Λ := {λ,, λ n } = Λ(A), Q = [q,, q n ] R n n orthogonal mit Aq j = λ j q j, j =,, n : Bestimme n : if n > then[ ] 3: Forme A = A A + ϱvv T {mit ϱ = b m } 4: Berechne Q, Λ durch Aufruf von dcsep(a ) 5: Berechne Q, Λ durch Aufruf von dcsep(a ) 6: Berechne D + ϱuu T aus Q, Q, Λ, Λ 7: Finde die Eigenwerte Λ von D + ϱuu T durch Berechnen aller Nullstellen von f(λ) = + ϱ n i= u i d i λ 8: Berechne den Vektor û mit dem Satz von Löwner und den Eigenvektor von D + ûû T : ˆq j = (D λ j ) û 9: Berechne die Eigenvektoren von A: Q = : else : Q =,Λ = A : end if [ Q Q ] [ˆq,, ˆq n ] Die Kosten im Algorithmus III7 belaufen sich auf: ( n ) t(n) = ( n ) t = Eigenwert + O(n ) + Eigenvektor Aufdatierung Q O(n ) + cn 3 + cn 3 ( ( n ) ( n ) ) 3 ( n ) t + c + cn 3 = 4t + c n cn3 log (n) = log (n) t() + j= ) log (n)+ j= cn 3 4j log (n) = n + cn 3 log (n) 4 j = cn3 = ( 4 4 cn cn3 j= ( ) j 4 9

10 Literaturverzeichnis [GE94] Ming Gu and Stanley C Eisenstat A stable and efficient algorithm for the rank-one modification of the symmetric eigenproblem SIAM J Matrix Anal Appl, 5(4):66 76, [GV96] GH Golub and CF Van Loan Matrix Computations Johns Hopkins University Press, Baltimore, third edition, 996

IX. Das symmetrische Eigenwertproblem (SEP)

IX. Das symmetrische Eigenwertproblem (SEP) IX. Das symmetrische Eigenwertproblem (SEP IX.3. Algorithmen für symmetrische tridiagonale Matrizen Sei a b. b A =........ a n b n (IX. b n a n z. B. nach Householder- oder Lanczos-Triagonalisierung (Kapitel

Mehr

Kapitel 5 : Eigenwerte und Eigenvektoren

Kapitel 5 : Eigenwerte und Eigenvektoren Kapitel 5 : Eigenwerte und Eigenvektoren 5.1 Definition und allgemeine Eigenschaften Definition 5.1 Sei A eine quadratische (n n)-matrix. λ C heißt Eigenwert von A, wenn ein Vektor x C n mit x 0 existiert,

Mehr

Lanczos Methoden. Stefan Grell Im Rahmen eines Proseminar zur Numerischen Mathematik unter der Leitung von Prof. Wolf Hofmann. 15.

Lanczos Methoden. Stefan Grell Im Rahmen eines Proseminar zur Numerischen Mathematik unter der Leitung von Prof. Wolf Hofmann. 15. Lanczos Methoden Stefan Grell Im Rahmen eines Proseminar zur Numerischen Mathematik unter der Leitung von Prof. Wolf Hofmann 15. Juni 2005 Lanczos-Methoden Lanczos-Methoden sind iterative Verfahren zur

Mehr

1.11 Eigenwertproblem Anwendungen von Eigenwerten und Eigenvektoren Lineare Rekursionen Lineare Differentialgleichungssysteme Bestimmung von

1.11 Eigenwertproblem Anwendungen von Eigenwerten und Eigenvektoren Lineare Rekursionen Lineare Differentialgleichungssysteme Bestimmung von 1.11 Eigenwertproblem Anwendungen von Eigenwerten und Eigenvektoren Lineare Rekursionen Lineare Differentialgleichungssysteme Bestimmung von Wachstumsraten Bestimmung von Maximal- und Minimalwerten von

Mehr

Ausgewählte Lösungen zu den Übungsblättern 9-10

Ausgewählte Lösungen zu den Übungsblättern 9-10 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Dezember Ausgewählte Lösungen zu den Übungsblättern 9- Übungsblatt

Mehr

Serie a) Welche der folgenden Vektoren sind Eigenvektoren der Matrix 1 0 1? 0 1 1

Serie a) Welche der folgenden Vektoren sind Eigenvektoren der Matrix 1 0 1? 0 1 1 Prof. Norbert Hungerbühler Serie Lineare Algebra II ETH Zürich - D-MAVT. a Welche der folgenden Vektoren sind Eigenvektoren der Matrix? i (,,. ii (,,. iii (,,. iv (, 3,. v (,,. Ein Vektor v ist Eigenvektor

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 12. Aufgabe Herbstsemester Dr. V. Gradinaru D. Devaud.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 12. Aufgabe Herbstsemester Dr. V. Gradinaru D. Devaud. Dr. V. Gradinaru D. Devaud Herbstsemester 15 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 1 Aufgabe 1.1 1.1a) Sei A eine n n-matrix. Das Gleichungssystem Ax = b sei

Mehr

Lösungen Serie 2. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler 1 0 1? 0 1 1

Lösungen Serie 2. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler 1 0 1? 0 1 1 D-MAVT Lineare Algebra II FS 8 Prof. Dr. N. Hungerbühler Lösungen Serie. Welche der folgenden Vektoren sind Eigenvektoren der Matrix? (a) (,, ). Ein Vektor v ist Eigenvektor von A :=, falls Av ein skalares

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

Höhere Mathematik II für die Fachrichtung Physik

Höhere Mathematik II für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz SS 5 4.5.5 Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 4. Übungsblatt

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 009 Dienstag 3.6 $Id: quadrat.tex,v.4 009/06/3 4:55:47 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6.3 Quadratische Funktionen und die Hauptachsentransformation

Mehr

Sommer 2017 Musterlösung

Sommer 2017 Musterlösung Sommer 7 Musterlösung. (5 Punkte) a) Sei V ein Vektorraum über K und sei T End(V ). Geben Sie die Definition eines Eigenwertes von T und zeigen Sie für endlichdimensionales V, dass λ K genau dann ein Eigenwert

Mehr

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB)

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Prof. R. Leithner, Dipl. Phys. E. Zander Wintersemester 2010/2011 Kapitel 6 Eigenwerte

Mehr

Eigenwerte. Vorlesung Computergestützte Mathematik zur Linearen Algebra. Lehrstuhl für Angewandte Mathematik Sommersemester 2009

Eigenwerte. Vorlesung Computergestützte Mathematik zur Linearen Algebra. Lehrstuhl für Angewandte Mathematik Sommersemester 2009 Eigenwerte Vorlesung Computergestützte Mathematik zur Linearen Algebra Lehrstuhl für Angewandte Mathematik Sommersemester 2009 25. Juni + 2.+9. Juli 2009 Grundlagen Definition Ist für A C n,n, Ax = λx

Mehr

Wir stellen uns das Ziel, wesentliche Information über. Determinanten haben auch eine geometrische Bedeutung: Volumenbestimmung eines Parallelepipeds

Wir stellen uns das Ziel, wesentliche Information über. Determinanten haben auch eine geometrische Bedeutung: Volumenbestimmung eines Parallelepipeds 39 Determinanten 391 Motivation Wir stellen uns das Ziel, wesentliche Information über die Invertierbarkeit einer n n-matrix das Lösungsverhalten zugehöriger linearer Gleichungssysteme möglichst kompakt

Mehr

Begleitmaterial zur Vorlesung Numerik II

Begleitmaterial zur Vorlesung Numerik II Begleitmaterial zur Vorlesung Numerik II Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik II 1 / 35 Inhalte der Numerik

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 25): Lineare Algebra und analytische Geometrie 2 2. (Frühjahr 29, Thema 3, Aufgabe 3) Gegeben sei die reelle 3 3 Matrix 4 2 A = 2 7 2 R 3 3. 2 2 a)

Mehr

4.6 Berechnung von Eigenwerten

4.6 Berechnung von Eigenwerten 4.6 Berechnung von Eigenwerten Neben der Festlegung auf den betragsgrößten Eigenwert hat die Potenzmethode den Nachteil sehr langsamer Konvergenz, falls die Eigenwerte nicht hinreichend separiert sind.

Mehr

Lineare Algebra und Numerische Mathematik D-BAUG. Winter 2013 Prof. H.-R. Künsch. , a R. det(a) = 0 a = 1.

Lineare Algebra und Numerische Mathematik D-BAUG. Winter 2013 Prof. H.-R. Künsch. , a R. det(a) = 0 a = 1. b Musterlösung Lineare Algebra und Numerische Mathematik D-BAUG. Multiple Choice) Gegeben sei die folgende Matrix Winter 3 Prof. H.-R. Künsch A = a a) deta) = genau dann wenn gilt x a =. a =. ), a R. x

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 2016

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 2016 Name, Vorname Matrikel-Nr. Aufg. Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 206 Bearbeiten Sie bitte

Mehr

47 Singulärwertzerlegung

47 Singulärwertzerlegung 47 Singulärwertzerlegung 47.1 Motivation Wir haben gesehen, dass symmetrische Matrizen vollständig mithilfe ihrer Eigenwerte und Eigenvektoren beschrieben werden können. Diese Darstellung kann unmittelbar

Mehr

9. Übungsblatt zur Mathematik I für Maschinenbau

9. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 9. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS /..-4.. Aufgabe G (Koordinatentransformation)

Mehr

Vortrag 20: Kurze Vektoren in Gittern

Vortrag 20: Kurze Vektoren in Gittern Seminar: Wie genau ist ungefähr Vortrag 20: Kurze Vektoren in Gittern Kerstin Bauer Sommerakademie Görlitz, 2007 Definition und Problembeschreibung Definition: Gitter Seien b 1,,b k Q n. Dann heißt die

Mehr

Analysis 2, Woche 9. Mehrdimensionale Differentialrechnung I. 9.1 Differenzierbarkeit

Analysis 2, Woche 9. Mehrdimensionale Differentialrechnung I. 9.1 Differenzierbarkeit A Analysis, Woche 9 Mehrdimensionale Differentialrechnung I A 9. Differenzierbarkeit A3 =. (9.) Definition 9. Sei U R m offen, f : U R n eine Funktion und a R m. Die Funktion f heißt differenzierbar in

Mehr

6 Hauptachsentransformation

6 Hauptachsentransformation 6 Hauptachsentransformation A Diagonalisierung symmetrischer Matrizen (6.1) Satz: Sei A M(n n, R) symmetrisch. Dann gibt es eine orthogonale n n-matrix U mit U t AU = D Diagonalmatrix Es folgt: Die Spalten

Mehr

Lösungen zu Blatt 13 der Übungen zur Vorlesung Numerik, LMU München, Wintersemester 2016/2017

Lösungen zu Blatt 13 der Übungen zur Vorlesung Numerik, LMU München, Wintersemester 2016/2017 Lösungen zu Blatt 13 der Übungen zur Vorlesung Numerik, LMU München, Wintersemester 01/017 Peter Philip, Sabine Bögli. Januar 017 1. 10 Punkte) a) Betrachten Sie R mit der Maximumsnorm. Berechnen Sie die

Mehr

40 Lokale Extrema und Taylor-Formel

40 Lokale Extrema und Taylor-Formel 198 VI. Differentialrechnung in mehreren Veränderlichen 40 Lokale Extrema und Taylor-Formel Lernziele: Resultate: Satz von Taylor und Kriterien für lokale Extrema Methoden aus der linearen Algebra Kompetenzen:

Mehr

7.3 Unitäre Operatoren

7.3 Unitäre Operatoren Wir können jeden Operator T wie folgt schreiben: Dabei gilt T = 1 2 (T + T ) + i( 1 2 i (T T )) (T + T ) = T + T sowie ( 1 2 i (T T )) = 1 2 i (T T) = 1 2 i (T T ). Wir können T also in zwei lineare Operatoren

Mehr

Probeklausur zu Mathematik 2 für Informatik

Probeklausur zu Mathematik 2 für Informatik Gunter Ochs Wintersemester 4/5 Probeklausur zu Mathematik für Informatik Lösungshinweise wie immer ohne Garantie auf Fehlefreiheit. Gegeben sei das Dreieck im R mit den Eckpunkten A a Berechnen Sie die

Mehr

45 Eigenwerte und Eigenvektoren

45 Eigenwerte und Eigenvektoren 45 Eigenwerte und Eigenvektoren 45.1 Motivation Eigenvektor- bzw. Eigenwertprobleme sind wichtig in vielen Gebieten wie Physik, Elektrotechnik, Maschinenbau, Statik, Biologie, Informatik, Wirtschaftswissenschaften.

Mehr

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10)

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Kapitel 15: Eigenwerte und -vektoren Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 5. November 2009) Diagonalisierbarkeit

Mehr

= [Entw. nach S1 ] 2 det = [Z2 Z 2 Z 1 ] 2 det = [Entw. nach Z1 ] 5 det = [Z1 Z 1 +Z 3 ] 5 det

= [Entw. nach S1 ] 2 det = [Z2 Z 2 Z 1 ] 2 det = [Entw. nach Z1 ] 5 det = [Z1 Z 1 +Z 3 ] 5 det Aufgabe 1 Wir wissen, dass sich die Determinante einer Matrix nicht verändert, wenn wir das Vielfache einer Spalte zu einer anderen Spalte bzw. das Vielfache einer Zeile zu einer anderen Zeile addieren.

Mehr

Minimalpolynome und Implikanten

Minimalpolynome und Implikanten Kapitel 3 Minimalpolynome und Implikanten Wir haben bisher gezeigt, daß jede Boolesche Funktion durch einfache Grundfunktionen dargestellt werden kann. Dabei können jedoch sehr lange Ausdrücke enstehen,

Mehr

D-INFK Lineare Algebra HS 2016 Özlem Imamoglu Olga Sorkine-Hornung. Musterlösung = = V A =

D-INFK Lineare Algebra HS 2016 Özlem Imamoglu Olga Sorkine-Hornung. Musterlösung = = V A = D-INFK Lineare Algebra HS 26 Özlem Imamoglu Olga Sorkine-Hornung Musterlösung 2. a) χ A (λ) = det(a λi) = (5 λ)( 2 λ) + 2 = λ 2 3λ + 2 = (λ 2)(λ ) λ = 2: Der Eigenvektor v zum Eigenwert λ erfüllt Av =

Mehr

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Musterlösung 13. (A ± I)x = 0 Ax ± x = 0 Ax = ±x Ax = λx

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Musterlösung 13. (A ± I)x = 0 Ax ± x = 0 Ax = ±x Ax = λx D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung Musterlösung 13 1. Die Matrix A±I ist singulär falls es einen Vektor x 0 gibt der die Gleichung (A±I)x = 0 erfüllt, d.h. wenn A ± I als

Mehr

Modulprüfung Mathematik I Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik, Wirtschaftsinformatik WS 2013/

Modulprüfung Mathematik I Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik, Wirtschaftsinformatik WS 2013/ Fakultät für Mathematik Institut für Algebra und Geometrie Prof. Dr. Martin Henk, Dr. Michael Höding Modulprüfung Mathematik I Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik,

Mehr

Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT

Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Winter 6 Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT. Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in das entsprechende

Mehr

Lineare Algebra. 13. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching

Lineare Algebra. 13. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching Lineare Algebra 3. Übungsstunde Steven Battilana stevenb student.ethz.ch battilana.uk/teaching December 29, 27 Erinnerung Satz. Axiomatischer Zugang, Eigenschaften der Determinante. Die Abbildung det :

Mehr

Übungsblatt 4 Musterlösung

Übungsblatt 4 Musterlösung Numerik gewöhnlicher Differentialgleichungen MA2304 - SS6 Übungsblatt 4 Musterlösung Aufgabe 7 (Nullstellen als Eigenwerte) Die Polynome {S n } n=0,,2,, S n P n, mit führem Koeffizienten eins, heißen Orthogonalpolynome

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4 Lineare Algebra/Analytische Geometrie II SoSe 2016

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4 Lineare Algebra/Analytische Geometrie II SoSe 2016 Name, Vorname Matrikel-Nr. Aufg.1 Aufg.2 Aufg.3 Σ Note bzw. Kennzeichen Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4 Lineare Algebra/Analytische Geometrie II SoSe 2016 Bearbeiten Sie bitte zwei

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte.

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte. Stroppel Musterlösung 3908, 80min Aufgabe 4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte a) 4n 3 9 lim b) lim n n + n) n + )5n 4) c) lim x 0 sinlnx + )) sinhx) a) Es ist lim

Mehr

8. Vorlesung, 5. April Numerische Methoden I. Eigenwerte und Eigenvektoren

8. Vorlesung, 5. April Numerische Methoden I. Eigenwerte und Eigenvektoren 8. Vorlesung, 5. April 2017 170 004 Numerische Methoden I Eigenwerte und Eigenvektoren 1 Eigenwerte und Eigenvektoren Gegeben ist eine n n-matrix A. Gesucht sind ein vom Nullvektor verschiedener Vektor

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 3

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2 2

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwerte und Eigenvektoren Siehe Analysis (von der Hude, Folie 20: Definition 2.3. Ein Vektor x R n heißt Eigenvektor der quadratischen n n-matrix A zum Eigenwert λ R, wenn gilt Ax = λx Die Eigenwerte

Mehr

3 Eigenwertberechnung

3 Eigenwertberechnung 3 Eigenwertberechnung (3.) Definition Eine Matrix A R, heißt (obere) Block-Dreiecksmatrix, wenn ein n existiert, sodass A[n + :, : n] = 0 gilt, d.h.: A = ( ) A[ : n, : n] A[ : n,n + : ] 0 A[n + :,n + :

Mehr

Eigenwertprobleme. 25. Oktober Autoren: 1. Herrmann, Hannes ( ) 2. Kraus, Michael ( ) 3. Krückemeier, Paul ( )

Eigenwertprobleme. 25. Oktober Autoren: 1. Herrmann, Hannes ( ) 2. Kraus, Michael ( ) 3. Krückemeier, Paul ( ) Eigenwertprobleme 5. Oktober Autoren:. Herrmann, Hannes (45969). Kraus, Michael (9). Krückemeier, Paul (899) 4. Niedzielski, Björn (7) Eigenwertprobleme tauchen in der mathematischen Physik an Stellen

Mehr

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w =

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w = 1 v Die Länge Def. Sei (V,, ) ein Euklidscher Vektorraum. Für jeden Vektor v V heißt die Zahl v,v die Länge von v und wird v bezeichnet. Bemerkung. Die Länge des Vektors ist wohldefiniert, da nach Definition

Mehr

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive

Mehr

Reduced-Rank Least Squares Modelle

Reduced-Rank Least Squares Modelle 16.12.2008 Wiederholung Gegeben: Matrix A m n Paar Rechter Eigenvektor x, Eigenwert λ: A x = λ x mit x R n \ 0, λ N Paar Linker Eigenvektor y, Eigenwert λ: y T A = λ y T Singulärwertzerlegung (SVD): A

Mehr

Klasse WI06b MLAN2 zweite-klausur 13. Juni 2007

Klasse WI06b MLAN2 zweite-klausur 13. Juni 2007 Klasse WI6b MLAN zweite-klausur 3. Juni 7 Name: Aufgabe Gegeben sind die beiden harmonischen Schwingungen ( y = f (t) = +3 sin ωt + π ) (), ( 4 y = f (t) = 8 cos ωt + π ) (). 4 a) Bestimmen Sie mit Hilfe

Mehr

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009 I. (4 Punkte) Gegeben sei die Menge Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 9 G := { a c b a, b, c R }. (a) Zeigen Sie, dass G zusammen mit der Matrizenmultiplikation eine Gruppe

Mehr

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v.

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v. Teil I Lineare Algebra I Vorlesung Sommersemester 2011 Olga Holtz MA 378 Sprechstunde Fr. 14-16 und n.v. holtz@math.tu-berlin.de Sadegh Jokar MA 373 Sprechstunde, Do. 12-14 und n.v. jokar@math.tu-berlin.de

Mehr

R 3 und U := [e 2, e 3 ] der von e 2, e 3 erzeugte

R 3 und U := [e 2, e 3 ] der von e 2, e 3 erzeugte Aufgabe ( Es seien e =, e = Untervektorraum (, e = ( R und U := [e, e ] der von e, e erzeugte Weiter sei G := {A GL(, R A e = e und A U U} (a Zeigen Sie, dass G eine Untergruppe von GL(, R ist (b Geben

Mehr

Zusammenfassung. 2.7 Eigenwerte und Eigenvektoren 53. in 2.1: Lösung eines linearen Gleichungssystems

Zusammenfassung. 2.7 Eigenwerte und Eigenvektoren 53. in 2.1: Lösung eines linearen Gleichungssystems 7 Eigenwerte und Eigenvektoren 53 Zusammenfassung in : Lösung eines linearen Gleichungssystems Formalisierung: a x + a x + + a n x n b a x + a x + + a n x n b a m x + a m x + + a mn x n b m A x b Lösungsmethode:

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 205/6): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2

Mehr

Klausur Numerische Mathematik (für Elektrotechniker), 24. Februar 2016

Klausur Numerische Mathematik (für Elektrotechniker), 24. Februar 2016 Verständnisfragen-Teil ( Punkte) Jeder der Verständnisfragenblöcke besteht aus Verständnisfragen. Werden alle Fragen in einem Verständnisfragenblock richtig beantwortet, so gibt es für diesen Block Punkte.

Mehr

Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 2017/18 Blatt 3 - Lösung

Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 2017/18 Blatt 3 - Lösung Technische Universität München Physik Department Pablo Cova Fariña, Claudia Nagel Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 207/8 Blatt 3 - Aufgabe : Darstellungsmatrizen Sei

Mehr

Berechnung der Determinante

Berechnung der Determinante Berechnung der Determinante Verhalten der Determinante unter elementaren Zeilenoperationen: Das Vertauschen zweier Zeilen/Spalten der Matrix A ändert nur das Vorzeichen der Determinante, d.h: i, j {1,...,

Mehr

Kapitel 3. Konvergenz von Folgen und Reihen

Kapitel 3. Konvergenz von Folgen und Reihen Kapitel 3. Konvergenz von Folgen und Reihen 3.1. Normierte Vektorräume Definition: Sei V ein Vektorraum (oder linearer Raum) über (dem Körper) R. Eine Abbildung : V [0, ) heißt Norm auf V, falls die folgenden

Mehr

Lösungsskizzen zur Klausur zur Linearen Algebra II. Definitionen

Lösungsskizzen zur Klausur zur Linearen Algebra II. Definitionen Technische Universität Berlin Sommersemester 2008 Institut für Mathematik 18 Juli 2008 Prof Dr Stefan Felsner Andrea Hoffkamp Lösungsskizzen zur Klausur zur Linearen Algebra II Aufgabe 1 (1+1+1 Punkte)

Mehr

Für das Allgemeine lineare Gleichungssystem mit n linearen Gleichungen und n Unbekannten

Für das Allgemeine lineare Gleichungssystem mit n linearen Gleichungen und n Unbekannten Albert Ludwigs Universität Freiburg Abteilung Empirische Forschung und Ökonometrie Mathematik für Wirtschaftswissenschaftler Dr. Sevtap Kestel Winter 008 6. Januar.009 Kapitel 6 Leontieff Modell, Lineare

Mehr

2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2)

2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2) Prof. Hesse Höhere Mathematik I und II Musterlösung 7. 0. 0, 80min Aufgabe (3 Punkte) Zeigen Sie mit vollständiger Induktion: Für alle n N gilt n k= k k k(k + ) = n+ n +. Induktionsanfang: k= Induktionsschluss

Mehr

5 Eigenwerte, Eigenvektoren und Diagonalisierbarkeit

5 Eigenwerte, Eigenvektoren und Diagonalisierbarkeit ME Lineare Algebra HT 2008 99 5 Eigenwerte, Eigenvektoren und Diagonalisierbarkeit 5.1 Ein Beispiel zur Motivation Als einfachstes Beispiel eines dynamischen Systems untersuchen wir folgendes Differentialgleichungssystem

Mehr

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie (KIT) WS 22/3 Institut für Analysis 28..23 Prof. Dr. Tobias Lamm Dr. Patrick Breuning Höhere Mathematik I für die Fachrichtung Physik 4. Übungsblatt (letztes Blatt)

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 12 Aufgabe 121 Matrixpotenzen und Eigenwerte Diese Aufgabe ist

Mehr

Latent Semantic Analysis. Christian Ebert & Fritz Hamm. Lineare Algebra IV: Diagonalisierungen. Latent Semantic. Analysis/Indexing. 12.

Latent Semantic Analysis. Christian Ebert & Fritz Hamm. Lineare Algebra IV: Diagonalisierungen. Latent Semantic. Analysis/Indexing. 12. 12. Januar 2012 Eigenwerte & Diagonalisierungen I Sei V ein K-Vektorraum und A ein Endomorphismus/eine n n Matrix über K {R, C} Erinnerung 1 Gilt A x = λ x, x 0 V, λ K, heißt λ Eigenwert und x Eigenvektor

Mehr

KAPITEL 7. Berechnung von Eigenwerten. Av = λv

KAPITEL 7. Berechnung von Eigenwerten. Av = λv KAPITEL 7. Berechnung von Eigenwerten Aufgabe: Sei A R n n eine reelle quadratische Matrix. Gesucht λ C und v C n, v 0, die der Eigenwertgleichung Av = λv genügen. Die Zahl λ heißt Eigenwert und der Vektor

Mehr

51 Numerische Berechnung von Eigenwerten und Eigenvektoren

51 Numerische Berechnung von Eigenwerten und Eigenvektoren 5 Numerische Berechnung von Eigenwerten und Eigenvektoren 5. Motivation Die Berechnung der Eigenwerte einer Matrix A IR n n als Lösungen der charakteristischen Gleichung (vgl. Kapitel 45) ist für n 5 unpraktikabel,

Mehr

3.5 Schnelle Fouriertransformation (FFT, DFT)

3.5 Schnelle Fouriertransformation (FFT, DFT) 3.5 Schnelle Fouriertransformation (FFT, DFT) 3.5.1 Grundlagen Ein Polynom P = i a ix i C[x] vom Grad n ist eindeutig durch seine Koeffizienten a i bestimmt, d.h. man hat eine Bijektion {Polynome C[x]

Mehr

Numerisches Programmieren (IN0019)

Numerisches Programmieren (IN0019) Numerisches Programmieren (IN0019) Frank R. Schmidt Winter Semester 2016/2017 9. Symmetrisches Eigenwertproblem.................................................................................... 2 Eigenwert-Problem

Mehr

Kapitel 3. Lineare Ausgleichsrechnung. Problem: Löse A x = b, A R m n, b R m, wobei. Rang(A) < Rang([A;b])

Kapitel 3. Lineare Ausgleichsrechnung. Problem: Löse A x = b, A R m n, b R m, wobei. Rang(A) < Rang([A;b]) Kapitel 3. Lineare Ausgleichsrechnung Problem: Löse A x = b, A R m n, b R m, wobei Rang(A) < Rang([A;b]) zugelassen ist, d.h. Ax = b ist nur im weitesten Sinne lösbar. 3.1 Lineares Ausgleichsproblem: Zu

Mehr

Lineare Algebra I Lösungsvorschlag

Lineare Algebra I Lösungsvorschlag Aufgabe Lineare Algebra I Lösungsvorschlag Wir bezeichnen mit a, a 2, a 3 Q 4 die Spalten der Matrix A. Es ist 7 a + 2a 2 = 7 4 = 7a 3, und wir sehen im l A = a, a 2, a 3 = a, a 2. Da die Vektoren a und

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.44 2018/05/17 14:11:13 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.6 Bewegungen und Kongruenzbegriffe Wir untersuchen gerade die Spiegelung an einer Hyperebene h R d. Ist ein

Mehr

Rechenoperationen mit Folgen. Rekursion und Iteration.

Rechenoperationen mit Folgen. Rekursion und Iteration. Rechenoperationen mit Folgen. Die Menge aller Folgen in V bildet einen Vektorraum, V N, für den die Addition und skalare Multiplikation wie folgt definiert sind. (a n ) n N + (b n ) n N := (a n + b n )

Mehr

MC-Serie 11: Eigenwerte

MC-Serie 11: Eigenwerte D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel V SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

6. Normale Abbildungen

6. Normale Abbildungen SKALARPRODUKE 1 6 Normale Abbildungen 61 Erinnerung Sei V ein n-dimensionaler prä-hilbertraum, also ein n-dimensionaler Vektorraum über K (R oder C) versehen auch mit einer Skalarprodukt, ra K Die euklidische

Mehr

5 Diagonalisierbarkeit

5 Diagonalisierbarkeit 5 Diagonalisierbarkeit Sei V ein K Vektorraum mit einer Basis B = (v 1,..., v n ) Wiederholung aus 2: Sei f : V V K linear. Stelle f(v j ) für j = 1,..., n dar in der Form a 1j Das n Tupel a j =. a nj

Mehr

Divide & Conquer. Problem in Teilprobleme aufteilen Teilprobleme rekursiv lösen Lösung aus Teillösungen zusammensetzen

Divide & Conquer. Problem in Teilprobleme aufteilen Teilprobleme rekursiv lösen Lösung aus Teillösungen zusammensetzen Teile & Herrsche: Divide & Conquer Problem in Teilprobleme aufteilen Teilprobleme rekursiv lösen Lösung aus Teillösungen zusammensetzen Probleme: Wie setzt man zusammen? [erfordert algorithmisches Geschick

Mehr

Grundlagen der Mathematik II (LVA U)

Grundlagen der Mathematik II (LVA U) Dr. Marcel Dettling 3.4. Dr. Daniel Haase FS daniel.haase@math.ethz.ch Grundlagen der Mathematik II (LVA 4-6- U) 8 Zur Übungsstunde vom 3.4. Aufgabe (Ausgleichsrechnung) Gegeben sei das lineare Gleichungssystem

Mehr

Algebraische Algorithmen (Timo Fleischfresser und Deepak Chavan)

Algebraische Algorithmen (Timo Fleischfresser und Deepak Chavan) Algebraische Algorithmen (Timo Fleischfresser und Deepak Chavan) Teil 1: Matrizen Matrizenmultiplikation Sei A eine m x n Matrix und B eine n x p Matrix. Dann ist A * B = W = [w ij mit i = 0.. m-1, j =

Mehr

fj 2 = f n f n+1. fj 2 = 0 2 = 0 = 0 1 = f 0 f 1. f 2 j = f n f n+1 +fn+1 = (f n +f n+1 )f n+1 = f n+2 f n+1 = f n+1 f (n+1)+1.

fj 2 = f n f n+1. fj 2 = 0 2 = 0 = 0 1 = f 0 f 1. f 2 j = f n f n+1 +fn+1 = (f n +f n+1 )f n+1 = f n+2 f n+1 = f n+1 f (n+1)+1. Stroppel Musterlösung 4..4, 8min Aufgabe 3 Punkte) Sei f n ) n N die Fibonacci-Folge, die durch f :=, f := und f n+ := f n +f n definiert ist. Beweisen Sie durch vollständige Induktion, dass für alle n

Mehr

Höhere Mathematik II für die Fachrichtung Physik. Modulprüfung

Höhere Mathematik II für die Fachrichtung Physik. Modulprüfung Institut für Analysis SS7 PD Dr. Peer Christian Kunstmann 8.9.7 Höhere Mathematik II für die Fachrichtung Physik Modulprüfung Aufgabe [5+5= Punkte] (a) Zeigen Sie, dass die Matrix α A α =, α. genau dann

Mehr

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni.

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni. Lineare Algebra II Prof. Dr. M. Rost Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni http://www.math.uni-bielefeld.de/~rost/la2 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung: Eigenvektoren

Mehr

Proseminar Lineare Algebra II, SS 11. Blatt

Proseminar Lineare Algebra II, SS 11. Blatt Blatt 1 1. Berechnen Sie die Determinante der Matrix 0 0 4 1 2 5 1 7 1 2 0 3 1 3 0 α. 2. Stellen Sie folgende Matrix als Produkt von Elementarmatrizen dar: 1 3 1 4 2 5 1 3 0 4 3 1. 3 1 5 2 3. Seien n 2

Mehr

Kapitel 11 Eigenwerte und Eigenvektoren

Kapitel 11 Eigenwerte und Eigenvektoren Kapitel Eigenwerte und Eigenvektoren. Problem der Diagonalisierbarkeit Es sei wieder K gleich R oder. Eine n n)-matrix A mit Koeffizienten aus K wird als diagonalisierbar bezeichnet, wenn es eine invertierbare

Mehr

D-ITET. D-MATL, RW Lineare Algebra HS 2017 Dr. V. Gradinaru T. Welti. Online-Test 2. Einsendeschluss: Sonntag, den

D-ITET. D-MATL, RW Lineare Algebra HS 2017 Dr. V. Gradinaru T. Welti. Online-Test 2. Einsendeschluss: Sonntag, den D-ITET. D-MATL, RW Lineare Algebra HS 7 Dr. V. Gradinaru T. Welti Online-Test Einsendeschluss: Sonntag, den..7 : Uhr Dieser Test dient, seriös bearbeitet, als Repetition des bisherigen Vorlesungsstoffes

Mehr

(a), für i = 1,..., n.

(a), für i = 1,..., n. .4 Extremwerte Definition Sei M R n eine Teilmenge, f : M R stetig, a M ein Punkt. f hat in a auf M ein relatives (oder lokales) Maximum bzw. ein relatives (oder lokales) Minimum, wenn es eine offene Umgebung

Mehr

Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT

Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Sommer 4 Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT. [ Punkte] Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in

Mehr

Lineare Algebra. 13. Übungsstunde. Steven Battilana.

Lineare Algebra. 13. Übungsstunde. Steven Battilana. Lineare Algebra. Übungsstunde Steven Battilana stevenb@student.ethz.ch January 2, 27 Erinnerung Berechnung von Eigenwerten und Eigenvektoren Gegeben: A E n n (falls F : V V lineare Abbildung gegeben ist,

Mehr

20 Kapitel 2: Eigenwertprobleme

20 Kapitel 2: Eigenwertprobleme 20 Kapitel 2: Eigenwertprobleme 2.3 POTENZMETHODE Die Potenzmethode oder Vektoriteration ist eine sehr einfache, aber dennoch effektive Methode zur Bestimmung des betragsmäßig größten Eigenwertes. Um die

Mehr

Institut für Analysis und Scientific Computing E. Weinmüller WS 2017

Institut für Analysis und Scientific Computing E. Weinmüller WS 2017 Institut für Analysis und Scientific Computing TU Wien E. Weinmüller WS 7 L I N E A R E A L G E B R A F Ü R T P H, U E (.64). Haupttest (FR, 9..8) (mit Lösung ) Ein einfacher Taschenrechner ist erlaubt.

Mehr

Lineare Algebra und Geometrie II, Übungen

Lineare Algebra und Geometrie II, Übungen Lineare Algebra und Geometrie II, Übungen Gruppe (9 9 45 ) Sei A 2 Bestimmen Sie A und A Finden Sie weiters Vektoren u, v R 2 mit u und Au A, beziehungsweise v und Av A Zunächst die Berechnung der Norm

Mehr

Institut für Analysis und Scientific Computing E. Weinmüller WS 2016

Institut für Analysis und Scientific Computing E. Weinmüller WS 2016 Institut für Analysis und Scientific Computing TU Wien E. Weinmüller WS 26 L I N E A R E A L G E B R A F Ü R T P H, U E (3.64) 2. Haupttest (FR, 2..27) (mit Lösung ) Ein einfacher Taschenrechner ist erlaubt.

Mehr

Lösung zu Serie [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich:

Lösung zu Serie [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich: Lineare Algebra D-MATH, HS 04 Prof. Richard Pink Lösung zu Serie. [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich: a) F (X) := X 5 X in R[X] und C[X]. b) F (X) := X 4 +X 3 +X in

Mehr

= 11 ± 5, also k 1 = 3 und k 2 = 8.

= 11 ± 5, also k 1 = 3 und k 2 = 8. Stroppel Musterlösung.8.5, 8min Aufgabe (6 Punkte) Gegeben sei die Funktion f: R R: x x e x. (a) Zeigen Sie durch vollständige Induktion, dass für alle x R und alle k N gilt: f (k) (x) = ( ) k (x kx+(k

Mehr

Aufgabe Summe Note Punkte

Aufgabe Summe Note Punkte Fachhochschule Südwestfalen - Meschede Prof. Dr. Henrik Schulze Klausur Ingenieurmathematik am. September 5 (mit Lösungen) Name Matr.-Nr. Vorname Unterschrift Aufgabe 3 5 7 Summe Note Punkte Die Klausur

Mehr