Höhere Mathematik II für die Fachrichtung Physik

Größe: px
Ab Seite anzeigen:

Download "Höhere Mathematik II für die Fachrichtung Physik"

Transkript

1 Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz SS Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 4. Übungsblatt Aufgabe 6 (Übung) Betrachten Sie A =. a) Bestimmen Sie alle Eigenwerte von A und geben Sie eine orthogonale Matrix S an, so dass S AS Diagonalgestalt hat. b) Bestimmen Sie eine Matrix W R derart, dass W = A gilt. a) Wir berechnen das charakteristische Polynom (vgl. Satz 8. der Vorlesung). Für alle λ C gilt: λ p A (λ) = det(a λi ) = λ λ ( ) λ λ = λ = ( λ) λ λ λ = ( λ) λ Entw. nach = ( λ) λ λ -ter Zeile λ = ( λ)(( λ) ) = ( λ)( λ )( λ ) = ( λ)( λ)( λ) Nach Satz 8. der Vorlesung sind die Eigenwerte von A gerade die Nullstellen von p A, also, und. Nach Satz 8. der Vorlesung ist für jeden Eigenwert λ von A der Eigenraum E A (λ) gegeben durch E A (λ) = Kern(A λi ). Wir berechnen diese mit Hilfe des Gaußalgorithmus und des ( )-Tricks:

2 E A (): ( ) Also ist E A () = lin{v } mit v = bzw. b = v v =. E A (): Also ist E A () = lin{v } mit v = bzw. b = v v =. E A (): ( ) ( ) ( ) ( ) Also ist E A () = lin{v } mit v = bzw. b = v v = Nach Satz 8.8 der Vorlesung sind Eigenvektoren zu verschiedenen Eigenwerten von symmetrischen Matrizen immer orthogonal zueinander. Die normierten Vektoren b,b,b bilden deshalb die orthogonale Matrix S = (b,b,b ) =..

3 Es gilt A = SDS T mit D =. b) Definiere sowie W = SD S T. Dann ist in der Tat D = W = (SD S T ) = SD S T S D }{{} S T = SD D S T = S(D ) S T = SDS T = A. =I Ausrechnen liefert: W = Aufgabe (Tutorium) Betrachten Sie B = a) Bestimmen Sie alle Eigenwerte von B und geben Sie eine orthogonale Matrix T an, so dass T BT Diagonalgestalt hat. b) Berechnen Sie B k für alle k N. (a) Wir berechnen das charakteristische Polynom (vgl. Abschnitt 8. der Vorlesung). Für alle λ C gilt: p B (λ) = λ det(b λi 4 ) = λ ( ) λ λ = λ λ λ (D) 4 λ 4 λ = (4 λ) λ λ 4 4 λ ( ) λ = (4 λ) λ λ Entw. nach = (4 λ) λ 4-ten Zeile.

4 λ = (4 λ) λ Entw. nach = (4 λ) λ -ten Zeile λ = (4 λ) λ (D) 4 λ 4 λ = (4 λ) λ = (4 λ) ( λ ) = λ(4 λ) Nach Satz 8. der Vorlesung sind die Eigenwerte von B gerade die Nullstellen von p B, also und 4. Nach Satz 8. der Vorlesung ist für jeden Eigenwert λ von B der Eigenraum E B (λ) gegeben durch E B (λ) = Kern(B λi 4 ). Wir berechnen diese mit Hilfe des Eliminationsverfahrens nach Gauß und des ( )-Ergänzungstricks: E B (): ( ) ( ) ( 4) ( ) Also ist E B () = lin{v } mit v = bzw. b = v v =. E B (4): ( ) ( ) 4

5 Also ist E B (4) = lin { q, q, q 4 } mit q =, q =, q 4 =. Setze Dann ist auch E B (4) = lin{v,v,v 4 }. v = q, v = q 4 q =, v 4 = q 4. Nach Satz 8.8 der Vorlesung sind Eigenvektoren zu verschiedenen Eigenwerten von symmetrischen Matrizen immer orthogonal zueinander. Wir brauchen also nur den berechneten Erzeuger v,v,v 4 von E B (4) dem Gram-Schmidtschen Orthogonalisierungsverfahren zu unterziehen: Die ersten beiden Vektoren sind bereits orthogonal und müssen nur noch normiert werden: b = v v =, b = v v = Ferner berechnet man b 4 = v 4 (v 4 b ) b (v 4 b ) b = } {{ }} {{ } = = und b 4 =. Mit der orthogonalen Matrix T = (b,b,b,b 4 ) = und der Diagonalmatrix gilt dann nach Satz 8.8 der Vorlesung. 4 D = 4 4 B = T DT T 5

6 (b) Es gilt für alle k N: B k = (T DT T ) k = T D T T DT T DT }{{} = T D k T T =I 4 Wegen D k = 4 k D folgt: B k = T 4 k DT T = 4 k T DT T = 4 k B Aufgabe 8 (Übung) a) Sei α R. Untersuchen Sie die Matrix A α = 8 α α auf Definitheit. b) Seien A = und B = β α ähnliche Matrizen. Finden Sie die möglichen Werte von α,β R. a) Wir versuchen die Eigenwerte der Matrix A α abzuschätzen. Für alle λ C gilt: λ p Aα (λ) = det(a α I λ) = 8 λ α α λ Sarrus = ( λ)(8 λ)( λ) 4( λ) α ( λ) = ( λ)((8 λ)( λ) (4 α )) = ( λ)(λ 9λ 4 α ) Daraus lesen wir ab, dass λ = ein Eigenwert von A α ist für alle α R. Also ist A α, nach der Charakterisierung im Abschnitt 8. der Vorlesung, nie negativ (semi-) definit. Die zwei anderen Eigenwerte von A α sind die Nullstellen des Polynoms λ 9λ 4 α und somit gegeben durch λ = 9 8 4(4 α ) λ = 9 8 4(4 α ) Wegen λ > bestimmt nur das Vorzeichen von λ die Definitheit von A α. Ablesen liefert: ist α <, so ist λ > und damit A α positiv definit. Ist α =, so ist λ = und damit A α positiv semidefinit. Ist schließlich α >, so ist λ < und damit A α indefinit. b) Die Spur und die Determinante einer Matrix sind invariant unter einer Ähnlichkeitstransformation. Sind A und B also ähnlich, so haben sie dieselbe Spur und Determinante. Es gilt Spur(A) = 4 =, Spur(B) = 8 α = 5 α. 6

7 Somit können A und B nur ähnlich sein, wenn α = gilt. Zudem gilt ( ) ( 5) det(a) = 4 5 = ( ) = = sowie det(b) = β = 8β 8 = 8( β), = ( ) β Entw.. Z. ( ) ( ) womit β = gelten muss. Da dies die einzige Möglichkeit ist, sind die Matrizen nach Aufgabenstellung für α =, β = ähnlich. Aufgabe 9 (Tutorium) Bestimmen Sie die Eigenwerte und zugehörigen Eigenräume von 4 A = und B =. Welche algebraischen und geometrischen Vielfachheiten haben die Eigenwerte? Welche Matrix ist diagonalisierbar? Ermitteln Sie, falls möglich, reguläre Matrizem S A bzw. S B so, sodass SA AS A bzw. SB BS B Diagonalgestalt hat. Für die Matrix A gilt λ 4 p A (λ) = 4 6 λ 4 6 λ ( ) 8 λ 8 λ = 4 6 λ 4 6 λ 8 λ = λ 6 λ 4 6 λ = (8 λ) λ 4 6 λ Entw.. Z. = (8 λ)(( λ)(6 λ) 4) = (8 λ)(λ 6λ 4) = (8 λ). Somit ist λ = 8 der einzige Eigenwert von A. Er hat die algebraische Vielfachheit. Nach Vorlesung ist der Eigenraum E A (8) gerade Kern(A 8I ). Um diesen zu berechnen, betrachten wir 4 4 ( ) A 8I = 4 4 ( ) 4

8 Mit dem ( )-Trick ergibt sich E A (8) = lin{, } = lin{, }. Der Eigenwert 8 hat somit die geometrische Vielfachheit. Da diese nicht mit der algebraischen Vielfachheit übereinstimmt, ist A nach Satz 8.6 nicht diagonalisierbar, das heißt die geforderte Matrix S A existiert nicht. Für die Matrix B gilt ( λ) λ p B (λ) = λ λ( λ) λ = λ ( λ) λ Entw.. Z. = ( ) ( ) λ( λ) λ ( λ) = ( λ) λ ( λ) = (λ )( λ). Somit sind die Eigenwerte von B gegeben durch, und, jeweils mit algebraischer Vielfachheit. Für die Eigenräume berechnen wir Kern(B λi ), wobei λ die drei Eigenwerte seien. Es folgt B I = Mit dem ( )-Trick folgt, dass Weiter gilt ( ) ( ) E B () = lin{ }. B I = ( ) ( ). Mit dem ( )-Trick folgt und analog E B ( ) = lin{ } E B ( ) = lin{ }. 8

9 Die geometrischen Vielfachheiten der drei Eigenwerte sind dementsprechend auch. Somit stimmen diese mit den algebraischen Vielfachheiten überein und B ist diagonalisierbar. Laut Vorlesung (nach Satz 8.6) erhalten wir eine Matrix S B, indem wir die Eigenvektoren als Spalten benutzen. S B ist also beispielsweise gegeben durch S B = Es gilt dann Aufgabe (Übung) B BS B = S Seien n N und A,B K n n. Man nennt A und B simultan diagonalisierbar, falls es eine reguläre Matrix S C n n gibt, so dass sowohl S AS, als auch S BS Diagonalgestalt haben. Zeigen Sie: a) Sind A und B simultan diagonalisierbar, so gilt AB = BA. b) Gilt AB = BA und haben überdies alle Eigenwerte von A die algebraische Vielfachheit eins, so sind A und B simultan diagonalisierbar. Hinweis: Man kann ebenfalls zeigen, dass A und B simultan diagonalisierbar sind, falls AB = BA gilt sowie A und B diagonalisierbar sind. a) Gelte nach Voraussetzung etwa A = SD S bzw. B = SD S Diagonalmatrizen D,D C n n. Es folgt: AB = SD S S }{{} D S = SD D S = SD D S = SD S S }{{} D S = BA I n I n b) Nach Abschnitt 8. der Vorlesung gilt für jeden Eigenwert λ von A m g (λ) m a (λ) n, wobei m g (λ) bzw. m a (λ) die geometrische bzw. algebraische Vielfachheit des Eigenwertes bezeichnen. Nach Voraussetzung ist also m g (λ) = m a (λ) = für jeden Eigenwert λ von A. Nach Satz 8.8 der Vorlesung ist also A diagonalisierbar. Seien etwa b,...,b n linear unabhängige Eigenvektoren zu den Eigenwerten λ,...,λ n von A. Wegen m g (λ j ) = für alle j {,...,n}, ist E A (λ j ) = lin { b j } für alle j {,...,n}. Mit der Voraussetzung der Vertauschbarkeit folgt ABb j = BAb j = λ j Bb j, also Bb j E A (λ j ) für alle j {,...,n}. Wegen dim(e A (λ j )) = m g (λ j ) =, existiert ein µ j C mit Bb j = µ j b j für alle j {,...,n}. Damit sind die Eigenwerte von B gegeben durch µ,...,µ n mit den Eigenvektoren b,...,b n. Mit S = (b,...,b n ) haben sowohl S AS, als auch S BS Diagonalgestalt. 9

10 Aufgabe (Tutorium) a) Seien β R, n N. Untersuchen Sie die Matrix B β = 4 β 4 β 4 β 4 β auf Definitheit. b) Sind die folgenden Aussagen wahr oder falsch? Begründen Sie ihre Antwort. (i) Ist A R n n und λ C ein Eigenwert von A, so ist auch λ ein Eigenwert von A. (ii) Ist A R n n und λ R ein Eigenwert von A, so existiert ein reeller Eigenvektor x R n \ {} von A zum Eigenwert λ. (iii) Sind A,B C n n und ist λ C ein Eigenwert von A sowie µ C ein Eigenwert von B, so ist λµ ein Eigenwert von AB. (iv) Ist A C n n und λ C ein Eigenwert von A, so ist λ ein Eigenwert von A. (v) Ist A R n n und n gerade/ungerade, so besitzt A einen reellen Eigenwert. (vi) Ist A C n n unitär und λ C ein Eigenwert von A, so gilt λ =. a) Wir bestimmen die Eigenwerte der Matrix B β. Für alle λ C gilt: χ Bβ (λ) = det(b β I λ) = λ 4 β λ 4 β ( ) 4 β 4 β λ = λ 4 β λ 4 β (D) = (β λ) λ 4 β λ β λ β λ 4 β = (β λ) λ 8 λ 4 β Entw. nach = (β λ) λ -ten Zeile 8 λ = (β λ) λ = (β λ)( λ) λ λ λ = (β λ)( λ) λ Entw. nach = (β λ)( λ)( λ) -ten Zeile Also ist sind die Eigenwerte von B gegeben durch β, und. Nach der Charakterisierung der Definitheit im Abschnitt 8.9 der Vorlesung, ist B β indefinit für β <, positiv semidefinit für β = und positiv definit für β >. b) (i) Die Aussage ist wahr. Sei x = (x,...,x n ) C n \ {} ein Eigenvektor zum Eigenwert λ. Mit x = (x,...,x n ) C n \ {} gilt nun Ax = Ax = λx = λx, ( )

11 womit x ein Eigenvektor von A zum Eigenwert λ ist. Die erste Gleichheit lässt sich dabei einfach mit der Definition des Matrix-Vektorprodukts und der Tatsache, dass A reelle Einträge hat, nachrechnen. (ii) Die Aussage ist wahr. Sei v C n \ {} ein Eigenvektor zum Eigenwert λ. Ist Rev =, also v = iw für ein w R n \ {}, so ist iv ein reeller Eigenvektor von A zum Eigenwert λ. Ist Rev, So ist Rev = vv ein reeller Eigenvektor zum Eigenwert λ, denn nach a) ist neben v auch v ein Eigenvektor zum Eigenwert λ = λ, somit auch Rev als Linearkombination dieser beiden. ( ) ( ) (iii) Die Aussage ist falsch. Seien etwa A = und B =. Dann haben beide Matrizen das charakteristische Polynom λ(λ ) und somit die Eigenwerte und. Ein mögliches Produkt zweier Eigenwerte ist somit, was jedoch kein Eigenwert von AB = ist. (iv) Sei v C n \ {} ein Eigenvektor von A zum Eigenwert λ. Dann gilt A v = A(Av) = λav = λ v, womit v ebenfalls ein Eigenvektor von A zum Eigenwert λ ist. ( ) (v) Ist n gerade, so ist die Aussage falsch. Die Matrix A = hat das charakteristische Polynom λ und somit nur die nicht-reellen Eigenwerte ±i. Ist n ungerade, so ist die Aussage wahr, denn das charakteristische Polynom ist reell und hat einen ungeraden Grad. So ein Polynom besitzt mindestens eine reelle Nullstelle. (vi) Die Aussage ist wahr. Für unitäre Matrizen gilt (Ax Ax) = (x x). Sei λ C ein Eigenwert von A und v ein zugehöriger Eigenvektor. Dann folgt (v v) = (Av Av) = (λv λv) = λλ(v v) = λ (v v). Wegen (v v) = v folgt λ = und somit λ =.

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive

Mehr

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10)

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Kapitel 15: Eigenwerte und -vektoren Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 5. November 2009) Diagonalisierbarkeit

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 25): Lineare Algebra und analytische Geometrie 2 2. (Frühjahr 29, Thema 3, Aufgabe 3) Gegeben sei die reelle 3 3 Matrix 4 2 A = 2 7 2 R 3 3. 2 2 a)

Mehr

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie (KIT) WS 22/3 Institut für Analysis 28..23 Prof. Dr. Tobias Lamm Dr. Patrick Breuning Höhere Mathematik I für die Fachrichtung Physik 4. Übungsblatt (letztes Blatt)

Mehr

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016,

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016, Klausur zur Vorlesung Lineare Algebra II, SoSe 6, 6.7.6 Vokabelbuch In diesem Teil soll getestet werden, inwieweit Sie in der Lage sind, wichtige Definitionen und Sätze aus der Vorlesung korrekt zu formulieren

Mehr

Henning Krause Lineare Algebra Julia Sauter SS 2017 Klausur mit Lösungsvorschlag Jan Geuenich

Henning Krause Lineare Algebra Julia Sauter SS 2017 Klausur mit Lösungsvorschlag Jan Geuenich Henning Krause Lineare Algebra Julia Sauter SS 27 Klausur 2.9.27 mit Lösungsvorschlag Jan Geuenich Aufgabe (4 Punkte: Sei n N und seien A und B zwei (n n-matrizen über einem Körper K. Wahr Falsch (a Es

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

Lineare Algebra für Physiker 11. Übungsblatt

Lineare Algebra für Physiker 11. Übungsblatt Lineare Algebra für Physiker 11. Übungsblatt Fachbereich Mathematik SS 01 Prof. Dr. Matthias Schneider./. Juli 01 Dr. Silke Horn Dipl.-Math. Dominik Kremer Gruppenübung Aufgabe G1 (Minitest) (a) Welche

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 12

Technische Universität München Zentrum Mathematik. Übungsblatt 12 Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 12 Hausaufgaben Aufgabe 12.1 Sei f : R 3 R 3 gegeben durch f(x) :=

Mehr

Kapitel 5. Eigenwerte. Josef Leydold Mathematik für VW WS 2017/18 5 Eigenwerte 1 / 42

Kapitel 5. Eigenwerte. Josef Leydold Mathematik für VW WS 2017/18 5 Eigenwerte 1 / 42 Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2017/18 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

Musterlösungen zur Linearen Algebra II Übungsklausur

Musterlösungen zur Linearen Algebra II Übungsklausur Musterlösungen zur Linearen Algebra II Übungsklausur Aufgabe. Sei A R 3 3. Welche der folgenden Aussagen sind richtig? a Ist det(a =, dann ist A eine orthogonale Matrix. b Ist A eine orthogonale Matrix,

Mehr

Ausgewählte Lösungen zu den Übungsblättern 9-10

Ausgewählte Lösungen zu den Übungsblättern 9-10 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Dezember Ausgewählte Lösungen zu den Übungsblättern 9- Übungsblatt

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 3

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2 2

Mehr

Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 2017/18 Blatt 3 - Lösung

Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 2017/18 Blatt 3 - Lösung Technische Universität München Physik Department Pablo Cova Fariña, Claudia Nagel Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 207/8 Blatt 3 - Aufgabe : Darstellungsmatrizen Sei

Mehr

Kapitel 5 : Eigenwerte und Eigenvektoren

Kapitel 5 : Eigenwerte und Eigenvektoren Kapitel 5 : Eigenwerte und Eigenvektoren 5.1 Definition und allgemeine Eigenschaften Definition 5.1 Sei A eine quadratische (n n)-matrix. λ C heißt Eigenwert von A, wenn ein Vektor x C n mit x 0 existiert,

Mehr

Kapitel 11 Eigenwerte und Eigenvektoren

Kapitel 11 Eigenwerte und Eigenvektoren Kapitel Eigenwerte und Eigenvektoren. Problem der Diagonalisierbarkeit Es sei wieder K gleich R oder. Eine n n)-matrix A mit Koeffizienten aus K wird als diagonalisierbar bezeichnet, wenn es eine invertierbare

Mehr

Lösungsskizzen zur Klausur zur Linearen Algebra II. Definitionen

Lösungsskizzen zur Klausur zur Linearen Algebra II. Definitionen Technische Universität Berlin Sommersemester 2008 Institut für Mathematik 18 Juli 2008 Prof Dr Stefan Felsner Andrea Hoffkamp Lösungsskizzen zur Klausur zur Linearen Algebra II Aufgabe 1 (1+1+1 Punkte)

Mehr

Ferienkurs Lineare Algebra

Ferienkurs Lineare Algebra Ferienkurs Lineare Algebra Wintersemester 9/ Lösungen Eigenwerte und Diagonalsierbarkeit Blatt Diagonalisierbarkeit. Zeigen sie, dass für eine diagonalisierbare Matrix A folgendes gilt: det(a) = wobei

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 205/6): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 009 Dienstag 3.6 $Id: quadrat.tex,v.4 009/06/3 4:55:47 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6.3 Quadratische Funktionen und die Hauptachsentransformation

Mehr

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn.

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn. Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2016/17 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich

Mehr

Höhere Mathematik II für die Fachrichtung Physik

Höhere Mathematik II für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Michael Hott, M. Sc. M. Sc. SS 6 9.9.6 Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zur Übungsklausur

Mehr

Lösung 13: Unitäre Vektorräume und normale Abbildungen

Lösung 13: Unitäre Vektorräume und normale Abbildungen D-MATH Lineare Algebra II FS 2017 Dr. Meike Akveld Lösung 13: Unitäre Vektorräume und normale Abbildungen 1. a) Im Folgenden sei γ : V V C die Abbildung γ(v, w) v + w 2 v w 2 i v + iw 2 + i v iw 2. : Wir

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 5/.. Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum 4. Übungsblatt Aufgabe

Mehr

2.2 Eigenwerte und Eigenvektoren

2.2 Eigenwerte und Eigenvektoren 2.2. Eigenwerte und Eigenvektoren 39 2.2 Eigenwerte und Eigenvektoren Lineare Abbildungen werden je nach Basiswahl durch unterschiedliche Matrizen beschrieben. Besonders einfach ist die Diagonalform. Wir

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 12 Aufgabe 121 Matrixpotenzen und Eigenwerte Diese Aufgabe ist

Mehr

Klausurenkurs zum Staatsexamen (SS 2013): Lineare Algebra und analytische Geometrie 3 Lösungsvorschlag

Klausurenkurs zum Staatsexamen (SS 2013): Lineare Algebra und analytische Geometrie 3 Lösungsvorschlag Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 23): Lineare Algebra und analytische Geometrie 3 Lösungsvorschlag 3. Mit Hilfe elementarer Zeilenumformungen sowie der Tatsache, daß sich die Determinante

Mehr

9. Übungsblatt zur Mathematik I für Maschinenbau

9. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 9. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS /..-4.. Aufgabe G (Koordinatentransformation)

Mehr

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Musterlösung 13. (A ± I)x = 0 Ax ± x = 0 Ax = ±x Ax = λx

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Musterlösung 13. (A ± I)x = 0 Ax ± x = 0 Ax = ±x Ax = λx D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung Musterlösung 13 1. Die Matrix A±I ist singulär falls es einen Vektor x 0 gibt der die Gleichung (A±I)x = 0 erfüllt, d.h. wenn A ± I als

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA II 19. Juli 2008

KLAUSUR ZUR LINEAREN ALGEBRA II 19. Juli 2008 KLAUSUR ZUR LINEAREN ALGEBRA II 19. Juli 2008 MUSTERLÖSUNG Name: Studiengang: Aufgabe 1 2 3 4 5 6 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter die Aufgabenstellung

Mehr

Lineare Algebra. 12. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching

Lineare Algebra. 12. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching Lineare Algebra 12. Übungsstunde Steven Battilana stevenb student.ethz.ch battilana.uk/teaching December 14, 2017 1 Erinnerung: Determinanten, Orthogonale/unitäre Matrizen Sei A R 2 2, dann kann die Inverse

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 2016

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 2016 Name, Vorname Matrikel-Nr. Aufg. Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 206 Bearbeiten Sie bitte

Mehr

4 Lineare Abbildungen Basisdarstellungen

4 Lineare Abbildungen Basisdarstellungen 4 Lineare Abbildungen Basisdarstellungen (4.1) Seien V,W endlich dimensionale K-Vektorräume, und sei T : V W linear. Sei {v 1,...,v } Basis von V und {w 1,...,w M } Basis von W. Sei T (v j ) = M a kj w

Mehr

7.3 Unitäre Operatoren

7.3 Unitäre Operatoren Wir können jeden Operator T wie folgt schreiben: Dabei gilt T = 1 2 (T + T ) + i( 1 2 i (T T )) (T + T ) = T + T sowie ( 1 2 i (T T )) = 1 2 i (T T) = 1 2 i (T T ). Wir können T also in zwei lineare Operatoren

Mehr

Lineare Algebra II Lösungen der Klausur

Lineare Algebra II Lösungen der Klausur Prof Dr K Doerk 673 Jens Mandavid Christian Sevenheck Lineare Algebra II Lösungen der Klausur (a Diese Aussage ist richtig, sie stimmt nämlich für k = Sei nämlich n N beliebig und bezeichne N die Menge

Mehr

Sommer 2017 Musterlösung

Sommer 2017 Musterlösung Sommer 7 Musterlösung. (5 Punkte) a) Sei V ein Vektorraum über K und sei T End(V ). Geben Sie die Definition eines Eigenwertes von T und zeigen Sie für endlichdimensionales V, dass λ K genau dann ein Eigenwert

Mehr

Eigenwerte/Eigenvektoren/Eigenräume/Diagonalisierung

Eigenwerte/Eigenvektoren/Eigenräume/Diagonalisierung Zurück Stand 4.. 6 Eigenwerte/Eigenvektoren/Eigenräume/Diagonalisierung Im Allgemeinen werden Vektoren durch Multiplikation mit einer Matrix gestreckt und um einen bestimmten Winkel gedreht. Es gibt jedoch

Mehr

Musterlösung der Klausur zur linearen Algebra II

Musterlösung der Klausur zur linearen Algebra II David Blottière SS 7 Patrick Schützdeller Universität Paderborn Julia Sauter Musterlösung der Klausur zur linearen Algebra II Aufgabe 1 Bestimmen Sie Jordan-Normalformen der folgenden Matrizen, und schreiben

Mehr

Lineare Algebra. 13. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching

Lineare Algebra. 13. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching Lineare Algebra 3. Übungsstunde Steven Battilana stevenb student.ethz.ch battilana.uk/teaching December 29, 27 Erinnerung Satz. Axiomatischer Zugang, Eigenschaften der Determinante. Die Abbildung det :

Mehr

Heinrich Heine-Universität Düsseldorf Sommersemester Lineare Algebra 1. Vierzehnte & Fünfzehnte Woche,

Heinrich Heine-Universität Düsseldorf Sommersemester Lineare Algebra 1. Vierzehnte & Fünfzehnte Woche, Fakultät für Mathematik PD Dr Markus Perling Heinrich Heine-Universität Düsseldorf Sommersemester 2014 Lineare Algebra 1 Vierzehnte & Fünfzehnte Woche, 1672014 10 Determinanten (Schluß) Das folgende Resultat

Mehr

5 Eigenwerte, Eigenvektoren und Diagonalisierbarkeit

5 Eigenwerte, Eigenvektoren und Diagonalisierbarkeit ME Lineare Algebra HT 2008 99 5 Eigenwerte, Eigenvektoren und Diagonalisierbarkeit 5.1 Ein Beispiel zur Motivation Als einfachstes Beispiel eines dynamischen Systems untersuchen wir folgendes Differentialgleichungssystem

Mehr

Musterlösungen zur Linearen Algebra II Weihnachtszettel

Musterlösungen zur Linearen Algebra II Weihnachtszettel Musterlösungen zur Linearen Algebra II Weihnachtszettel Aufgabe. Welche der folgenden Matrizen 3 0 0 A = 0 4, B = 3, C = 0 0 0 6 0 0 0 sind über R und welche über C diagonalisierbar? Bestimmen Sie dazu

Mehr

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2,

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2, Aufgabe I Es sei Q die folgende Teilmenge von C 2 2 : { ( ) a b Q a, b C b a Hier bezeichnet der Querstrich die komplexe Konjugation Zeigen Sie: (a) Mit den üblichen Verknüpfungen + und für Matrizen ist

Mehr

6 Hauptachsentransformation

6 Hauptachsentransformation 6 Hauptachsentransformation A Diagonalisierung symmetrischer Matrizen (6.1) Satz: Sei A M(n n, R) symmetrisch. Dann gibt es eine orthogonale n n-matrix U mit U t AU = D Diagonalmatrix Es folgt: Die Spalten

Mehr

Lineare Algebra I Lösungsvorschlag

Lineare Algebra I Lösungsvorschlag Aufgabe Lineare Algebra I Lösungsvorschlag Wir bezeichnen mit a, a 2, a 3 Q 4 die Spalten der Matrix A. Es ist 7 a + 2a 2 = 7 4 = 7a 3, und wir sehen im l A = a, a 2, a 3 = a, a 2. Da die Vektoren a und

Mehr

Übungen zum Ferienkurs Lineare Algebra 2015/2016: Lösungen

Übungen zum Ferienkurs Lineare Algebra 2015/2016: Lösungen Übungen zum Ferienkurs Lineare Algebra 5/6: Lösungen Darstellungsmatrizen. Bestimme die Darstellungsmatrix M B,B (f ) für die lineare Abbildung f : 3, die durch f (x, y, z) = (4x + y z, y + z) definiert

Mehr

Eigenwerte (Teschl/Teschl 14.2)

Eigenwerte (Teschl/Teschl 14.2) Eigenwerte Teschl/Teschl 4. Ein Eigenvektor einer quadratischen n nmatrix A ist ein Vektor x R n mit x 0, für den Ax ein skalares Vielfaches von x ist, es also einen Skalar λ gibt mit Ax = λ x Ax λ x =

Mehr

Lineare Algebra II 12. Übungsblatt

Lineare Algebra II 12. Übungsblatt Lineare Algebra II 12. Übungsblatt Fachbereich Mathematik SS 2011 Prof. Dr. Kollross 13. / 14. Juli 2011 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Probeklausur) Sprechen Sie über die Probeklausur

Mehr

Eigenwerte (Teschl/Teschl 14.2)

Eigenwerte (Teschl/Teschl 14.2) Eigenwerte (Teschl/Teschl 4.2 Ein Eigenvektor einer quadratischen n nmatrix A ist ein Vektor x R n mit x, für den Ax ein skalares Vielfaches von x ist, es also einen Skalar λ gibt mit Ax = λ x Ax λ x =

Mehr

Höhere Mathematik II für die Fachrichtung Physik. Übungs- und Scheinklausur

Höhere Mathematik II für die Fachrichtung Physik. Übungs- und Scheinklausur Institut für Analysis SS17 PD Dr. Peer Christian Kunstmann 15.7.17 Dipl.-Math. Leonid Chaichenets, Johanna Richter, M.Sc., Tobias Ried, M.Sc., Tobias Schmid, M.Sc. Höhere Mathematik II für die Fachrichtung

Mehr

Lösungen der Aufgaben zu Kapitel 11

Lösungen der Aufgaben zu Kapitel 11 Lösungen der Aufgaben zu Kapitel Vorbemerkung: Zur Bestimmung der Eigenwerte (bzw. des charakteristischen Polynoms) einer (, )-Matrix verwenden wir stets die Regel von Sarrus (Satz..) und zur Bestimmung

Mehr

Diplom Vorprüfung bzw. Bachelor Modulprüfung Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge. det

Diplom Vorprüfung bzw. Bachelor Modulprüfung Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge. det UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Herbst 9.9.9 Diplom Vorprüfung bzw. Bachelor Modulprüfung Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge Aufgabe

Mehr

Serie a) Welche der folgenden Vektoren sind Eigenvektoren der Matrix 1 0 1? 0 1 1

Serie a) Welche der folgenden Vektoren sind Eigenvektoren der Matrix 1 0 1? 0 1 1 Prof. Norbert Hungerbühler Serie Lineare Algebra II ETH Zürich - D-MAVT. a Welche der folgenden Vektoren sind Eigenvektoren der Matrix? i (,,. ii (,,. iii (,,. iv (, 3,. v (,,. Ein Vektor v ist Eigenvektor

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4 Lineare Algebra/Analytische Geometrie II SoSe 2016

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4 Lineare Algebra/Analytische Geometrie II SoSe 2016 Name, Vorname Matrikel-Nr. Aufg.1 Aufg.2 Aufg.3 Σ Note bzw. Kennzeichen Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4 Lineare Algebra/Analytische Geometrie II SoSe 2016 Bearbeiten Sie bitte zwei

Mehr

Basisprüfung. 18. August 2015

Basisprüfung. 18. August 2015 Lineare Algebra I/II D-MATH, HS 4/FS 5 Prof Richard Pink Basisprüfung 8 August 25 [6 Punkte] Betrachte den reellen Vektorraum R 3 zusammen mit dem Standardskalarprodukt, und die Vektoren 9 3 v := 6, v

Mehr

Lösungen Serie 2. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler 1 0 1? 0 1 1

Lösungen Serie 2. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler 1 0 1? 0 1 1 D-MAVT Lineare Algebra II FS 8 Prof. Dr. N. Hungerbühler Lösungen Serie. Welche der folgenden Vektoren sind Eigenvektoren der Matrix? (a) (,, ). Ein Vektor v ist Eigenvektor von A :=, falls Av ein skalares

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

Probeklausur Lineare Algebra für Physiker

Probeklausur Lineare Algebra für Physiker Fachbereich Mathematik Prof. Dr. K. Grosse-Brauckmann D. Frisch Probeklausur Lineare Algebra für Physiker SS 8 26./27.6.27 Name:..................................... Vorname:.................................

Mehr

Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT

Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Sommer 4 Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT. [ Punkte] Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in

Mehr

Lineare Algebra II 6. Übungsblatt

Lineare Algebra II 6. Übungsblatt Lineare Algebra II 6 Übungsblatt Fachbereich Mathematik SS 2011 Prof Dr Kollross 18/19 Mai 2011 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minimalpolynom) Bestimmen Sie das Minimalpolynom der

Mehr

Übungsblatt

Übungsblatt Prof Dr Fabien Morel Lineare Algebra II Dr Anand Sawant Sommersemester 2018 Übungsblatt 11 20062018 Aufgabe 1 (2 Punkte) Berechnen Sie eine Jordan-Basis für die Matrix 3 1 1 M = 2 2 0 M 3 (R) 1 1 3 Wir

Mehr

MC-Serie 11: Eigenwerte

MC-Serie 11: Eigenwerte D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung

Mehr

Lösung zu Serie [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich:

Lösung zu Serie [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich: Lineare Algebra D-MATH, HS 04 Prof. Richard Pink Lösung zu Serie. [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich: a) F (X) := X 5 X in R[X] und C[X]. b) F (X) := X 4 +X 3 +X in

Mehr

Theoretische Fragen zu ausgewählten Themen in Lineare Algebra

Theoretische Fragen zu ausgewählten Themen in Lineare Algebra Theoretische Fragen zu ausgewählten Themen in Lineare Algebra { Oren Halvani, Jonathan Weinberger } TU Darmstadt 25. Juni 2009 Inhaltsverzeichnis 1 Determinanten................................................

Mehr

Probeklausur Lineare Algebra 1 Achten Sie auf vollständige, saubere und schlüssige Argumentation! 100 Punkte sind 100%. Inhaltsverzeichnis

Probeklausur Lineare Algebra 1 Achten Sie auf vollständige, saubere und schlüssige Argumentation! 100 Punkte sind 100%. Inhaltsverzeichnis Prof. Dr. Wolfgang Arendt Manuel Bernhard Wintersemester 5/6 Probeklausur Lineare Algebra Achten Sie auf vollständige, saubere und schlüssige Argumentation! Punkte sind %. Inhaltsverzeichnis Aufgabe Aufgabe

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmann W Wu Herbstsemester Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie Aufgabe Beispiel einer Koordinatentransformation Gegeben seien zwei

Mehr

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Lineare Algebra II 3. Übungsblatt

Lineare Algebra II 3. Übungsblatt Lineare Algebra II 3. Übungsblatt Fachbereich Mathematik SS 2011 Prof. Dr. Kollross 27./28. April 2011 Susanne Kürsten Tristan Alex Minitest Aufgabe M1 (Formale Polynome) Betrachten Sie die folgenden Polynome

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

D-ITET. D-MATL, RW Lineare Algebra HS 2017 Dr. V. Gradinaru T. Welti. Online-Test 2. Einsendeschluss: Sonntag, den

D-ITET. D-MATL, RW Lineare Algebra HS 2017 Dr. V. Gradinaru T. Welti. Online-Test 2. Einsendeschluss: Sonntag, den D-ITET. D-MATL, RW Lineare Algebra HS 7 Dr. V. Gradinaru T. Welti Online-Test Einsendeschluss: Sonntag, den..7 : Uhr Dieser Test dient, seriös bearbeitet, als Repetition des bisherigen Vorlesungsstoffes

Mehr

Musterlösungen zur Linearen Algebra II Hauptklausur

Musterlösungen zur Linearen Algebra II Hauptklausur Musterlösungen zur Linearen Algebra II Hauptklausur Aufgabe. Q ist unitär genau dann, wenn gilt Q Q = I n. Daraus folgt, dass a) und c) richtig sind. Die -Matrix A := (i) zeigt, dass i.a. A A t, d.h. b)

Mehr

Grundlagen der Mathematik II (LVA U)

Grundlagen der Mathematik II (LVA U) Dr. Marcel Dettling 3.4. Dr. Daniel Haase FS daniel.haase@math.ethz.ch Grundlagen der Mathematik II (LVA 4-6- U) 8 Zur Übungsstunde vom 3.4. Aufgabe (Ausgleichsrechnung) Gegeben sei das lineare Gleichungssystem

Mehr

Determinanten. Motivation: Man betrachte das lineare Gleichungssystem =. (1) y = Sei o.b.d.a a 0 und c 0. Dann ist (1) äquivalent zu. = ac ad y.

Determinanten. Motivation: Man betrachte das lineare Gleichungssystem =. (1) y = Sei o.b.d.a a 0 und c 0. Dann ist (1) äquivalent zu. = ac ad y. Determinanten Motivation: Man betrachte das lineare Gleichungssystem [ [ [ a b x u = (1) c d y v Sei obda a und c Dann ist (1) äquivalent zu [ [ ca cb x = ac ad y und ferner zu [ [ ca cb x ad cb y Falls

Mehr

Lösung zu Serie Bestimme die Jordansche Normalform und eine zugehörige Basiswechselmatrix der folgenden reellen Matrizen: A := B :=

Lösung zu Serie Bestimme die Jordansche Normalform und eine zugehörige Basiswechselmatrix der folgenden reellen Matrizen: A := B := Lineare Algebra D-MATH, HS 204 Prof. Richard Pink Lösung zu Serie 2. Bestimme die Jordansche Normalform und eine zugehörige Basiswechselmatrix der folgenden reellen Matrizen: 0 2 0 0 0 2 0 0 0 0 0 0 0

Mehr

AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW

AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW Lineare Gleichungssysteme Lösen Sie folgende Gleichungssysteme über R: a) x + x + x = 6x + x + x = 4 x x x = x 7x x = 7 x x = b) x + x 4x + x 4 = 9 x + 9x x x

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 12. Aufgabe Herbstsemester Dr. V. Gradinaru D. Devaud.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 12. Aufgabe Herbstsemester Dr. V. Gradinaru D. Devaud. Dr. V. Gradinaru D. Devaud Herbstsemester 15 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 1 Aufgabe 1.1 1.1a) Sei A eine n n-matrix. Das Gleichungssystem Ax = b sei

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag 9.6 $Id: quadrat.tex,v. 9/6/9 4:6:48 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6. Symmetrische Matrizen Eine n n Matrix heißt symmetrisch wenn

Mehr

Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik

Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik Universität Karlsruhe (TH) Institut für Algebra und Geometrie Dr. Klaus Spitzmüller Dipl.-Inform. Wolfgang Globke Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik Lösungen zum

Mehr

Mathematik I. Vorlesung 18. Vielfachheiten und diagonalisierbare Abbildungen. µ λ = dim(eig λ (ϕ))

Mathematik I. Vorlesung 18. Vielfachheiten und diagonalisierbare Abbildungen. µ λ = dim(eig λ (ϕ)) Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 18 Vielfachheiten und diagonalisierbare Abbildungen Satz 18.1. Es sei K ein Körper und es sei V ein endlichdimensionaler K- Vektorraum.

Mehr

Tutorium Mathematik II M WM

Tutorium Mathematik II M WM Tutorium Mathematik II M WM 9.6.7 Lösungen Lösen Sie folgende Systeme von Differentialgleichungen der Form x = A x + b mit. A = 6 und b = et. e t Hinweis: Die Eigenwerte und -vektoren der Matrix A lauten:

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Höhere Mathematik II für die Fachrichtung Physik

Höhere Mathematik II für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz WS 5/6 8..6 Höhere Mathematik II für die Fachrichtung Physik Bachelor-Modulprüfung Aufgabe

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Lösungsskizzen zur Klausur

Lösungsskizzen zur Klausur sskizzen zur Klausur Mathematik II Sommersemester 4 Aufgabe Es seien die folgenden Vektoren des R 4 gegeben: b = b = b 3 = b 4 = (a) Prüfen Sie ob die Vektoren b b 4 linear unabhängig sind bestimmen Sie

Mehr

5. Übung zur Linearen Algebra II -

5. Übung zur Linearen Algebra II - 5. Übung zur Linearen Algebra II - en Kommentare an Hannes.Klarner@Fu-Berlin.de FU Berlin. SS 2. Aufgabe 7 5 A := 2. 3 2 (i) Berechne die Eigenwerte und Eigenvektoren von A. (ii) Ist A diagonalisierbar?

Mehr

Lösungsskizzen zur Nachklausur

Lösungsskizzen zur Nachklausur sskizzen zur Nachklausur Mathematik II für die Fachrichtungen Biologie und Chemie Sommersemester 22 Aufgabe Es seien die folgenden Vektoren 2 v = 2, v 2 = und v 3 = 2 im R 3 gegeben. (a) Zeigen Sie, dass

Mehr

43911: Lineare Algebra/Geometrie Prüfungstermin Frühjahr 2015 Lösungsvorschlag

43911: Lineare Algebra/Geometrie Prüfungstermin Frühjahr 2015 Lösungsvorschlag Dr. Erwin Schörner 439: Lineare Algebra/Geometrie Prüfungstermin Frühjahr 5 Lösungsvorschlag I.. Für n N mit n ist das inhomogene lineare Gleichungssystem in den n Unbekannten x,..., x n mit den n Gleichungen

Mehr

Kontrollfragen und Aufgaben zur 3. Konsultation

Kontrollfragen und Aufgaben zur 3. Konsultation 1 Technische Universität Ilmenau Fakultät für Mathematik und Naturwissenschaften Institut für Mathematik Prof. Dr. Michael Stiebitz Kontrollfragen und Aufgaben zur 3. Konsultation Termin: Ort: Determinante

Mehr

Lineare Algebra und Numerische Mathematik D-BAUG. Winter 2013 Prof. H.-R. Künsch. , a R. det(a) = 0 a = 1.

Lineare Algebra und Numerische Mathematik D-BAUG. Winter 2013 Prof. H.-R. Künsch. , a R. det(a) = 0 a = 1. b Musterlösung Lineare Algebra und Numerische Mathematik D-BAUG. Multiple Choice) Gegeben sei die folgende Matrix Winter 3 Prof. H.-R. Künsch A = a a) deta) = genau dann wenn gilt x a =. a =. ), a R. x

Mehr

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen Hannover, den 7. Februar 2002 Aufgabe. Übungsblatt: Lineare Algebra II Abgabe: 8./9.4.2002 in den Übungsgruppen (2, 2, 3 Punkte) Der Vektorraum V = C[, ] sei mit dem üblichen Skalarprodukt f, g = f(t)g(t)

Mehr

6. Übungsblatt zur Mathematik II für Inf, WInf

6. Übungsblatt zur Mathematik II für Inf, WInf Fachbereich Mathematik Prof. Dr. Streicher Dr. Sergiy Nesenenko Pavol Safarik SS 5. 9. Mai 6. Übungsblatt zur Mathematik II für Inf, WInf Gruppenübung Aufgabe G (Standardskalarprodukt Sei v, e R und es

Mehr

Lineare Algebra und Geometrie II, Übungen

Lineare Algebra und Geometrie II, Übungen Lineare Algebra und Geometrie II, Übungen Gruppe (9 9 45 ) Sei A 2 Bestimmen Sie A und A Finden Sie weiters Vektoren u, v R 2 mit u und Au A, beziehungsweise v und Av A Zunächst die Berechnung der Norm

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2018/2019

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2018/2019 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Mathematik für Studierende der Fachrichtungen Biologie, Chemie, Lebensmittelchemie und Erziehungswissenschaften Blatt 2

Mathematik für Studierende der Fachrichtungen Biologie, Chemie, Lebensmittelchemie und Erziehungswissenschaften Blatt 2 Fakultät Mathematik WS 27/8 Institut für Mathematische Stochastik / Institut für Analysis Dr. W. Kuhlisch, Dr. F. Morherr Mathematik für Studierende der Fachrichtungen Biologie, Chemie, Lebensmittelchemie

Mehr

Probeprüfung Lineare Algebra I/II für D-MAVT

Probeprüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Frühling 018 Probeprüfung Lineare Algebra I/II für D-MAVT Die Prüfung dauert 10 Minuten. Sie dient der Selbstevaluation. Die Musterlösungen folgen. Die Multiple Choice

Mehr

2. Klausur zur Linearen Algebra II

2. Klausur zur Linearen Algebra II Technische Universität Dortmund Fakultät für Mathematik Platznummer: Sommersemester 7.9.7. Klausur zur Linearen Algebra II Name: Vorname: Matrikelnummer: Studiengang: Wichtige Informationen: Prüfen Sie

Mehr