Übungsblatt 4 Musterlösung

Größe: px
Ab Seite anzeigen:

Download "Übungsblatt 4 Musterlösung"

Transkript

1 Numerik gewöhnlicher Differentialgleichungen MA SS6 Übungsblatt 4 Musterlösung Aufgabe 7 (Nullstellen als Eigenwerte) Die Polynome {S n } n=0,,2,, S n P n, mit führem Koeffizienten eins, heißen Orthogonalpolynome bzgl. des Skalarproduktes, mit f,g := b a ω(x)f(x)g(x) dx, wobei [a,b], a < b, ein Intervall in R darstellt und ω(x) eine auf (a,b) positive Gewichtsfunktion ist, falls S n,s m = δ nm S n,s n = δ nm S n 2. a) Die Knoten {x i } i=0,,,n, welche gerade die Nullstellen zum Orthogonalpolynom S n sind, und die Gewichte ω i der Gauss-Quadratur Q n lassen sich in der Regel nicht analytisch berechnen. Man kann sie numerisch (mit dem Golub-Welsch Algorithmus) erhalten, wie die folge Aussage zeigt. Seien {S n } n=0,,2, Orthogonalpolynome und es gelte die Drei-Term-Rekursion S (x) = 0, S 0 (x) =, S n (x) = (x a n )S n (x) b 2 ns n 2 (x), n, wobei b n 0 gesetzt wird. Zeigen Sie, dass die Nullstellen von S n gerade die Eigenwerte der Tridiagonalmatrix a b 2. b 2 a 2.. J n = b n b n a n sind. b) Die aus der Vorlesung bekannten Legre-Polynome P n erfüllen die oben gegebene Definition mit ω(x). Stellen Sie die Matrix J n für die Legre-Polynome auf und zeigen Sie, dass die Gewichte der Gauss-Quadraturformel durch ( ) ω i = 2 Pj(x 2 i ) gegeben sind.

2 Lösung 7 (Nullstellen als Eigenwerte) a) Zu der Matrix J n betrachten wir die Untermatrizen a b 2 b 2 a 2 J k =, k n. a k b k b k a k Die Eigenwerte der Matrix J k sind gegeben als die Nullstellen des charakteristischen Polynoms χ k (x) := det(j k xi). Dazu definiren wir formal: Es gelten χ (x) = 0, χ 0 (x) =. χ (x) = det(a x) = a x = (a x)χ 0 (x), ( ) a x b χ 2 (x) = det 2 = (a a 2 x x)(a 2 x) b 2 2 = (a 2 x)χ (x) b 2 2χ 0 (x). b 2 Induktiv erhalten wir durch Entwicklung nach der k-ten Spalte χ k (x) = det(j k xi) = (a k x)det(j k ) b 2 kdet(j k 2 ) = (a k x)χ k (x) b 2 kχ k 2 (x). Für die Polynome S = χ, S 0 = χ 0 und S k (x) = ( ) k χ k (x), für k =,,n gilt nun die Rekursion S (x) = 0, S 0 (x) =, S k (x) = (x a k )S k (x) b 2 ks k 2 (x), k, wie leicht nachzurechnen ist. Da die Nullstellen von S k und χ k identisch sind, stellen die Eigenwerte von J n gerade die Nullstellen von S n dar. b) Die Legre-Polynome P n genügen der Drei-Term-Rekursion P 0 (x) =, P (x) = x, P n+ (x) = 2n+ n+ xp n(x) n n+ P n (x). Um daraus Orthogonalpolynome mit führem Koeffizienten zu konstruieren, wählt man die Transformation P n (x) = α n P n (x). Ziel ist es nun, eine Rekursionsformel für die Konstanten α n herzuleiten. Da für n = 0 und n = die Legre-Polynome bereits führen Koeffizienten haben, setzen wir α 0 = α =. 2

3 Anwen der Rekursionsformel liefert ( 2n+ P n+ (x) = α n+ P n+ = α n+ n+ xp n(x) n ) n+ P n (x) = α n+2n+ α n n+ x P n (x) α n+ n α n n+ P n (x). Die Forderung nach führem Koeffizienten führt auf die Bedingung α n+ 2n+ α n n+! = α n+ α n = n+ 2n+ α n+ = n+ 2n+ α n. () Damit erhalten wir wie gewünscht eine Drei-Term-Rekursion für P n : P n+ (x) = x P n (x) α n+ n α n n+ P n (x) (2) n+ 2n+ = x P n (x) α n n α n n+ P n (x) = x P n (x) α n n α n 2n+ P n (x) (2) = x P n (x) n n 2n 2n+ P n (x) ( 2 n = (x) P n (x) Pn (x) = (x a n+ ) P n (x) b 4n2 ) 2 P n+ n (x), wobei a n := 0 und b n := n 4(n ). 2 Die gesuchte Matrix J n ist schließlich von der Form 0 / 3 / 3 0 2/ 5 J n = 2/ 5 0. b n b n 0 Jetzt bestimmen wir die Formel für die Gewichte ω i. Die (Referenz-) Gauß Quadratur Q integriert die Polynomen P k, k n+ exakt, d.h. { 2 k = 0, ω i P k (x i ) = P k (x)dx = (,P k ) = (P 0,P k ) = 0 k n+. i=0 Damit folgt P 0 P 0 P 0 ω 0 2 P (x 0 ) P (x ) P (x n ) ω =, P n (x 0 ) P n (x ) P n (x n ) ω n 0 }{{}}{{}}{{} =:P=(π 0,π,,π n) =:w =2e wobei π i := (P 0,P (x i ),,P n (x i )). Die Vektoren π i sind Eigenvektoren zu J n, d.h. J n π i = x i π i, und stehen paarweise senkrecht aufeinander: x i π i π k = x i π k π i = π k J n π i = (π k J n π i ) = π i J n π k = x k π i π k, 3

4 wobei wir die Symmetrie von J n verwet haben. Damit gilt π i π k = 0 für k i, da J n einfache Eigenwerte hat (P n haben einfache Nullstellen). Insgesamt folgt, dass 2 = π i 2e = π i Pw = π i = π i ( ω j P 0, ω j P (x j ),, ω j π j = ω i πi π i = ω i Pj(x 2 k ). ) ω j P n (x j ) Aufgabe 8 (Adaptive Quadratur) Das Integral I = b f(x)dx soll mit einer adaptiven rekursiven Simpsonregel näherungsweise berechnet a werden. a) Für a = 0 und b = h bezeichne S h den Näherungswert der Simpsonregel (bzw. S h/2 den der summierten Simpsonregel zur Schrittweite h/2). Wie bereits bekannt, gilt Zeigen Sie, dass durch die Extrapolation I = S h +ch 5 +O(h 6 ). S h,h/2 = (6S h/2 S h )/5 das Verfahren eine Ordnung gewinnt, also I = S h,h/2 +O(h 6 ). b) Implementieren Sie die Funktion function I = quadstep(a, b, f, f3, f5, f, TOL) Übergeben Sie zusätzlich die Funktion f als anonyme Funktion und die gewünschte Toleranz TOL. Achten Sie darauf, dass pro Aufruf von quadstep die Funktion f nur zweimal neu ausgewertet wird. Initialisieren Sie vor dem ersten Aufruf eine globale Variable als einen Zähler für die Funktionsauswertungen global count; count = 3; Zählen Sie diesen innerhalb der Funktion quadstep um jede Funktionsauswertung von f nach oben. Berechnen Sie das Integral I = 0 xdx für die Toleranzen TOL = 0 4,0 6,0 8, und geben Sie jeweils den Fehler und die Anzahl der benötigten Funktionsauswertungen an. c) Implementieren Sie zum Vergleich die zusammengesetzte Simpsonformel für äquidistante Stützstellen. Stellen Sie fest, wie viele Funktionsauswertungen Sie benötigen, um einen Fehler in der gleichen Größenordnung wie in Teilaufgabe a) zu realisieren. Lösung 8 (Adaptive Quadratur) 4

5 a) Da I = S h +ch 5 +O(h 6 ) und I = S h/2 +2c ( ) 5 h +O(h 6 ), 2 S h S h/2 +ch 5( 2 4) +O(h 6 ) = 0 ch 5 = S h/2 S h 2 4 +O(h 6 ). Somit folgt schließlich I = S h + S h/2 S h +O(h 6 ) = 5S h +6S h/2 6S h +O(h 6 ) = 6S h/2 S h 5 +O(h 6 ). b) Ein möglicher Vorschlag für die quadstep Funktion lautet: function I = quadstep(a, b, f, f3, f5, f, TOL) global count; count = count + 2; h = b - a; m = (a + b)/2; I = /6*h*(f + 4*f3 + f5); f2 = feval(f, a *h); f4 = feval(f, b *h); I2 = /6*h/2*(f + 4*f2 + 2*f3 + 4*f4 + f5); I = (6*I2 - I)/5; if (abs(i - I2) < TOL) return; else I = quadstep(a, m, f, f2, f3, f, TOL/2) + quadstep(m, b, f3, f4, f5, f, TOL/2); und für das summierte Simpson Verfahren: function I = simpson(a, b, f, n) global count; h = 0.5*(b - a)/n; x = linspace(a, b, 2*n+); fx = feval(f, x); I = h/3*(fx() + 4*sum(fx(2:2:2*n)) + 2*sum(fx(3:2:2*n-)) + fx(2*n+)); count = count + + n + (n-) + ; Wir rufen beide Funktionen nach der Initialisierung mit folgem Skript auf: 5

6 f sqrt(x); f = feval(f, 0); f3 = feval(f, 0.5); f5 = feval(f, ); global count; for TOL = [e-4 e-6 e-8] count = 3; I = quadstep(0,, f, f3, f5, f, TOL); abs(2/3 - I) count for n = [ e6] count = 0; I = simpson(0,, f, n); abs(2/3 - I) count Die Ergebnisse sind dann: Simpson adaptiv Simpson summiert TOL count Fehler count Fehler e e e 06 e e e 08 e e e Aufgabe 9 (Numerische Integration: Matlab) Betrachten Sie das Integral I = +x dx. a) Bestimmen Sie in Matlab (a) die zugehörige Stammfunktion, (b) den exakten Wert von I auf dem gegebenen Intervall, 0 (c) näherungsweise das Integral bei Einteilug des Integrationsintervalls in n = 2,4,8 Teile, mit Hilfe der trapz, quad und quad8 Funktionen. b) Implementieren Sie die Rechteck-, Trapez- und Simpsonregel, und vergleichen Sie den jeweiligen Integrationsfehler und den numerischen Aufwand. Lösung 9 (Numerische Integration: Matlab) Das Matlab-Skript ist auf der Vorlesungseite zum herunterladen bereitgestellt. Die Ergebnisse vom Teil b) lauten 6

7 a) >> syms x >> int(/(x+)) log(x + ) >> int(/(x+),0,) log(2) >> double(intex) >> f >> n = 2; >> xlist = linspace(0,,n+); >> flist = double(subs(f2,xlist)); >> trapz(xlist,flist) >> quad(f2,0,) b) Exaktes Integral: 0 dx = log(2) x Rechteck Trapez Simpson n Ĩ(f) Fehler FA Ĩ(f) Fehler FA Ĩ(f) Fehler FA Hier steht FA üf die Anzahl der Funktionsauswertungen. 7

Übungsblatt 4 Musterlösung

Übungsblatt 4 Musterlösung Numerik gewöhnlicher Differentilgleichungen MA234 - SS6 Übungsbltt 4 Musterlösung Aufgbe 7 (Nullstellen ls Eigenwerte) Die Polynome {S n } n=,,2,, S n P n, mit führem Koeffizienten eins, heißen Orthogonlpolynome

Mehr

Übungsblatt 3 Musterlösung

Übungsblatt 3 Musterlösung Numerik gewöhnlicher Differentialgleichungen MA4 - SS6 Übungsblatt Musterlösung Sei M,N N und f C M+N+ (B) eine komplexe Funktion, B eine kompakte Menge. Die Padé Approximation PN M (f)(x) ist die rationale

Mehr

12.2 Gauß-Quadratur. Erinnerung: Mit der Newton-Cotes Quadratur. I n [f] = g i f(x i ) I[f] = f(x) dx

12.2 Gauß-Quadratur. Erinnerung: Mit der Newton-Cotes Quadratur. I n [f] = g i f(x i ) I[f] = f(x) dx 12.2 Gauß-Quadratur Erinnerung: Mit der Newton-Cotes Quadratur I n [f] = n g i f(x i ) I[f] = i=0 b a f(x) dx werden Polynome vom Grad n exakt integriert. Dabei sind die Knoten x i, 0 i n, äquidistant

Mehr

5. Numerische Differentiation. und Integration

5. Numerische Differentiation. und Integration 5. Numerische Differentiation und Integration 1 Numerische Differentiation Problemstellung: Gegeben ist eine differenzierbare Funktion f : [a,b] R und x (a,b). Gesucht sind Näherungen für die Ableitungen

Mehr

5. Numerische Differentiation. und Integration

5. Numerische Differentiation. und Integration 5. Numerische Differentiation und Integration 1 Numerische Differentiation Problemstellung: Gegeben ist eine differenzierbare Funktion f : [a,b] R und x (a,b). Gesucht sind Näherungen für die Ableitungen

Mehr

Einführung in die numerische Mathematik

Einführung in die numerische Mathematik Prof. Dr. M. Günther K. Gausling, M.Sc. C. Hendricks, M.Sc. Sommersemester 014 Bergische Universität Wuppertal Fachbereich C Mathematik und Naturwissenschaften Angewandte Mathematik / Numerische Analysis

Mehr

Technische Numerik Numerische Integration

Technische Numerik Numerische Integration W I S S E N T E C H N I K L E I D E N S C H A F T Technische Numerik Numerische Integration Peter Gangl Institut für Numerische Mathematik, Technische Universität Graz c Alle Rechte vorbehalten. Nachdruck

Mehr

Übungen zur Ingenieur-Mathematik II SS 2017 Blatt Aufgabe 13: Betrachten Sie die Funktion. f(x) =

Übungen zur Ingenieur-Mathematik II SS 2017 Blatt Aufgabe 13: Betrachten Sie die Funktion. f(x) = Übungen zur Ingenieur-Mathematik II SS 2017 Blatt 6 2.5.2017 Aufgabe 1: Betrachten Sie die Funktion Lösung: f(x) = 1, x [, 1]. 1 + 25x2 a) Bestimmen Sie die Interpolationspolynome vom Grad m p m (x) =

Mehr

D-ITET, D-MATL. Prüfung Numerische Methoden, Sommer 2012 Dr. Lars Kielhorn

D-ITET, D-MATL. Prüfung Numerische Methoden, Sommer 2012 Dr. Lars Kielhorn Name: Wichtige Hinweise D-ITET, D-MATL Prüfung Numerische Methoden, Sommer 2012 Dr. Lars Kielhorn Prüfungsdauer: 90 Minuten. Nur begründete Resultate werden bewertet. Zugelassene Hilfsmittel: 10 A4-Seiten

Mehr

Übungsblatt 1 Musterlösung

Übungsblatt 1 Musterlösung Numerik gewöhnlicher Differentialgleichungen MA234 - SS6 Übungsblatt Musterlösung Aufgabe (Interpolationspolynom) a) Bestimmen Sie die Hilfspolynome L i, i =,,2, für x =, x = 2 und x 2 = 3 nach der Formel

Mehr

KAPITEL 10. Numerische Integration

KAPITEL 10. Numerische Integration KAPITEL 10. Numerische Integration 10.1 Einleitung Sei Es gilt I Ĩ = b I = b a a f(x) f(x) dx f(x) dx, Ĩ = b b a f(x) dx. a f(x) f(x) dx (b a) f f. I Ĩ I (b a) f f b a f(x) dx = ba f dx b a f(x) dx f f

Mehr

Numerik SS Übungsblatt 3

Numerik SS Übungsblatt 3 PROF. DR. BERND SIMEON CHRISTIAN GOBERT THOMAS MÄRZ Numerik SS 9 Übungsblatt 3 Aufgabe 1 Clenshaw-Curtis-Quadratur Wie bereits bei der Polynominterpolation bietet es sich auch zur Quadratur an Tschebysheff-

Mehr

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf.

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H11 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr

Orthogonalpolynome Einführung, Eigenschaften und Anwendungen

Orthogonalpolynome Einführung, Eigenschaften und Anwendungen Anna Weller Orthogonalpolynome Einführung, Eigenschaften und Anwendungen 1 Orthogonalpolynome Einführung, Eigenschaften und Anwendungen Anna Weller Seminar zur Numerik im SS 2018, Universität zu Köln 10.

Mehr

Numerische Analysis - Matlab-Blatt 5

Numerische Analysis - Matlab-Blatt 5 Prof. Dr. Stefan Funken Universität Ulm M.Sc. Andreas Bantle Institut für Numerische Mathematik Dipl.-Math. oec. Klaus Stolle Sommersemester 05 Numerische Analysis - Matlab-Blatt 5 Lösung (Besprechung

Mehr

Numerik für Ingenieure I Wintersemester 2008

Numerik für Ingenieure I Wintersemester 2008 1 / 32 Numerik für Ingenieure I Wintersemester 2008 J. Michael Fried Lehrstuhl Angewandte Mathematik III 23.1.2009 2 / 32 Wiederholung Stückweise Polynominterpolation Stückweise lineare Interpolierende

Mehr

Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen

Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen Wintersemester 2012/201 Zwischentest Teil 1: 1. Was bedeuten die Bezeichnungen O(h) und o(h)? (Definition) (siehe Skript!)

Mehr

D-MAVT NUMERISCHE MATHEMATIK FS 14 K. Nipp, A. Hiltebrand Lösung vom Test 2

D-MAVT NUMERISCHE MATHEMATIK FS 14 K. Nipp, A. Hiltebrand Lösung vom Test 2 D-MAVT NUMERISCHE MATHEMATIK FS 4 K Nipp, A Hiltebrand Lösung vom Test Sei A ( 3 3 ) a) Bestimmen Sie κ(a), die Kondition von A (in der -Norm): κ(a) b) Berechnen Sie den Spektralradius von A: ρ(a) 4 c)

Mehr

Diplom VP Numerik 27. August 2007

Diplom VP Numerik 27. August 2007 Diplom VP Numerik 27. August 2007 Multiple-Choice-Test 30 Punkte Bei jeder MC-Aufgabe ist mindestens eine Aussage korrekt. Wird dennoch bei einer MC-Aufgabe keine einzige Aussage angekreuzt, gilt diese

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 0 0090 Aufgabe Punkte: Betrachten Sie das lineare Gleichungssystem Ax = b mit A = 0 und b

Mehr

Lösungen zu Blatt 13 der Übungen zur Vorlesung Numerik, LMU München, Wintersemester 2016/2017

Lösungen zu Blatt 13 der Übungen zur Vorlesung Numerik, LMU München, Wintersemester 2016/2017 Lösungen zu Blatt 13 der Übungen zur Vorlesung Numerik, LMU München, Wintersemester 01/017 Peter Philip, Sabine Bögli. Januar 017 1. 10 Punkte) a) Betrachten Sie R mit der Maximumsnorm. Berechnen Sie die

Mehr

1/26. Integration. Numerische Mathematik 1 WS 2011/12

1/26. Integration. Numerische Mathematik 1 WS 2011/12 1/26 Integration Numerische Mathematik 1 WS 2011/12 Notation 2/26 Die Abbildung I b a : C([a, b]) R gegeben durch Ia b (f ) := beschreibt die Integration. b a f (x)dx, Um das Integral I(f ) zu approximieren

Mehr

Übungsblatt 2 Musterlösung

Übungsblatt 2 Musterlösung MSE SS17 Übungsblatt Musterlösung Lösung 5 (Transformation von Variablen) Zur Transformation gehen wir analog zur Vorlesung vor. Zunächst bestimmen wir die durch die PDGL definierte Matrix A und deren

Mehr

Klausur,,Algorithmische Mathematik II

Klausur,,Algorithmische Mathematik II Institut für angewandte Mathematik Sommersemester 017 Andreas Eberle, Matthias Erbar / Behrend Heeren Klausur,,Algorithmische Mathematik II Musterlösung 1 (Unabhängige Zufallsvariablen) a) Wir bezeichnen

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

2. Gauß-Integration. Prof. Dr. Wandinger 4. Scheibenelemente FEM 4.2-1

2. Gauß-Integration. Prof. Dr. Wandinger 4. Scheibenelemente FEM 4.2-1 Die analytische Integration der Steifigkeitsmatrix für das Rechteckelement ist recht mühsam. Für Polynome gibt es eine einfachere Methode zur Berechnung von Integralen, ohne dass die Stammfunktion benötigt

Mehr

III Das Symmetrische Eigenwertproblem (SEP)

III Das Symmetrische Eigenwertproblem (SEP) III Das Symmetrische Eigenwertproblem (SEP) III3 Algorithmen für symmetrische tridiagonale Eigenwertprobleme Sei im folgenden a b A = b a b b n a n b n b n a n R n n, zb nach Householder- oder Lanczos(im

Mehr

Musterlösung. Modulprüfung MA2302. Numerik. 8. Oktober Prüfer: Prof. Dr. Bernd Simeon. Aufgabe 1 (ca. 12 P.) Sei f C (R). Das bestimmte Integral

Musterlösung. Modulprüfung MA2302. Numerik. 8. Oktober Prüfer: Prof. Dr. Bernd Simeon. Aufgabe 1 (ca. 12 P.) Sei f C (R). Das bestimmte Integral Modulprüfung MA2302 Numerik 8. Oktober 2009 Musterlösung Prüfer: Prof. Dr. Bernd Simeon Aufgabe 1 (ca. 12 P.) Sei f C (R). Das bestimmte Integral soll durch die Quadraturformel approximiert werden. I n

Mehr

Numerische Verfahren

Numerische Verfahren Numerische Verfahren Jens-Peter M. Zemke zemke@tu-harburg.de Institut für Numerische Simulation Technische Universität Hamburg-Harburg 15.04.2008 TUHH Jens-Peter M. Zemke Numerische Verfahren Numerische

Mehr

Numerik gewöhnlicher Differentialgleichungen (MA2304) Modulprüfung F. Bornemann, C. Ludwig 14. August 2017

Numerik gewöhnlicher Differentialgleichungen (MA2304) Modulprüfung F. Bornemann, C. Ludwig 14. August 2017 Numerik gewöhnlicher Differentialgleichungen (MA234) Modulprüfung F. Bornemann, C. Ludwig 4. August 27 Aufgabe ( min) (a) Implementiere in Julia mit den Eingaben a, b, f und n die summatorische Trapez-Regel

Mehr

Musterlösung Prüfung Numerische Methoden, Sommer 2012 Dr. Lars Kielhorn

Musterlösung Prüfung Numerische Methoden, Sommer 2012 Dr. Lars Kielhorn D-ITET, D-MATL Musterlösung Prüfung umerische Methoden, Sommer 01 Dr. Lars Kielhorn 1. a) z = exp(iϕ) = dz = i exp(iϕ) dϕ = c n [f] = 1 π f(exp(iϕ)) exp( iϕn) dϕ π 0 b) Allgemeine zusammengesetzte Trapezregel

Mehr

H.J. Oberle Analysis II SoSe Interpolation

H.J. Oberle Analysis II SoSe Interpolation HJ Oberle Analysis II SoSe 2012 7 Interpolation 71 Allgemeine Problemstellung Interpolation ist die Kunst, zwischen den Zeilen einer Tabelle zu lesen (Rutishauser) Von f : R R seien Funktionswerte (x j,

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen IGPM RWTH Aachen Institut für Geometrie und Praktische Mathematik Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen

Mehr

Begleitmaterial zur Vorlesung Numerik II

Begleitmaterial zur Vorlesung Numerik II Begleitmaterial zur Vorlesung Numerik II Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik II 1 / 35 Inhalte der Numerik

Mehr

Nachklausur am Donnerstag, den 7. August 2008

Nachklausur am Donnerstag, den 7. August 2008 Nachklausur zur Vorlesung Numerische Mathematik (V2E2) Sommersemester 2008 Prof. Dr. Martin Rumpf Dr. Martin Lenz Dipl.-Math. Nadine Olischläger Nachklausur am Donnerstag, den 7. August 2008 Bearbeitungszeit:

Mehr

T n (1) = 1 T n (cos π n )= 1. deg T n q n 1.

T n (1) = 1 T n (cos π n )= 1. deg T n q n 1. KAPITEL 3. INTERPOLATION UND APPROXIMATION 47 Beweis: Wir nehmen an qx) für alle x [, ] und führen diese Annahme zu einem Widerspruch. Es gilt nach Folgerung ii) T n ) T n cos π n ). Wir betrachten die

Mehr

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b.

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b. NumaMB F14 Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Bewertung: Vier Fragen richtig beantwortet

Mehr

8 Interpolation. 8.1 Problemstellung. Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen. x 0 < x 1 <... < x n.

8 Interpolation. 8.1 Problemstellung. Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen. x 0 < x 1 <... < x n. 8 Interpolation 81 Problemstellung Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen x 0 < x 1 < < x n Eingabedaten: (x 0, f 0 ),(x 1, f 1 ),,(x n, f n ) Gegebene Daten (x j, f j ) Analysis

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Institut für Geometrie und Praktische Mathematik Multiple-Choice-Test NumaMB F08 (30 Punkte) Bei jeder MC-Aufgabe ist mindestens eine Aussage korrekt. Wird dennoch bei einer MC-Aufgabe keine

Mehr

Name Vorname Fachrichtg. Matrikelnr. Punkte Klausur Aufgabe max. Punkte Punkte. Bitte beachten!

Name Vorname Fachrichtg. Matrikelnr. Punkte Klausur Aufgabe max. Punkte Punkte. Bitte beachten! Fakultät für Mathematik Institut für Algebra und Geometrie Prof. Dr. Martin Henk, Dr. Michael Höding Modulprüfung Mathematik III Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik,

Mehr

a) Die Householder-Transformation, welche den ersten Spaltenvektor a 1 = der Matrix A auf , a 1 αe A = QR, A k =: Q k R k, A k+1 := R k Q k.

a) Die Householder-Transformation, welche den ersten Spaltenvektor a 1 = der Matrix A auf , a 1 αe A = QR, A k =: Q k R k, A k+1 := R k Q k. Karlsruher Institut für Technologie (KIT) Institut für Analysis Prof. Dr. W. Reichel Sommersemester 00 7.07.00 MODULPRÜFUNG Numerische Methoden (Höhere Mathematik IV für die Fachrichtung Meteorologie bzw.

Mehr

Übungsblatt 10 Musterlösung

Übungsblatt 10 Musterlösung Übungsblatt 0 Musterlösung Numerik gewöhnlicher Differentialgleichungen MA2304 - SS6 Aufgabe 45 Fehlerkonstante von MSV Betrachten Sie ein allgemeines lineares q Schrittverfahren α q j y i+ j = h β q j

Mehr

19. Januar Universität Erlangen-Nürnberg Department Mathematik PD Dr. Markus Bause. . Danach liefert die Gauss-Elinination. .

19. Januar Universität Erlangen-Nürnberg Department Mathematik PD Dr. Markus Bause. . Danach liefert die Gauss-Elinination. . Universität Erlangen-Nürnberg Department Mathematik PD Dr Markus Bause Numerik I 9 Januar A Gegeben sei die Matrix A = a Führen Sie eine Zeilenskalierung der Matrix durch Klausur b Bestimmen Sie mit Hilfe

Mehr

eps für alle x D. 4. Die Zahl 256 ist in M(2, 4, 6, 6) exakt darstellbar.

eps für alle x D. 4. Die Zahl 256 ist in M(2, 4, 6, 6) exakt darstellbar. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H13 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr

*** Viel Erfolg!!! ***

*** Viel Erfolg!!! *** Hochschule München, FK 03 WS 2017/18 Ingenieurinformatik Numerik für Ingenieure Studienbeginn vor WS13/14 (Kombinationsprüfung) ** Studienbeginn ab WS13/14 bis WS15/16 ** Studienbeginn ab SS16 (Kombinationsprüfung)

Mehr

Legendre Polynome. 1 2 n n! d n (( P n (x) P m (x)dx = 0 für m n.

Legendre Polynome. 1 2 n n! d n (( P n (x) P m (x)dx = 0 für m n. Legendre Polynome Sei R[X] der Raum der Polynomfunktionen. Die Legendre Polynome P n R[X] sind definiert durch P n (x) = 1 d n (( x 2 1 ) n). dx n (a) P n hat genau n paarweise verschiedene Nullstellen

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 11 D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben 1. 1 Punkte a Wir berechnen lim x x + x + 1 x + x 3 + x = 1. b Wir benutzen L Hôpital e x e x lim x sinx

Mehr

Numerische Methoden 7. Übungsblatt

Numerische Methoden 7. Übungsblatt Karlsruher Institut für Technologie (KIT) SS 01 Institut für Analysis Prof Dr Michael Plum Dipl-Mathtechn Rainer Mandel Numerische Methoden 7 Übungsblatt Aufgabe 17: Quadratur II Die Menge aller Polynome

Mehr

Lineare Algebra II 11. Übungsblatt

Lineare Algebra II 11. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross 9 / Juni Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Minitest (Bearbeitung innerhalb von Minuten und ohne Benutzung des

Mehr

(x x j ) R m [x] (3) x x j x k x j. R m [x]. (4)

(x x j ) R m [x] (3) x x j x k x j. R m [x]. (4) 33 Interpolation 147 33 Interpolation In vielen praktischen Anwendungen der Mathematik treten Funktionen f auf, deren Werte nur näherungsweise berechnet werden können oder sogar nur auf gewissen endlichen

Mehr

Analysis II. Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag

Analysis II. Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag Prof Dr H Garcke, D Depner SS 9 NWF I - Mathematik 1979 Universität Regensburg Aufgabe 1 Analysis II Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag i Erinnern Sie sich an die Konvergenzkriterien

Mehr

Klausur im Fach Numerische Methoden II Universität Siegen; Fachbereich Maschinenbau,

Klausur im Fach Numerische Methoden II Universität Siegen; Fachbereich Maschinenbau, Aufgabe 1 (Polynominterpolation) Abb. 1: Roboter für Positionierungsaufgaben Industrieroboter erledigen oft Positionierungsaufgaben, indem sie einen vorgegebenen Pfad abfahren. Diese Trajektorie entspricht

Mehr

5 Interpolation und Approximation

5 Interpolation und Approximation 5 Interpolation und Approximation Problemstellung: Es soll eine Funktion f(x) approximiert werden, von der die Funktionswerte nur an diskreten Stellen bekannt sind. 5. Das Interpolationspolynom y y = P(x)

Mehr

Numerische Mathematik II. (a) mit der geschlossenen Formel von Newton-Cotes. k k. (b) mit der Formel von Gau-Legendre fur w(x) = 1

Numerische Mathematik II. (a) mit der geschlossenen Formel von Newton-Cotes. k k. (b) mit der Formel von Gau-Legendre fur w(x) = 1 Prof. Dr. C. W. Cryer SS 2 Numerische Mathematik II Ubungsblatt, Abgabe: 2.4., 3. Uhr Aufgabe : (4 Punkte). Berechnen Sie fur n = 2 3 If = Z ; +x 2 dx (a) mit der geschlossenen Formel von Newton-Cotes

Mehr

2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2)

2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2) Prof. Hesse Höhere Mathematik I und II Musterlösung 7. 0. 0, 80min Aufgabe (3 Punkte) Zeigen Sie mit vollständiger Induktion: Für alle n N gilt n k= k k k(k + ) = n+ n +. Induktionsanfang: k= Induktionsschluss

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Musterlösung , 120min Apl. Prof. Dr. N. Knarr Musterlösung 3.9.5, min Aufgabe (8 Punkte) Gegeben ist der Körper K : {(x, y, z) R 3 x + 4y, z 3}. Berechnen Sie der Ausfluss von g : R 3 R 3 durch den Rand K mit g(x, y, z) (x

Mehr

VF-3: Gegeben seien die Daten f(x 0 ), f(x 1 ),..., f(x n ) mit x 0,..., x n paarweise verschiedenen und

VF-3: Gegeben seien die Daten f(x 0 ), f(x 1 ),..., f(x n ) mit x 0,..., x n paarweise verschiedenen und IGPM RWTH Aachen Verständnisfragen-Teil NumaMB F10 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Aussagen Diese sind mit wahr bzw falsch zu kennzeichnen (hinschreiben) Es müssen alle Fragen mit wahr

Mehr

IX. Das symmetrische Eigenwertproblem (SEP)

IX. Das symmetrische Eigenwertproblem (SEP) IX. Das symmetrische Eigenwertproblem (SEP IX.3. Algorithmen für symmetrische tridiagonale Matrizen Sei a b. b A =........ a n b n (IX. b n a n z. B. nach Householder- oder Lanczos-Triagonalisierung (Kapitel

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Institut für Geometrie und Praktische Mathematik Diplom VP Numerik 13. September 004 Aufgabe 1 10 0 40 Gegeben sei die Matrix A = 80 10 10. 10 5 5 (6 Punkte) a) Skalieren (Zeilenäquilibrierung)

Mehr

(a), für i = 1,..., n.

(a), für i = 1,..., n. .4 Extremwerte Definition Sei M R n eine Teilmenge, f : M R stetig, a M ein Punkt. f hat in a auf M ein relatives (oder lokales) Maximum bzw. ein relatives (oder lokales) Minimum, wenn es eine offene Umgebung

Mehr

MATLAB Einführung. Numerische Methoden für ITET und MATL Dr. S. May, D. Devaud. ETH Zürich, Seminar for Applied Mathematics

MATLAB Einführung. Numerische Methoden für ITET und MATL Dr. S. May, D. Devaud. ETH Zürich, Seminar for Applied Mathematics Numerische Methoden für ITET und MATL 2016 ETH Zürich, Seminar for Applied Mathematics Dr. S. May, D. Devaud Frame 2 MATLAB Auf ETH Computer vorinstalliert Auf Heim PC: von www.ides.ethz.ch herunterladen

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, August BIOL-B GES+T PHARM Lösungen zu Mathematik I/II. ( Punkte) a) Wir führen Polynomdivision durch und erhalten (x 3 5) : (x ) = x +x+ 4 x. Also ist g(x) die Asymptote von f(x)

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 7 (7.8.7). Gegeben ist die Matrix A 3 3 3 (a) Bestimmen Sie sämtliche Eigenwerte sowie die zugehörigen Eigenvektoren.

Mehr

Interpolation und Integration mit Polynomen

Interpolation und Integration mit Polynomen Interpolation und Integration mit Polynomen Philipp Andrea Zardo Universität Kassel 23. Februar 2006 / Kassel Outline 1 Einleitung Was ist numerische Mathematik? Die eulersche e-funktion Ein Wurzelalgorithmus

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Viele physikalische Probleme können mathematisch als gewöhnliche Differentialgleichungen formuliert werden nur eine unabhängige Variable (meist t), z.b. Bewegungsgleichungen: gleichmäßig

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SS 2012 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Dipl.-Math. Alexander Breuer Dipl.-Math. Dipl.-Inf. Jürgen Bräckle Dr.-Ing. Markus

Mehr

Kapitel 4. Numerische Differentiation und Integration

Kapitel 4. Numerische Differentiation und Integration Kapitel 4 Numerische Differentiation und Integration Prof. R. Leithner, E. Zander Einführung in numerische Methoden für Ingenieure 4/2 Integration und Differentiation Probleme bei der Integration und Differentiation

Mehr

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB)

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Prof. R. Leithner, Dipl. Phys. E. Zander Wintersemester 2010/2011 Kapitel 4 Numerische

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 12

Technische Universität München Zentrum Mathematik. Übungsblatt 12 Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 12 Hausaufgaben Aufgabe 12.1 Sei f : R 3 R 3 gegeben durch f(x) :=

Mehr

Dr. R. Käppeli D-ITET, D-MATL Sommer Numerische Methoden Punkte

Dr. R. Käppeli D-ITET, D-MATL Sommer Numerische Methoden Punkte Dr. R. Käppeli D-ITET, D-MATL Sommer 217 Prüfung Numerische Methoden Wichtige Hinweise Die Prüfung dauert 9 Minuten. Erlaubte Hilfsmittel: 5 A4-Blätter doppelseitig (=1 Seiten) eigenhändig und handschriftlich

Mehr

Lineare Algebra und Numerische Mathematik D-BAUG. Winter 2013 Prof. H.-R. Künsch. , a R. det(a) = 0 a = 1.

Lineare Algebra und Numerische Mathematik D-BAUG. Winter 2013 Prof. H.-R. Künsch. , a R. det(a) = 0 a = 1. b Musterlösung Lineare Algebra und Numerische Mathematik D-BAUG. Multiple Choice) Gegeben sei die folgende Matrix Winter 3 Prof. H.-R. Künsch A = a a) deta) = genau dann wenn gilt x a =. a =. ), a R. x

Mehr

6 Numerische Integration

6 Numerische Integration Numerik I 251 6 Numerische Integrtion Ziel numerischer Integrtion (Qudrtur): Näherungswerte für f(t) dt. Wozu? Eine Apprtur liefere Messwerte x i = x i + ε i. Angenommen, die Messfehler ε i sind stndrdnormlverteilt

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Musterlösung , 120min Apl. Prof. Dr. N. Knarr Musterlösung 4.3.25, 2min Aufgabe ( Punkte) Es sei S := {(x, y, z) R 3 z = x 2 + y 2, z 2}. (a) (6 Punkte) Berechnen Sie den Flächeninhalt von S. (b) (4 Punkte) Berechnen Sie die

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 2016/17

Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 2016/17 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 6/7 837 Aufgabe Punkte): Gegeben sei das lineare Gleichungssystem Ax = b mit A = 6 3 und

Mehr

4 Eigenwerte und Eigenvektoren

4 Eigenwerte und Eigenvektoren 4 Eigenwerte und Eigenvektoren Sei V {0} ein K Vektorraum und f : V V K linear. Definition: Ein Eigenwert von f ist ein Element λ K, für die es einen Vektor v 0 in V gibt, so dass f(v) = λ v. Sei nun λ

Mehr

Inhalt Kapitel IV: Interpolation

Inhalt Kapitel IV: Interpolation Inhalt Kapitel IV: Interpolation IV Interpolation IV. Polynom-Interpolation IV. Spline-Interpolation Kapitel IV (InhaltIV) Die Interpolationsformel von Lagrange Zentrale Aussage: Zu beliebigen n + Stützpunkten

Mehr

Explizite Runge-Kutta-Verfahren

Explizite Runge-Kutta-Verfahren Explizite Runge-Kutta-Verfahren Proseminar Numerische Mathematik Leitung: Professor Dr. W. Hofmann Dominik Enseleit 06.07.2005 1 1 Einleitung Nachdem wir schon einige numerische Verfahren zur Lösung gewöhnlicher

Mehr

Numerik gewöhnlicher Differentialgleichungen. Übung 8 - Lösungsvorschlag

Numerik gewöhnlicher Differentialgleichungen. Übung 8 - Lösungsvorschlag Technische Universität Chemnitz Chemnitz, 2. Januar 21 Prof. R. Herzog, M. Bernauer Numerik gewöhnlicher Differentialgleichungen WS29/1 Übung 8 - Lösungsvorschlag 1. Ziel dieser Aufgabe ist die Umsetzung

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min. cos(x), y(0) = 1.

Apl. Prof. Dr. N. Knarr Musterlösung , 120min. cos(x), y(0) = 1. Apl. Prof. Dr. N. Knarr Musterlösung.9.6, min Aufgabe ( Punkte) Lösen Sie das folgende Anfangswertproblem: y = e y cos(x), y() =. Sei y : I R die maximale Lösung des gegebenen Anfangswertproblems (diese

Mehr

Interpolation, numerische Integration, Eigenwerte

Interpolation, numerische Integration, Eigenwerte Neunte Vorlesung, 29. Mai 2008, Inhalt Interpolation, numerische Integration, Eigenwerte Polynomiale Interpolation (Lagrange, Newton, Neville) Splines und weitere Interpolationsverfahren numerische Integration

Mehr

Musterlösung für die Klausur vom 31. März. (a) Wir bestimmen zunächst einen Normalenvektor von E 1 :

Musterlösung für die Klausur vom 31. März. (a) Wir bestimmen zunächst einen Normalenvektor von E 1 : Musterlösung für die Klausur vom 3. März Aufgabe (a) Wir bestimmen zunächst einen Normalenvektor von E : AB AC 3 2 = 2 =. 2 2 Dieser ist der Richtungsvektor der gesuchten Geraden, also hat diese die Parameterdarstellung

Mehr

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10)

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Kapitel 15: Eigenwerte und -vektoren Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 5. November 2009) Diagonalisierbarkeit

Mehr

Finite Elemente. Dr. S.-J. Kimmerle Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Wintertrimester 2015

Finite Elemente. Dr. S.-J. Kimmerle Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Wintertrimester 2015 Dr. S.-J. Kimmerle Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Wintertrimester 5 Aufgabe 8 (Speichertechniken) Finite Elemente Übung 5 a) Stellen Sie die Matrix

Mehr

Lösungen der Aufgaben zu Kapitel 9

Lösungen der Aufgaben zu Kapitel 9 Lösungen der Aufgaben zu Kapitel 9 Abschnitt 9. Aufgabe a) Wir bestimmen die ersten Ableitungen von f, die uns dann das Aussehen der k-ten Ableitung erkennen lassen: fx) = x + e x xe x, f x) = e x e x

Mehr

D-ITET, D-MATL Numerische Methoden FS 2018 Dr. R. Käppeli P. Bansal. Lösung 3. j j + 1 P j 1(x), j 1. 2(1 x 2 k ) 2. ((j + 1)P j (x k ))

D-ITET, D-MATL Numerische Methoden FS 2018 Dr. R. Käppeli P. Bansal. Lösung 3. j j + 1 P j 1(x), j 1. 2(1 x 2 k ) 2. ((j + 1)P j (x k )) D-ITET, D-MATL umerische Methoden FS 2018 Dr. R. Käppeli P. Bansal Lösung 3 1. 3-Punkte Gauss Quadraturregel a) Um das Polynom P 3 (x) zu berechnen, benutzen wir die Formel P j+1 (x) 2j + 1 j + 1 xp j(x)

Mehr

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2.

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2. MATHEMATISCHES INSTITUT PROF. DR. ACHIM SCHÄDLE 9.8.7 KLAUSUR zur Numerik I mit Lösungen Aufgabe : ( Punkte) [ wahr falsch ]. Die maximale Ordnung einer s-stufigen Quadraturformel ist s. [ ]. Der Clenshaw

Mehr

Musterlösungen zur Leistungsnachweisklausur vom Studiengang Informatik, Ingenieurinformatik, Lehramt

Musterlösungen zur Leistungsnachweisklausur vom Studiengang Informatik, Ingenieurinformatik, Lehramt TU ILMENAU Institut für Mathematik Numerische Mathematik PD Dr. W. Neundorf Musterlösungen zur Leistungsnachweisklausur vom.0.006 Studiengang Informatik, Ingenieurinformatik, Lehramt 1. Lineare Algebra

Mehr

Numerische Integration

Numerische Integration Numerische Integration home/lehre/vl-mhs-1/folien/uebung/num_integration/cover_sheet_5a.tex Seite 1 von 12. p.1/12 Inhaltsverzeichnis 1. Einführung 2. Newton-Cotes Formeln Rechteckformel Trapezformel Simpsonsche

Mehr

5 Numerische Mathematik

5 Numerische Mathematik 6 5 Numerische Mathematik Die Numerische Mathematik setzt sich aus mehreren Einzelmodulen zusammen Für alle Studierenden ist das Modul Numerische Mathematik I: Grundlagen verpflichtend In diesem Modul

Mehr

Diplom VP Informatik / Numerik 2. September 2002

Diplom VP Informatik / Numerik 2. September 2002 Diplom VP Informatik / Numerik. September 00 Aufgabe Gegeben sei das lineare Gleichungssystem A x = b mit 0 4 0 0 0 0 A = 4 0 0 0 0 0 0 0 0 und b = 4 4 8 5. Punkte a Berechnen Sie die Cholesky Zerlegung

Mehr

Analysis I. 1. Beispielklausur mit Lösungen

Analysis I. 1. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Das Bild einer Abbildung F: L M. (2) Eine Cauchy-Folge

Mehr

Ausgewählte Lösungen zu den Übungsblättern 9-10

Ausgewählte Lösungen zu den Übungsblättern 9-10 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Dezember Ausgewählte Lösungen zu den Übungsblättern 9- Übungsblatt

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 21 Quadraturverfahren R. Steuding

Mehr

(x x j ) x [a,b] n! j=0

(x x j ) x [a,b] n! j=0 IGPM RWTH Aachen Verständnisfragen-Teil NumaMB F10 (4 Punkte Es gibt zu jeder der 1 Aufgaben vier Aussagen. Diese sind mit bzw. zu kennzeichnen (hinschreiben. Es müssen alle Fragen mit oder gekennzeichnet

Mehr

Vorkurs Mathematik Übungen zu linearen Gleichungssystemen

Vorkurs Mathematik Übungen zu linearen Gleichungssystemen Vorkurs Mathematik Übungen zu linearen Gleichungssystemen Lineare Gleichungssysteme lösen Aufgabe. Lösen sie jeweils das LGS A x = b mit ( ( a A =, b = b A =, b = 6 Aufgabe. Berechnen Sie für die folgenden

Mehr

Zusatzmaterial zu Kapitel 4

Zusatzmaterial zu Kapitel 4 1 ERMITTLUNG DER TRANSITIONSMATRIX MIT DER SYLVESTER-FORMEL 1 Zusatzmaterial zu Kapitel 4 1 Ermittlung der Transitionsmatrix mit der Sylvester- Formel Wir nehmen an, dass das Zustandsmodell eines linearen

Mehr

v(x, y, z) = (1 z)x 2 + (1 + z)y 2 + z. Hinweis: Der Flächeninhalt der Einheitssphäre ist 4π; das Volumen der Einheitskugel

v(x, y, z) = (1 z)x 2 + (1 + z)y 2 + z. Hinweis: Der Flächeninhalt der Einheitssphäre ist 4π; das Volumen der Einheitskugel Aufgabe Gegeben sei das Gebiet G : { (x, y, z) R 3 x 2 + y 2 + z 2 < } und die Funktion Berechnen Sie das Integral v(x, y, z) ( z)x 2 + ( + z)y 2 + z. G n ds, wobei n der nach außen zeigende Normalenvektor

Mehr

Klassische Polynom Interpolation.

Klassische Polynom Interpolation. Klassische Polynom Interpolation. Bestimme ein Polynom (höchstens) n ten Grades p n (x) = a 0 + a 1 x + a 2 x 2 +... + a n x n, das die gegebenen Daten interpoliert, d.h. p n (x i ) = f i, 0 i n. Erster

Mehr

Vorlesungsvertretung Analysis II, H. P. Kiani, SoSe 2014 Ergänzungen/Erläuterungen zu den Folien von Prof. Iske

Vorlesungsvertretung Analysis II, H. P. Kiani, SoSe 2014 Ergänzungen/Erläuterungen zu den Folien von Prof. Iske Fchbereich Mthemtik der Universität Hmburg Dr. H. P. Kini Vorlesungsvertretung Anlysis II, H. P. Kini, SoSe 4 Ergänzungen/Erläuterungen zu den Folien von Prof. Iske Qudrtur von f(x) uf [, 3] Mittelpunksregel,

Mehr

7 Numerische Integration

7 Numerische Integration Numerische Mathematik 318 7 Numerische Integration Ziel numerischer Integration (Quadratur): Näherungswerte für b a f(t) dt. Wozu? Ein Beispiel: Eine Apparatur liefert Meßwerte x i = x i + ε i. Angenommen,

Mehr