Numerik SS Übungsblatt 3
|
|
|
- Alma Lenz
- vor 7 Jahren
- Abrufe
Transkript
1 PROF. DR. BERND SIMEON CHRISTIAN GOBERT THOMAS MÄRZ Numerik SS 9 Übungsblatt 3 Aufgabe 1 Clenshaw-Curtis-Quadratur Wie bereits bei der Polynominterpolation bietet es sich auch zur Quadratur an Tschebysheff- Knoten als Stützstellen zu verwenden. Mit der Substitution x = cos(θ) erhält man I( f ) = 1 1 f (x)dx = f (cos(θ)) sin(θ)dθ. Das neue Integral behandelt man mit Stützstellen θ j = π j/n, j =,..., n, N = n somit sind die korrespondierenden x j = cos(θ j ), j =,..., n die n + 1 Tschebysheff-Knoten im Intervall [ 1, 1]. a) Nehmen Sie an zu F(θ) := f (cos(θ)) sei die Kosinus-Transformation bekannt F(θ) = A k cos(kθ). k= Wie berechnet sich der Wert I( f ) in Abhängigkeit von den A k? Hinweis: sin(a) cos(b) = sin(a + b) + sin(a b). b) 1. Welche Eigenschaft muss eine π-periodische Funktion G haben, damit ihre Fourierreihe nur Kosinus-Glieder enthält?. Die Funktion F aus Teil a) ist auf [, π] erklärt. Setzen Sie F geignet auf [ π, ] fort. 3. Die n-te Fourier-Partialsumme einer π-periodischen Funktion G ist gegeben durch S n (G)(x) = a n n + a k cos(kx) + b k sin(kx) = c k e ikx. k= n Welche Beziehung besteht zwischen a k, b k und c k, c k? 4. Die c k werden mittels diskreter Fourier-Transformation berechnet: c k = 1 N G(θ j )e i θ j = 1 N j= G(θ j )e i π j/n. j= Zeigen Sie: c k = c N k 5. Wie bekommt man mit Hilfe der diskreten Fourier-Transformation der Funktion F(θ) aus Punkt die Koeffizienten A k der diskreten Kosinus-Transformation? c) Formulieren Sie aus a) und b) eine Quadratur-Formel (Clenshaw-Curtis-Algorithmus).
2 Lösungsvorschalg zu Aufgabe 1 a) Für die Integrale nutze man den Hinweis: Sonderfall k = 1: sin(θ) cos(kθ) dθ = 1 sin((1 + k)θ) dθ + 1 sin((1 k)θ) dθ sin(θ) cos(θ) dθ = 1 sin(θ) dθ = 1 [ cos(θ) ] π = Ansonsten k = 1: [ cos((1 + k)θ) ] π [ cos((1 k)θ) ] π sin(θ) cos(kθ) dθ = k 1 k ( ) ( ) = 1 ( 1) 1+k ( 1) 1 k k 1 + k 1 k 1 k ( ) ( ) = 1 ( 1) 1+k ( 1) 1 k k 1 + k 1 k 1 k = 1 ( k + 1 ) (( 1) k + 1) 1 k = 1 {, k ungerade 1 k (( 1)k + 1) =, k gerade 1 k Und damit folgt sin(θ)f(θ) dθ = = = A k k= π A k 1 4k k= n/ k= sin(θ) cos(kθ) dθ A k 1 4k + A k 1 4k k= n/ +1 b) 1. Für die π-periodische Funktion G ist die Fourier-Reihe (im Konvergenzfall bei Stetigkeitstellen x) Wobei für k IN a k = 1 π π G(x) = a + a k cos(kx) + b k sin(kx) G(x) cos(kx) dx, b k = 1 π π G(x) sin(kx) dx gelten (insbesondere die Erweiterung b = ). Man sieht sofort, falls G(x) gerade ist, so ist G(x) sin(kx) ungerade und damit b k = für alle k IN.
3 . Um obiges auszunutzen muss man F erstens geignet auf [ π, ] fortsetzen so, dass F auf [ π, π] eine gerade Funktion ist und dann π-periodisch auf ganz IR aus dehnen. Da F(θ) = f (cos(θ)) ist für das Intervall [ π, π] nichts zu tun. Um später aber die diskrete FT anzuwenden sollten man F satt dessen auf [, π] erklären, also { f (cos(θ)), θ [, π] F(θ) =. f (cos(π θ)), θ ]π, π] 3. Man gehe mit der Eulerformel in Sinus/Kosinus-Darstellung damit S n (G)(x) = a n + a k cos(kx) + b k sin(kx) = a n + a k (eikx + e ikx ) i b k (eikx e ikx ) = a n + = c + = a k ib k n c k e ikx + c k e ikx n c k e ikx k= n e ikx + a k + ib k e ikx a k = c k + c k, b k = i(c k c k ) für k {,..., n} unter Verwendung von b =. 4. Es gilt also c N k = 1 N N k iπ e N = e iπ ( k) iπ e N N k i π 1 G(θ j )e N = N j= = e iπ ( k) N ( k) i π G(θ j )e N j= = c k 5. Mit der Fortsetzung von. ist F nun gerade und π-periodisch also ist die Fourierreihe nach 1. F(θ) = a + a k cos(kθ). Koeffizientenvergleich mit der Kosinusreihe ergibt A = a, A k = a k, k IN unter Verwendung der komplexen Fourierreihe also A = c, A k = c k + c k, k IN. Bei Verwendung der DFT erhält man nur endlich viele Koeffizienten die nach 4. so aussehen A = c, A k = c k + c N k, k 1,..., n. c) Ein Program das n + 1 Tschebysheff-Knoten im Intervall [ 1, 1] benutzt ( wobei n IN damit die Ränder immer mitgenommen werden), könnte so aussehen
4 function I= CCquad(f,n) N = *n; theta = [:N-1] * * pi/n; x = cos(theta); F = feval(f,x); c = fft(f)/n; A = zeros(n+1,1); A(1) = c(1); A(:(n+1)) = c(:(n+1)) + c(n:-1:n+1); nn = floor(n/); g =./(1-4*[:nn].^); I = g * A(1::end); Aufgabe Rund um Quadratur a) Beantworten Sie folgende Fragen zur Quadratur: Welche Qudraturverfahren kennen Sie? Welche Ideen/Prinzipien stecken dahinter? Warum sollten Newton-Cotes-Formeln eher nicht angewandt werden? Was zeichnet die Gauß-Quadratur aus? Wie ist das Konstruktionsprinzip der Gauß-Quadratur? Was besagt der Peano-Kern-Satz? Was bedeutet Adaptivität? Was macht folgender Code? function I=tuwas(f,a,b,tol) y=feval(f,[a (a+b)/ b]); if (b-a)*abs(y(1)/4-y()/+y(3)/4)<3*tol I=(b-a)*(y(1)+*y()+y(3))/4; else I=tuwas(f,a,(a+b)/,tol)+tuwas(f,(a+b)/,b,tol); end; b) Beurteilen Sie folgende Aussagen und begründen Sie Ihre Ja/Nein-Antworten: 1. Die Newton-Cotes-Formeln sind besonders effektiv, denn man benötigt nur wenige Funktionsauswertungen für die Integration von Polynomen hohen Grades.. Gauß-Legendre-Quadratur-Formeln besitzen immer positive Gewichte. 3. Zur Gauß-Legendre-Quadratur mit 1 Stützstellen existiert eine Fehlerschätzung, die nur die 3. Ableitung des Integranden benötigt. 4. Jede konsistente Quadraturformel integriert lineare Funktionen exakt. 5. Sei S eine summatorische Quadraturformel, die als Basisverfahren eine Gauß- Legendre Quadraturformel verwendet, dann ist die Abbildung f S( f ) linear.
5 c) Aufwand-Genauigkeits-Diagramme: Zur Berechnung des Integrals 5 sin(x)esin x dx wurden verwendet: 1. die summatorische Simpsonregel zu verschiedenen Schrittweiten h,. die Gauß-Legendre Quadratur (auf [, 5] transformiert) zu verschiedener Anzahl von Stützstellen, 3. die summatorische Trapezregel zu verschiedenen Schrittweiten h. Welcher Graph im nebenstehenden Aufwands-Genauigkeits-Diagramm gehört zu welcher Quadraturformel? Begründen Sie Ihre Antwort. Lösungsvorschalg zu Aufgabe Fehler Aufw. a) Die ersten 7 Fragen selber machen. Zum Code: das ist die adaptive Trapezregel, wobei zum Fehlerschätzen einmal Standard über [a, b] quadriert wird, also T 1 ( f ) = f (a) + f (b) (b a) und zum andernmal Trapez-summatorisch über [a, a+b a+b ] und [, b] quadriert wird ( ( )) f (a) + f (b) a + b T ( f ) = + f b a. Fehlerschätzer ist dann T 1 ( f ) T ( f ). Falls die Toleranz erfüllt ist wird I = T ( f ) zurückgeliefert, das sollte ja der genauere Wert sein. Andernfalls Bisektionsrekursion. b) 1. Frage : Nein. Frage : Ja 3. Frage : Ja, man kann sich eine basteln. Ist halt nicht optimal für glatte Funktionen, aber anwendbar für weniger glatte. 4. Frage : Nein, nur konstanten werden exakt integriert 5. Frage : Ja, offensichtlich. c) Die Überlegung gilt erstmal für summatorische QF zur Schrittweite h = b a n. Wenn nun pro Subinterval eine interpolatorische Basis-QF genommen wird, dann ist die Anzahl der f -Auswertungen f = c 1 n und somit Sollte der Fehler ε = O(h p ) sein so folgt h = c ( f ) 1 ε = c 3 ( f ) p
6 und somit log ε = log c 3 p log( f ) also sollte sich im Idealfall im Aufwands-Genauigkeits-Diagramm (bei doppelt - logarithmischem Plot) eine Gerade mit Steigung p abzeichnen. Die letzten beiden Formeln kommen ohne h aus, sind also auch z.b. bei Gauß-Quadratur anwendbar wo es gar kein h gibt oder bei adaptiven Verfahren wo es ganz viele h (in einem Lauf) gibt. In diesem Fall kann man sich das so denken, dass ein h implizit über f definiert ist (aber auch nicht weiter wichtig ist). p ist im Fall des Falles per Ausgleichsrechnung zu bestimmen. Hier ist der Integrand glatt, also treffen die Fehlerformeln auch zu. Nach der Theorie sollte sich für Trapez Ordnung und für Simpson Ordnung 4 abzeichnen insbesondere muss für diese tatsächlich ein Geradenstück im Diagramm rauskommen. Die langsam fallende Kurve ist Trapez, die nächst schnellere Simpson und nach Ausschluß die letzte halt Gauß.
Übungsblatt 4 Musterlösung
Numerik gewöhnlicher Differentialgleichungen MA2304 - SS6 Übungsblatt 4 Musterlösung Aufgabe 7 (Nullstellen als Eigenwerte) Die Polynome {S n } n=0,,2,, S n P n, mit führem Koeffizienten eins, heißen Orthogonalpolynome
VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf.
IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H11 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei
Numerik gewöhnlicher Differentialgleichungen (MA2304) Modulprüfung F. Bornemann, C. Ludwig 14. August 2017
Numerik gewöhnlicher Differentialgleichungen (MA234) Modulprüfung F. Bornemann, C. Ludwig 4. August 27 Aufgabe ( min) (a) Implementiere in Julia mit den Eingaben a, b, f und n die summatorische Trapez-Regel
Technische Numerik Numerische Integration
W I S S E N T E C H N I K L E I D E N S C H A F T Technische Numerik Numerische Integration Peter Gangl Institut für Numerische Mathematik, Technische Universität Graz c Alle Rechte vorbehalten. Nachdruck
12.2 Gauß-Quadratur. Erinnerung: Mit der Newton-Cotes Quadratur. I n [f] = g i f(x i ) I[f] = f(x) dx
12.2 Gauß-Quadratur Erinnerung: Mit der Newton-Cotes Quadratur I n [f] = n g i f(x i ) I[f] = i=0 b a f(x) dx werden Polynome vom Grad n exakt integriert. Dabei sind die Knoten x i, 0 i n, äquidistant
KAPITEL 10. Numerische Integration
KAPITEL 10. Numerische Integration 10.1 Einleitung Sei Es gilt I Ĩ = b I = b a a f(x) f(x) dx f(x) dx, Ĩ = b b a f(x) dx. a f(x) f(x) dx (b a) f f. I Ĩ I (b a) f f b a f(x) dx = ba f dx b a f(x) dx f f
Beispiel für eine periodische Spline-Interpolationsfunktion: Wir betrachten f(x) = sin(πx) und geben die folgenden Stützstellen und Stützwerte vor:
5 Splineinterpolation Beispiel für eine periodische Spline-Interpolationsfunktion: Wir betrachten f(x) sin(πx) und geben die folgenden Stützstellen und Stützwerte vor: x i 3 f i Damit ist n 5, h Forderung
Numerische Verfahren
Numerische Verfahren Jens-Peter M. Zemke [email protected] Institut für Numerische Simulation Technische Universität Hamburg-Harburg 15.04.2008 TUHH Jens-Peter M. Zemke Numerische Verfahren Numerische
1/26. Integration. Numerische Mathematik 1 WS 2011/12
1/26 Integration Numerische Mathematik 1 WS 2011/12 Notation 2/26 Die Abbildung I b a : C([a, b]) R gegeben durch Ia b (f ) := beschreibt die Integration. b a f (x)dx, Um das Integral I(f ) zu approximieren
Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen
Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen Wintersemester 2012/201 Zwischentest Teil 1: 1. Was bedeuten die Bezeichnungen O(h) und o(h)? (Definition) (siehe Skript!)
Einführung in die Fourier-Reihen. 1 Fourier-Reihen: Definitionen
Vortrag zum Seminar zur Analysis, 05.07.2010 André Stollenwerk, Eva-Maria Seifert Die Fourieranalysis beschäftigt sich mit dem Problem, inwiefern sich Funktionen mittels Sinus und Cosinus, das heißt periodischen
Ferienkurs der TU München- - Analysis 2 Fourierreihen und Taylorreihen. Marcus Jung, Jonas J. Funke
Ferienkurs der U München- - Analysis Fourierreihen und aylorreihen Lösung Marcus Jung, Jonas J. Funke 3.8. FOURIERREIHEN Fourierreihen Aufgabe. Sei f : R R stetig und periodisch mit Fourierkoeffizienten
Numerik gewöhnlicher Differentialgleichungen. Übung 8 - Lösungsvorschlag
Technische Universität Chemnitz Chemnitz, 2. Januar 21 Prof. R. Herzog, M. Bernauer Numerik gewöhnlicher Differentialgleichungen WS29/1 Übung 8 - Lösungsvorschlag 1. Ziel dieser Aufgabe ist die Umsetzung
2 Tschebyscheff-Approximation durch Polynome
Approximationstheorie 71 2 Tschebyscheff-Approximation durch Polynome 2.1 Tschebyscheff-Polynome In diesem Abschnitt: explizit lösbare Tschebyscheff-Approximationsprobleme durch Polynome. Bezeichnungen:
Übungsblatt 1 Musterlösung
Numerik gewöhnlicher Differentialgleichungen MA234 - SS6 Übungsblatt Musterlösung Aufgabe (Interpolationspolynom) a) Bestimmen Sie die Hilfspolynome L i, i =,,2, für x =, x = 2 und x 2 = 3 nach der Formel
Einführung in die numerische Mathematik
Prof. Dr. M. Günther K. Gausling, M.Sc. C. Hendricks, M.Sc. Sommersemester 014 Bergische Universität Wuppertal Fachbereich C Mathematik und Naturwissenschaften Angewandte Mathematik / Numerische Analysis
19. Januar Universität Erlangen-Nürnberg Department Mathematik PD Dr. Markus Bause. . Danach liefert die Gauss-Elinination. .
Universität Erlangen-Nürnberg Department Mathematik PD Dr Markus Bause Numerik I 9 Januar A Gegeben sei die Matrix A = a Führen Sie eine Zeilenskalierung der Matrix durch Klausur b Bestimmen Sie mit Hilfe
K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung WS 17/18: Woche vom
Übungsaufgaben 3. Übung WS 17/18: Woche vom 3. 10. - 7. 10. 017 Fourierreihen: 16. b,c,e,o), 16.3 a, b), 16.4 a) auch reelle Fourierreihe) Klausureinsicht zu Mathematik II 11.8. 017): 30.10.17, 7.00-8.30
Übungsblatt 3 Musterlösung
Numerik gewöhnlicher Differentialgleichungen MA4 - SS6 Übungsblatt Musterlösung Sei M,N N und f C M+N+ (B) eine komplexe Funktion, B eine kompakte Menge. Die Padé Approximation PN M (f)(x) ist die rationale
Numerische Integration
Heinrich Voss [email protected] Hamburg University of Technology Institute for Numerical Simulation TUHH Heinrich Voss Kapitel 3 2010 1 / 87 In vielen Fällen ist es nicht möglich, ein gegebenes Integral
Fourierreihen. Definition. Eine Funktion f(x) heißt periodisch mit der Periode T, wenn f(x + T ) = f(x)
Fourierreihen Einer auf dem Intervall [, ] definierten Funtion f(x) ann ein (approximierendes) trigonometrisches Polynom (Fourier-Polynom) der Gestalt S n (x) = a + n a cos x + n b sin x zugeordnet werden.
cos(kx) sin(nx)dx =?
3.5 Fourierreihen 3.5.1 Vorbemerkungen cos(kx) sin(nx)dx =? cos gerade Funktion x cos(kx) gerade Funktion sin ungerade Funktion x sin(nx) ungerade Funktion x cos(kx) sin(nx) ungerade Funktion Weil [, π]
2. Gauß-Integration. Prof. Dr. Wandinger 4. Scheibenelemente FEM 4.2-1
Die analytische Integration der Steifigkeitsmatrix für das Rechteckelement ist recht mühsam. Für Polynome gibt es eine einfachere Methode zur Berechnung von Integralen, ohne dass die Stammfunktion benötigt
VIII. Fourier - Reihen
VIII. Fourier - Reihen Dieses Kapitel enthält eine kurze Einführung in die mathematische Beschreibung von Schwingungen. Übersicht über den Inhalt von Kapitel VIII: 5. Der Satz von Fejér 53. Die Parsevalsche
Institut für Geometrie und Praktische Mathematik
RWTH Aachen Verständnisfragen-Teil Institut für Geometrie und Praktische Mathematik (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben).
Orthogonalität von Kosinus und Sinus
Orthogonalität von Kosinus und Sinus Die Funktionen 1, cos(kx), sin(kx), k >, bilden ein Orthogonalsystem im Raum der quadratintegrierbaren π-periodischen Funktionen: cos(jx) cos(kx) dx = cos(jx) sin(lx)
1. Aufgabe 8 Punkte. f (x) = (x 2 + 1) e x2. Es gilt. f (x) = 2xe x2 + ( x ) e x2 ( 2x) = 2x 3 e x2.
1. Aufgabe 8 Punkte Geben Sie die Bereiche, auf denen die Funktion f : R R mit f (x) = (x + 1) e x monoton wachsend oder fallend ist, an, und untersuchen Sie die Funktion auf lokale und globale Extrema.
VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b.
NumaMB F14 Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Bewertung: Vier Fragen richtig beantwortet
Institut für Geometrie und Praktische Mathematik
RWTH Aachen IGPM RWTH Aachen Institut für Geometrie und Praktische Mathematik Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen
PRÜFUNG AUS MATHEMATIK 3
(8 P.) Berechnen Sie das Integral tan(ln x) dx. x (8 P.) Bestimmen Sie die allgemeine Lösung der Differentialgleichung y 2y + 2y = x 2 + 5 cos x. (8 P.) Entwickeln Sie f(x) = sin(x) für x [ π/2, π/2] mit
KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2.
MATHEMATISCHES INSTITUT PROF. DR. ACHIM SCHÄDLE 9.8.7 KLAUSUR zur Numerik I mit Lösungen Aufgabe : ( Punkte) [ wahr falsch ]. Die maximale Ordnung einer s-stufigen Quadraturformel ist s. [ ]. Der Clenshaw
Modulprüfung Numerische Mathematik 1
Prof. Dr. Klaus Höllig 18. März 2011 Modulprüfung Numerische Mathematik 1 Lösungen Aufgabe 1 Geben Sie (ohne Beweis an, welche der folgenden Aussagen richtig und welche falsch sind. 1. Die Trapezregel
Numerische Integration
Numerische Integration Fakultät Grundlagen Januar 0 Fakultät Grundlagen Numerische Integration Übersicht Grundsätzliches Grundsätzliches Trapezregel Simpsonformel 3 Fakultät Grundlagen Numerische Integration
3.5 Schnelle Fouriertransformation (FFT, DFT)
3.5 Schnelle Fouriertransformation (FFT, DFT) 3.5.1 Grundlagen Ein Polynom P = i a ix i C[x] vom Grad n ist eindeutig durch seine Koeffizienten a i bestimmt, d.h. man hat eine Bijektion {Polynome C[x]
Höhere Mathematik 3 Herbst 2014
IMNG, Fachbereich Mathematik Universität Stuttgart Prof. Dr. K. Höllig Höhere Mathematik 3 Herbst 214 Aufgabe 1 Entscheiden Sie, welche der folgenden Aussagen richtig und welche falsch sind. (i) rot(2
Übungen zur Ingenieur-Mathematik II SS 2017 Blatt Aufgabe 13: Betrachten Sie die Funktion. f(x) =
Übungen zur Ingenieur-Mathematik II SS 2017 Blatt 6 2.5.2017 Aufgabe 1: Betrachten Sie die Funktion Lösung: f(x) = 1, x [, 1]. 1 + 25x2 a) Bestimmen Sie die Interpolationspolynome vom Grad m p m (x) =
Topologie und Differentialrechnung mehrerer Veränderlicher, SS 2009 Modulprüfung/Abschlussklausur. Aufgabe Punkte
Universität München 22. Juli 29 Topologie und Differentialrechnung mehrerer Veränderlicher, SS 29 Modulprüfung/Abschlussklausur Name: Aufgabe 2 3 4 Punkte Gesamtpunktzahl: Gesamturteil: Schreiben Sie unbedingt
Klausur Numerische Mathematik (für Elektrotechniker), 24. Februar 2016
Verständnisfragen-Teil ( Punkte) Jeder der Verständnisfragenblöcke besteht aus Verständnisfragen. Werden alle Fragen in einem Verständnisfragenblock richtig beantwortet, so gibt es für diesen Block Punkte.
Approximation. E(N) N. Beachte: Der Wert für N = 32 ist vernachlässigt, da er in der Grössenordnung der Rechengenauigkeit liegt.
Approximation Ziel: Approximation der Funktion f(x) = x mit Polynomen (global und stückweise) Experiment: Abhängigkeit des Approximationsfehlers E(N) (in der Maximumnorm) von der Anzahl der Freiheitsgrade
Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018
(Analysis und lineare Algebra) im Sommersemester 2018 2. Juli 2018 1/1 Wir geben einige wesentliche Sätze über bestimmte Integrale an, deren Beweise man in den Standardlehrbüchern der Analysis findet.
Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler
Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler. (a) Bestimmen Sie die kartesische Form von Wintersemester 7/8 (..8) z = ( + i)( i) + ( + i). (b) Bestimmen Sie sämtliche komplexen Lösungen
5. Funktional-Gleichung der Zetafunktion
5. Funktional-Gleichung der Zetafunktion 5.. Satz (Poissonsche Summenformel. Sei f : R C eine stetig differenzierbare Funktion mit und sei f(x O( x und f (x O( x für x ˆf(t : f(xe πixt dx. die Fourier-Transformierte
Höhere Mathematik II. Variante A
Lehrstuhl II für Mathematik Prof Dr E Triesch Höhere Mathematik II SoSe 5 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite
VF-3: Gegeben seien die Daten f(x 0 ), f(x 1 ),..., f(x n ) mit x 0,..., x n paarweise verschiedenen und
IGPM RWTH Aachen Verständnisfragen-Teil NumaMB F10 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Aussagen Diese sind mit wahr bzw falsch zu kennzeichnen (hinschreiben) Es müssen alle Fragen mit wahr
1.1 Vorbemerkung: Konvergenz von Reihen. g = lim. n=0. n=0 a n sei konvergent und schreibt. a n = g. (2) n=0
1 Taylor-Entwicklung 1.1 Vorbemerkung: Konvergenz von Reihen Gegeben sei eine unendliche Folge a 0,a 1,a,... reeller Zahlen a n R. Hat der Grenzwert g = lim k a n (1) einen endlichen Wert g R, so sagt
Fourier-Reihen: Konvergenzsatz von Fejér & Weierstraßscher Approximationssatz
Seminar Analysis III Universität Dortmund / Fachbereich Mathematik Fourier-Reihen: Konvergenzsatz von Fejér & Weierstraßscher Approximationssatz Seminar vom.4.3 von Christian Gervens Christian Gervens:
Numerische Verfahren und Grundlagen der Analysis
Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 21 Quadraturverfahren R. Steuding
Karteikarten, Analysis 2, Sätze und Definitionen nach der Vorlesung von PD Hanke
Karteikarten, Analysis 2, Sätze und en nach der Vorlesung von PD Hanke Felix Müller, [email protected] Diese Karteikärtchen sollten alle en und Sätze der Vorlesung Analysis 2 bei Herrn PD Hanke
Mathematik für Sicherheitsingenieure II (MScS, MScQ)
Priv.-Doz. Dr. J. Ruppenthal Wuppertal,..28 Mathematik für Sicherheitsingenieure II (MScS, MScQ) Modulteil: Mathematik II Aufgabe. (6+7+7 Punkte) a) Bringen Sie folgende komplexe Zahlen in die Form x +
Musterlösungen zur Leistungsnachweisklausur vom Studiengang Informatik, Ingenieurinformatik, Lehramt
TU ILMENAU Institut für Mathematik Numerische Mathematik PD Dr. W. Neundorf Musterlösungen zur Leistungsnachweisklausur vom.0.006 Studiengang Informatik, Ingenieurinformatik, Lehramt 1. Lineare Algebra
Kapitel 4: Interpolation Sei U eine Klasse von einfach strukturierten Funktionen, z.b.
Kapitel 4: Interpolation Sei U eine Klasse von einfach strukturierten Funktionen, z.b. - Polynome, - rationale Funktionen, - trigonometrische Polynome, - Splines. Interpolationsproblem 4: Sei f : [a,b]
Substitution bei bestimmten Integralen. 1-E1 Ma 1 Lubov Vassilevskaya
Substitution bei bestimmten Integralen -E Ma Lubov Vassilevskaya -E Ma Lubov Vassilevskaya Substitution bei bestimmten Integralen: Lernziele Was wir wissen: Wann berechnet man Integrale mit Hilfe einer
Fourier-Reihen und Fourier-Transformation
Fourier-Reihen und Fourier-Transformation Matthias Dreÿdoppel, Martin Koch, Bernhard Kreft 25. Juli 23 Einleitung Im Folgenden sollen dir und die Fouriertransformation erläutert und mit Beispielen unterlegt
Westfälische Wilhelms-Universität Münster. Seminararbeit. Fourier-Reihen. vorgelegt von. Stefan Marczinzik
Westfälische Wilhelms-Universität Münster Seminararbeit Fourier-Reihen vorgelegt von Stefan Marczinzik Fachbereich Mathematik und Informatik Seminar: Integraltransformationen (WS /3) Seminarleiter: Prof.
Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min
Aufgabe 1 8 Punkte Es seien eine Kurve K R mit Parametrisierung C : [ π, π] R und ein Vektorfeld g : R R gegeben durch cos t 4y Ct :, gx, y : sin t 1 05 K 05 05 1 15 05 a 3 Punkte Berechnen Sie die Zirkulation
7. Die Funktionalgleichung der Zetafunktion
7. Die Funktionalgleichung der Zetafunktion 7.. Satz (Poissonsche Summenformel. Sei f : R C eine stetig differenzierbare Funktion mit und sei f(x = O( x und f (x = O( x für x ˆf(t := f(xe πixt dx. die
Übungsaufgaben zu den mathematischen Grundlagen von KM
TUM, Institut für Informatik WS 2003/2004 Prof Dr Thomas Huckle Andreas Krahnke, MSc Dipl-Inf Markus Pögl Übungsaufgaben zu den mathematischen Grundlagen von KM 1 Bestimmen Sie die Darstellung von 1 4
GMA. Grundlagen Mathematik und Analysis. Nullstellen und Fixpunkte Reelle Funktionen 3. Christian Cenker Gabriele Uchida
GMA Grundlagen Mathematik und Analysis Reelle Funktionen 3 Christian Cenker Gabriele Uchida Data Analytics and Computing Nullstellen cos log : 0, 0,? 1 Fixpunkte Beispiel 1 Beispiel 2 1 0 0 und 1 1sin,?
f(t) = a 2 + darstellen lasst Periodische Funktionen.
7. Fourier-Reihen Viele Prozesse der Ingenieur- und Naturwissenschaften verlaufen periodisch oder annahernd periodisch, wie die Schwingungen einer Saite, Spannungs- und Stromverlaufe in Wechselstromkreisen
Kapitel 4. Numerische Differentiation und Integration
Kapitel 4 Numerische Differentiation und Integration Prof. R. Leithner, E. Zander Einführung in numerische Methoden für Ingenieure 4/2 Integration und Differentiation Probleme bei der Integration und Differentiation
Institut für Geometrie und Praktische Mathematik
RWTH Aachen Institut für Geometrie und Praktische Mathematik Multiple-Choice-Test NumaMB F08 (30 Punkte) Bei jeder MC-Aufgabe ist mindestens eine Aussage korrekt. Wird dennoch bei einer MC-Aufgabe keine
Die Cesàro- und Abelsummation. Vortrag zum Seminar zur Fourieranalysis für Lehramtskandidaten WS 09/10, Christian Bohnen (273212)
Die Cesàro- und Abelsummation Vortrag zum Seminar zur Fourieranalysis für Lehramtskandidaten WS 09/0,.2.2009 Christian Bohnen (27322) Inhaltsverzeichnis Inhaltsverzeichnis Motivation 3 2 Grundlagen 3 3
Interpolation, numerische Integration
Interpolation, numerische Integration 8. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 8. Mai 2014 Gliederung 1 Interpolation polynomial Spline 2 Numerische
8. Spezielle Funktionen
H.J. Oberle Differentialgleichungen II SoSe 2013 8. Spezielle Funktionen Spezielle Funktionen (der mathematischen Physik) entstehen zumeist aus Separationsansätzen für PDG bei Vorliegen von Symmetrie-Eigenschaften.
Probeklausur Höhere Mathematik II für Elektrotechniker
I. Bouw.7.8 U. Hackstein Probeklausur Höhere Mathematik II für Elektrotechniker Es gibt 5 Punkte pro Teilaufgabe, also insgesamt 7 Punkte. Aufgabe. Skizzieren Sie folgenden Bereich: D = {(x, y) R x + y
Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016
Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 0 0090 Aufgabe Punkte: Betrachten Sie das lineare Gleichungssystem Ax = b mit A = 0 und b
Mathematik 2 (Master Sicherheitstechnik)
Priv.-Doz. Dr. J. Ruppenthal Wuppertal, 4.6.8 Mathematik Master Sicherheitstechnik) Übungsblatt 8 Aufgabe 5. Konvergenz von Fourierreihen) Der Sinus Hyperbolicus ist die Funktion sinhx) = e x e x). Es
Fourier-Reihen: Definitionen und Beispiele
Fourier-Reihen: Definitionen und Beispiele Die Fourieranalysis beschäftigt sich mit dem Problem Funktionen in Kosinus und Sinus zu entwickeln. Diese Darstellungen sind in der Mathematik sowie in der Physik
Serie 13: Online Test
D-ERDW, D-HEST, D-USYS Mathematik I HS 13 Dr. Ana Cannas Serie 13: Online Test Einsendeschluss: 31. Januar 214 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.
, r [0, 2], ϕ [0,π/2], ϑ [0,π/6]. x 3. x 2 2 x 2 1. F(x) = x 2 3
Prof. Dr. Eck Höhere Mathematik 3 9.3.9 Aufgabe ( Punkte) Gegeben ist der Körper K mit der Parametrisierung x r cos ϕ cos ϑ K : x = Φ(r,ϕ,ϑ) = r sin ϕ cos ϑ, r [, ], ϕ [,π/], ϑ [,π/6]. x 3 r sin ϑ a) Berechnen
Lösungsvorschläge zur Klausur
Prüfung in Höhere Mathematik 3 6 Februar 3 Lösungsvorschläge zur Klausur für bau, ernen, fmt, IuI, mach, tema, umw, verf, geod und so weiter ; Aufgabe : Punkte Die Fläche T im R 3 sei gegeben als T : {x,y,z
,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge
Heavisidefunktion σ (t), Diracimpuls δ (t),faltung Definition Heavisidefunktion, t > 0 σ ( t) = 0, t < 0 Anwendungen ) Rechteckimpuls, t < T r( t) = = σ ( t + T ) σ ( t T ) 0, t > T 2) Sprungfunktionen,
Diplom VP Numerik 21. März 2005
Diplom VP Numerik. März 5 Aufgabe Gegeben sei das lineare Gleichungssystem Ax = b mit A = 3 3 4 8 und b = 4 5.5 6. ( Punkte) a) Berechnen Sie die LR-Zerlegung von A mit Spaltenpivotisierung. Geben Sie
Numerische Analysis - Matlab-Blatt 5
Prof. Dr. Stefan Funken Universität Ulm M.Sc. Andreas Bantle Institut für Numerische Mathematik Dipl.-Math. oec. Klaus Stolle Sommersemester 05 Numerische Analysis - Matlab-Blatt 5 Lösung (Besprechung
D-ITET, D-MATL Numerische Methoden FS 2018 Dr. R. Käppeli P. Bansal. Lösung 3. j j + 1 P j 1(x), j 1. 2(1 x 2 k ) 2. ((j + 1)P j (x k ))
D-ITET, D-MATL umerische Methoden FS 2018 Dr. R. Käppeli P. Bansal Lösung 3 1. 3-Punkte Gauss Quadraturregel a) Um das Polynom P 3 (x) zu berechnen, benutzen wir die Formel P j+1 (x) 2j + 1 j + 1 xp j(x)
