Algorithmen I - Tutorium 28 Nr. 2
|
|
|
- Catrin Schubert
- vor 6 Jahren
- Abrufe
Transkript
1 Algorithmen I - Tutorium 28 Nr : Spaß mit Invarianten (die Zweite), Rekurrenzen / Mastertheorem und Merging Marc Leinweber [email protected] INSTITUT FÜR THEORETISCHE INFORMATIK (ITI), PROF. DR. JÖRN MÜLLER-QUADE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft
2 Agenda 1 Übungsblatt 1 Statistik Aufgabe 1c) Aufgabe 2 Aufgabe 3 2 Invarianten (Wdh.) 3 Rekurrenzen 4 Mastertheorem Definition Aufgaben 5 Merging 6 Ende Marc Leinweber Algorithmen I - Tutorium 28 Nr /21
3 Statistik Abgaben: 14 in 9 Teams. Höchstpunktzahl: 15. Schnitt: 13, 5. Marc Leinweber Algorithmen I - Tutorium 28 Nr /21
4 Aufgabe 1c) Aufgabe Gilt folgende Implikation? Lösung f, g : N N : f (n) o(g(n)) log(f (n)) o(log(g(n))). Nein: f (n) = n, g(n) = n 2. Dann f (n) o(g(n)) aber lim n log(n) log(n 2 ) = lim n log(n) 2log(n) = Marc Leinweber Algorithmen I - Tutorium 28 Nr /21
5 Aufgabe 2 Function f(n : N; m : N) : (N, N) a = 0 : N; b = m : N c = 1 : N Aufgabe while m cn 0 do invariant m = an + b a := c c := c + 1 b := m an return (a, b) Laufzeit und Schleifeninvariante? O(m) im Worst Case wenn n = 1 und. Marc Leinweber Algorithmen I - Tutorium 28 Nr /21
6 Aufgabe 3 Aufgabe Gegeben sei ein Array M (mit Elementen aus N) der Länge n. Berechne in O(n) die zwei Indizes 0 i, j < n sodass M[i] = max(m) und M[j] = max(m\m[i]). Lösung Function findmaximumpair(a : Array [0..n 1] of N) : (N, N) a = 0 : N; b = 0 : N for i [0..n 1] do if M[i] M[a] then b := a; a := i return (a, b) Marc Leinweber Algorithmen I - Tutorium 28 Nr /21
7 Schleifeninvarianten - power() Function power(a : R; n 0 : N) : R p = a : R; r = 1 : R; n = n 0 : N while n > 0 do if n is odd then n ; r = r p; else n = n 2 ; p = p p; return r Marc Leinweber Algorithmen I - Tutorium 28 Nr /21
8 Schleifeninvarianten - power() (Forts.) Function power(a : R; n 0 : N) : R p = a : R; r = 1 : R; n = n 0 : N while n > 0 do invariant p n r = a n 0 if n is odd then n ; r = r p; else n = n 2 ; p = p p; return r Marc Leinweber Algorithmen I - Tutorium 28 Nr /21
9 Rekurrenzen Oder wenn mathematische Funktionen auf sich selbst verweisen. Aufgabe Zeige mittels Induktion, dass für { 2 falls n = 1 T (n) = 2T ( n ) + 2 n2 falls n 2 die Ungleichung T (n) 2n 2 gilt. Dabei sei n = 2 k für k N. Marc Leinweber Algorithmen I - Tutorium 28 Nr /21
10 Rekurrenzen (Forts.) Oder wenn mathematische Funktionen auf sich selbst verweisen. Lösung Induktionsanfang: n = 1, T (1) = = 2. Induktionsvoraussetzung: T (n) 2n 2. Induktionsschritt: n 2n : T (2n) = 2T ( 2n ) + 2 (2n)2 = 2T (n) + (2n) 2 4n 2 + 4n 2 = 8n 2 = 2(2n) 2 IV Marc Leinweber Algorithmen I - Tutorium 28 Nr /21
11 Mastertheorem Das Mastertheorem. Oder: Rekurrenzen lösen leicht gemacht (hier in seiner einfachen Form) für typische Teile- und Herrsche -Algorithmen). Satz (Theorem 2.5) Für a, b, c, d N sei n = b k (k N). Dann { a n = 1 r(n) = cn + dr( n) b sonst Dann Θ(n) d < b r(n) Θ(nlog(n)) d = b Θ(n logb(d) ) d > b. Marc Leinweber Algorithmen I - Tutorium 28 Nr /21
12 Aufgabe 1 Bestimme mit Hilfe des Master-Theorems eine scharfe asymptotische Schranke! A(1) := 1, n = 2 k, k N : A(n) = A( n 2 ) + ĉn Lösung: a = 1, b = 2, c = ĉ, d = 1 d<b Θ(n) Marc Leinweber Algorithmen I - Tutorium 28 Nr /21
13 Aufgabe 2 Bestimme mit Hilfe des Master-Theorems eine scharfe asymptotische Schranke! B(1) := 1, n = 3 k, k N : B(n) = 4B( n 3 ) + 4n Lösung: a = 1, b = 3, c = 4, d = 4 d>b Θ(n log 3(4) ) = Θ(n 1.26 ) Marc Leinweber Algorithmen I - Tutorium 28 Nr /21
14 Aufgabe 3 Bestimme mit Hilfe des Master-Theorems eine scharfe asymptotische Schranke! C(1) := 1, n = 6 k, k N : C(n) = 3C( n 6 ) + n + 7 Lösung: Das Mastertheorem ist nicht ohne weiteres zu verwenden. Schätze ab: n 1 : n n + 7 8n. Definiere: C (n) := 3C( n) + 6 n und C (n) := 3C( n) + 6 8n. Es gilt C (n) C(n) C (n) und a = 1, b = 6, d = 3. Für c = 1 (von C ) d<b C (n) = Θ(n) C(n) = Ω(n). Für c = 8 (von C ) d<b C (n) = Θ(n) C(n) = O(n). C(n) = Θ(n). Marc Leinweber Algorithmen I - Tutorium 28 Nr /21
15 Das Merging-Problem Wie erhalte ich aus zwei sortierten Arrays ein sortieres Array? Marc Leinweber Algorithmen I - Tutorium 28 Nr /21
16 Der merge-algorithmus procedure merge(a : Array [1..n 1 ] of N 0, B : Array [1..n 2 ] of N 0 ) assert A, B sortiert A[n 1 + 1] :=, B[n 2 + 1] := n = n 1 + n 2 : N 0 C : Array [1..n] of N 0 j A = 1 : N 0, j B = 1 : N 0 for i := 1 to n do C[i] = min(a[j A ], B[j B ]) if A[j A ] < B[j B ] then j A = j A + 1 else j B = j B + 1 return C Marc Leinweber Algorithmen I - Tutorium 28 Nr /21
17 Der merge-algorithmus: Laufzeit procedure merge(a : Array [1..n 1 ] of N 0, B : Array [1..n 2 ] of N 0 ) assert A, B sortiert A[n 1 + 1] :=, B[n 2 + 1] := // O(1) n = n 1 + n 2 : N 0 // O(1) C : Array [1..n] of N 0 // O(1) j A = 1 : N 0, j B = 1 : N 0 // O(1) for i := 1 to n do // O(n) C[i] = min(a[j A ], B[j B ]) // O(1) if A[j A ] < B[j B ] then j A = j A + 1 // O(1) else j B = j B + 1 // O(1) return C Laufzeit? Welche Laufzeit hat obiger Algorithmus? Θ(n)! Marc Leinweber Algorithmen I - Tutorium 28 Nr /21
18 Der merge-algorithmus: Korrektheit procedure merge(a : Array [1..n 1 ] of N 0, B : Array [1..n 2 ] of N 0 ) assert A, B sortiert A[n 1 + 1] :=, B[n 2 + 1] := n = n 1 + n 2 : N 0 C : Array [1..n] of N 0 j A = 1 : N 0, j B = 1 : N 0 for i := 1 to n do C[i] = min(a[j A ], B[j B ]) if A[j A ] < B[j B ] then j A = j A + 1 else j B = j B + 1 return C Korrektheit? Welche Invarianten zeigen die Korrektheit des obigen Algorithmus? Marc Leinweber Algorithmen I - Tutorium 28 Nr /21
19 Der merge-algorithmus: Korrektheit (Forts.) Korrektheit? Welche Invarianten zeigen die Korrektheit des obigen Algorithmus? Invariante I am Ende der for-schleife: C[1..i] enthält genau A[1..j A 1], B[1..j B 1] Invariante II am Ende der for-schleife: B[k] < A[j A ], k [1, j B 1], A[l] < B[j B ], l [1, j A 1] Invariante III am Ende der for-schleife: C[1..i] ist sortiert Marc Leinweber Algorithmen I - Tutorium 28 Nr /21
20 Was haben wir heute gemacht? Invarianten Rekurrenzen Mastertheorem Merging Marc Leinweber Algorithmen I - Tutorium 28 Nr /21
21 Wahre Helden Viel Erfolg und ein schönes Wochenende! Marc Leinweber Algorithmen I - Tutorium 28 Nr /21
1. Übung Algorithmen I
Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der
Übung Algorithmen und Datenstrukturen
Übung Algorithmen und Datenstrukturen Sommersemester 2016 Patrick Schäfer, Humboldt-Universität zu Berlin Organisation Vorlesung: Montag 11 13 Uhr Marius Kloft RUD 26, 0 115 Mittwoch 11 13 Uhr Marius Kloft
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Große Übung #6 Phillip Keldenich, Arne Schmidt 26.02.2017 Heute: Master-Theorem Phillip Keldenich, Arne Schmidt Große Übung 2 Vorbetrachtungen Wir betrachten rekursive Gleichungen
Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g:
TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 2 Prof. Dr. Helmut Seidl, S. Pott,
Algorithmen I - Tutorium 28 Nr. 12
Algorithmen I - Tutorium 28 Nr. 12 20.07.2017: Spaß mit Dynamischer und Linearer Programmierung Marc Leinweber [email protected] INSTITUT FÜR THEORETISCHE INFORMATIK (ITI), PROF. DR. JÖRN
Algorithmen und Datenstrukturen
1 Algorithmen und Datenstrukturen Wintersemester 2014/15 3. Vorlesung Laufzeitanalyse Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Recap: Diskutieren Sie mit Ihrer NachbarIn! 1. 2. 3. Was sind
f 1 (n) = log(n) + n 2 n 5 f 2 (n) = n 3 + n 2 f 3 (n) = log(n 2 ) f 4 (n) = n n f 5 (n) = (log(n)) 2
Prof. aa Dr. E. Ábrahám Datenstrukturen und Algorithmen SS Lösung - Präsenzübung.05.0 F. Corzilius, S. Schupp, T. Ströder Aufgabe (Asymptotische Komplexität): (6 + 0 + 6 = Punkte) a) Geben Sie eine formale
Sortieren & Co. KIT Institut für Theoretische Informatik
Sortieren & Co KIT Institut für Theoretische Informatik 1 Formaler Gegeben: Elementfolge s = e 1,...,e n Gesucht: s = e 1,...,e n mit s ist Permutation von s e e 1 n für eine Totalordnung ` ' KIT Institut
Übung Algorithmen und Datenstrukturen
Übung Algorithmen und Datenstrukturen Sommersemester 017 Marc Bux, Humboldt-Universität zu Berlin Agenda 1. Vorrechnen von Aufgabenblatt 1. Wohlgeformte Klammerausdrücke 3. Teile und Herrsche Agenda 1.
Algorithmen und Datenstrukturen
Universität Innsbruck Institut für Informatik Zweite Prüfung 16. Oktober 2008 Algorithmen und Datenstrukturen Name: Matrikelnr: Die Prüfung besteht aus 8 Aufgaben. Die verfügbaren Punkte für jede Aufgabe
3. Suchen. Das Suchproblem. Suche in Array. Lineare Suche. 1 n. i = n Gegeben Menge von Datensätzen.
Das Suchproblem Gegeben Menge von Datensätzen. 3. Suchen Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle Jeder Datensatz hat einen Schlüssel k. Schlüssel sind vergleichbar: eindeutige Antwort auf
Vorlesung Datenstrukturen
Vorlesung Datenstrukturen Weitere Grundlagen Maike Buchin 20.4.2017 Wiederholung wir interessieren uns für effizienten Algorithmen und Datenstrukturen Laufzeiten messen wir asymptotisch in der Oh-Notation
Das Suchproblem. Gegeben Menge von Datensätzen. Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle
122 4. Suchen Lineare Suche, Binäre Suche, Interpolationssuche, Untere Schranken [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.1-3,2.2-3,2.3-5] 123 Das Suchproblem Gegeben Menge von Datensätzen.
Das Suchproblem 4. Suchen Das Auswahlproblem Suche in Array
Das Suchproblem Gegeben. Suchen Lineare Suche, Binäre Suche, Interpolationssuche, Untere Schranken [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.-3,2.2-3,2.3-] Menge von Datensätzen. Beispiele
Grundlagen: Algorithmen und Datenstrukturen
Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Dr. Hanjo Täubig Tobias Lieber Sommersemester 2011 Übungsblatt 1 16. September 2011 Grundlagen: Algorithmen und
5. Übungsblatt zu Algorithmen I im SoSe 2016
Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Dennis Hofheinz Lukas Barth, Lisa Kohl 5. Übungsblatt zu Algorithmen I im SoSe 2016 https://crypto.iti.kit.edu/index.php?id=algo-sose16
9. Rekursion. 1 falls n 1 n (n 1)!, andernfalls. Experiment: Die Türme von Hanoi. Links Mitte Rechts. Mathematische Rekursion
Experiment: Die Türme von Hanoi. Rekursion Mathematische Rekursion, Terminierung, der Aufrufstapel, Beispiele, Rekursion vs. Iteration Links Mitte Rechts Mathematische Rekursion Viele mathematische Funktionen
Übung Algorithmen und Datenstrukturen
Übung Algorithmen und Datenstrukturen Sommersemester 2016 Marc Bux, Humboldt-Universität zu Berlin Organisation Vorlesung: Montag 11 13 Uhr Marius Kloft RUD 26, 0 115 Mittwoch 11 13 Uhr Marius Kloft RUD
Das Suchproblem. Gegeben Menge von Datensätzen. Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle
119 4. Suchen Lineare Suche, Binäre Suche, Interpolationssuche, Exponentielle Suche, Untere Schranken [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.1-3,2.2-3,2.3-5] 120 Das Suchproblem Gegeben
Das Suchproblem 4. Suchen Das Auswahlproblem Suche in Array
Das Suchproblem Gegeben. Suchen Lineare Suche, Binäre Suche, Interpolationssuche, Exponentielle Suche, Untere Schranken [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.-3,2.2-3,2.3-] Menge
Kapitel 2. Weitere Beispiele Effizienter Algorithmen
Kapitel 2 Weitere Beispiele Effizienter Algorithmen Sequentielle Suche Gegeben: Array a[1..n] Suche in a nach Element x Ohne weitere Zusatzinformationen: Sequentielle Suche a[1] a[2] a[3] Laufzeit: n Schritte
Präsenzübung Datenstrukturen und Algorithmen SS 2014
Prof. aa Dr. E. Ábrahám F. Corzilius, S. Schupp, T. Ströder Präsenzübung Datenstrukturen und Algorithmen SS 2014 Vorname: Nachname: Studiengang (bitte genau einen markieren): Informatik Bachelor Informatik
14. Sortieren II Heapsort. Heapsort. [Max-]Heap 7. Heapsort, Quicksort, Mergesort. Binärer Baum mit folgenden Eigenschaften
Heapsort, Quicksort, Mergesort 14. Sortieren II 14.1 Heapsort [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6] 397 398 Heapsort [Max-]Heap 7 Inspiration von Selectsort: Schnelles Einfügen Binärer Baum
Algorithmen II Vorlesung am
Algorithmen II Vorlesung am 07..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum
2. Grundlagen. Beschreibung von Algorithmen durch Pseudocode. Korrektheit von Algorithmen durch Invarianten.
2. Grundlagen Beschreibung von Algorithmen durch Pseudocode. Korrektheit von Algorithmen durch Invarianten. Laufzeitverhalten beschreiben durch O-Notation. 1 Beispiel Minimum-Suche Eingabe bei Minimum
8. Sortieren II. 8.1 Heapsort. Heapsort. [Max-]Heap 6. Heapsort, Quicksort, Mergesort. Binärer Baum mit folgenden Eigenschaften
Heapsort, Quicksort, Mergesort 8. Sortieren II 8.1 Heapsort [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6] 9 210 Heapsort [Max-]Heap 6 Inspiration von Selectsort: Schnelles Einfügen Binärer Baum mit
Heapsort, Quicksort, Mergesort. 8. Sortieren II
209 Heapsort, Quicksort, Mergesort 8. Sortieren II 210 8.1 Heapsort [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6] 211 Heapsort Inspiration von Selectsort: Schnelles Einfügen Inspiration von Insertionsort:
Aufgabe 8. 1 Arbeitsweise illustrieren. 2 Korrektheitsbeweis führen. 3 Laufzeitanalyse durchführen.
Aufgabe 8 Betrachten Sie den folgenden Algorithmus namens Bubble-Sort. Bubble-Sort(A[1..n]): 1 for i 1 to length(a) 1 2 do for j length(a) downto i + 1 3 do if A[j 1] > A[j] 4 then A[j 1] A[j] 1 Arbeitsweise
Ordnen Sie die folgenden Funktionen nach ihrer asymptotischer Komplexität in aufsteigender Reihenfolge: i=1 4i + n = 4 n. i=1 i + 3n = 4 ( n(n+1)
für Informatik Prof. aa Dr. Ir. Joost-Pieter Katoen Tutoriumslösung - Übung (Abgabe 9.04.05) Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder Tutoraufgabe (Asymptotische Komplexität):
Algorithmen und Datenstrukturen Kapitel 2: Korrektheit von Algorithmen und Laufzeitanalyse rekursiver Algorithmen (mittels Rekurrenzgleichungen)
Algorithmen und Datenstrukturen Kapitel 2: und Laufzeitanalyse rekursiver Algorithmen (mittels Rekurrenzgleichungen) Frank Heitmann [email protected] 21. Oktober 2015 Frank Heitmann [email protected]
Übung Algorithmen I
Übung Algorithmen I 20.5.15 Christoph Striecks [email protected] (Mit Folien von Julian Arz, Timo Bingmann und Sebastian Schlag.) Roadmap Organisation Mergesort, Quicksort Dual Pivot Quicksort
Datenstrukturen. Mariano Zelke. Sommersemester 2012
Datenstrukturen Mariano Zelke Sommersemester 2012 Mariano Zelke Datenstrukturen 2/19 Das Teilfolgenproblem: Algorithmus A 3 A 3 (i, j bestimmt den Wert einer maximalen Teilfolge für a i,..., a j. (1 Wenn
Übung zu Algorithmen und Datenstrukturen (für ET/IT)
Übung zu Algorithmen und Datenstrukturen (für ET/IT) Wintersemester 2012/13 Jakob Vogel Computer-Aided Medical Procedures Technische Universität München Komplexität von Programmen Laufzeit kann näherungsweise
Kapitel 5: Paradigmen des Algorithmenentwurfs. Gliederung
Gliederung 1. Grundlagen 2. Analyse der Laufzeit von Algorithmen 3. Untere Schranken für algorithmische Probleme 4. Sortier- und Selektionsverfahren 5. Paradigmen des Algorithmenentwurfs 6. Ausgewählte
Heapsort. 1. Erstelle aus dem gegebenen Array einen Max-Heap (DownHeap) 2. Tausche erstes und letztes Element des Arrays
Heapsort Beispiel für einen eleganten Algorithmus, der auf einer effizienten Datenstruktur (dem Heap) beruht [Williams, 1964] Daten liegen in einem Array der Länge n vor 1. Erstelle aus dem gegebenen Array
Übung zur Vorlesung Diskrete Strukturen I
Technische Universität München WS 00/0 Institut für Informatik Aufgabenblatt 10 Prof. Dr. J. Csirik 7. Januar 00 randt & Stein Übung zur Vorlesung Diskrete Strukturen I Abgabetermin: Tutorübungen am 16.
2. Übung Algorithmen I
1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Amortisierte Analyse Beispiel Binärzähler
2. Algorithmische Methoden 2.1 Rekursion. 18. April 2017
2. Algorithmische Methoden 2.1 Rekursion 18. April 2017 Rekursiver Algorithmus Ein rekursiver Algorithmus löst ein Problem, indem er eine oder mehrere kleinere Instanzen des gleichen Problems löst. Beispiel
Algorithmen und Datenstrukturen Tutorium I
Algorithmen und Datenstrukturen Tutorium I 20. - 25. 04. 2016 AlgoDat - Tutorium I 1 1 Organisatorisches Kontakt 2 Landau-Notation Definiton von O Logarithmen Gesetze & Ableitung Satz von l Hôpital 3 Algorithmen
Übungsblatt 4. Aufgabe 1. IN8009 Algorithmen und Datenstrukturen Thomas Stibor
Aufgabe 1 Zeigen Sie 2n 2 = O(n 3 ), n = Ω(lgn), n 2 /2 2n = Θ(n 2 ). Übungsblatt 4 Zu zeigen: 2n 2 = O(n 3 ). O(g(n)) = {f(n) : es existieren positive Konstanten c und n 0, sodass 0 f(n) cg(n) für alle
INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS
Julian Arz, Timo Bingmann, Sebastian Schlag INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Julian Universität Arz, des Timo LandesBingmann, Baden-Württemberg Sebastian und Schlag nationales
Ordnen Sie die folgenden Funktionen nach ihrer asymptotischer Komplexität in aufsteigender Reihenfolge: i=1 4i + n = 4 n. i=1 i + 3n = 4 ( n(n+1)
für Informatik Prof. aa Dr. Ir. Joost-Pieter Katoen Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder Tutoraufgabe (Asymptotische Komplexität): Ordnen Sie die folgenden Funktionen nach
Algorithmische Methoden zur Netzwerkanalyse
Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Die Forschungsuniversität Meyerhenke, in der Institut für Theoretische Informatik
Übung Algorithmen und Datenstrukturen
Übung Algorithmen und Datenstrukturen Sommersemester 2017 Patrick Schäfer, Humboldt-Universität zu Berlin Agenda: Sortierverfahren 1. Schreibtischtest 2. Stabilität 3. Sortierung spezieller Arrays 4. Untere
Klausur Algorithmen und Datenstrukturen
Technische Universität Braunschweig Wintersemester 2017/2018 Institut für Betriebssysteme und Rechnerverbund Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Christian Rieck Arne Schmidt Klausur Algorithmen
Übung zur Vorlesung Berechenbarkeit und Komplexität
RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Übungsblatt 7 26.11.2012 Übung zur Vorlesung Berechenbarkeit und Komplexität Aufgabe T15 Entwickeln Sie ein
Programmieren und Problemlösen
Dennis Komm Programmieren und Problemlösen Komplexität von Algorithmen Frühling 2019 27. Februar 2019 Komplexität von Algorithmen Aufgabe Primzahltest Schreibe ein Programm, das eine ganze Zahl x als Eingabe
Klausur Algorithmen und Datenstrukturen
Technische Universität Braunschweig Wintersemester 2013/2014 Institut für Betriebssysteme und Rechnerverbund Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Stephan Friedrichs Klausur Algorithmen und
1. Musterlösung. Problem 1: Average-case-Laufzeit vs. Worst-case-Laufzeit ** i=1
Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 05/06 ITI Wagner. Musterlösung Problem : Average-case-Laufzeit vs. Worst-case-Laufzeit ** (a) Im schlimmsten Fall werden für jedes Element
Übung Algorithmen und Datenstrukturen
Übung Algorithmen und Datenstrukturen Sommersemester 2017 Marc Bux, Humboldt-Universität zu Berlin Agenda 1. (Sortierte) Listen 2. Stacks & Queues 3. Datenstrukturen 4. Rekursion und vollständige Induktion
Algorithm Engineering was hat das mit der Praxis zu tun?
Algorithm Engineering was hat das mit der Praxis zu tun? design analyze Algorithmics implement experiment 33 Algorithmentheorie (Karikatur) models design Theory Practice analysis perf. guarantees deduction
9. Übung Algorithmen I
INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Musterlösung
2. Effizienz von Algorithmen
Effizienz von Algorithmen 2. Effizienz von Algorithmen Effizienz von Algorithmen, Random Access Machine Modell, Funktionenwachstum, Asymptotik [Cormen et al, Kap. 2.2,3,4.2-4.4 Ottman/Widmayer, Kap. 1.1]
Abgabe: (vor der Vorlesung) Aufgabe 3.1 (P) Master-Theorem
TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 3 Prof. Dr. Helmut Seidl, S. Pott,
Schleifeninvarianten. Dezimal zu Binär
Schleifeninvarianten Mit vollstandiger Induktion lasst sich auch die Korrektheit von Algorithmen nachweisen. Will man die Werte verfolgen, die die Variablen beim Ablauf eines Algorithmus annehmen, dann
4. Sortieren 4.1 Vorbemerkungen
. Seite 1/21 4. Sortieren 4.1 Vorbemerkungen allgemeines Sortierproblem spezielle Sortierprobleme Ordne a 1,..., a n so um, dass Elemente in aufsteigender Reihenfolge stehen. Die a i stammen aus vollständig
10. Übung Algorithmen I
INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Bäume
Übungsklausur Algorithmen I
Jun.-Prof. Hofheinz, Jun.-Prof. Meyerhenke (ITI, KIT) 08.06.2015 Übungsklausur Algorithmen I Aufgabe 1. (Algorithm Engineering) Nennen Sie zwei Konzepte, die Algorithm Engineering im Gegensatz zu theoretischer
Vorlesung Datenstrukturen
Vorlesung Datenstrukturen Sortieren fortgesetzt Maike Buchin 16.5.2017 5.6 Brechen der Unteren Schranke nur Vergleichen erlauben keine Algorithmen mit Laufzeit schneller als O(n log n) stattdessen: Struktur
3.3 Laufzeit von Programmen
3.3 Laufzeit von Programmen Die Laufzeit eines Programmes T(n) messen wir als die Zahl der Befehle, die für die Eingabe n abgearbeitet werden Betrachten wir unser Programm zur Berechnung von Zweierpotenzen,
Suchen und Sortieren Sortieren. Mergesort
Suchen und Mergesort (Folie 142, Seite 55 im Skript) Algorithmus procedure mergesort(l, r) : if l r then return fi; m := (r + l)/2 ; mergesort(l, m 1); mergesort(m, r); i := l; j := m; k := l; while k
Klausur Algorithmen und Datenstrukturen
Technische Universität Braunschweig Wintersemester 2014/2015 Institut für Betriebssysteme und Rechnerverbund Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Dr. Christian Scheffer Klausur Algorithmen
Algorithmen und Datenstrukturen Wintersemester 2004/ November T(n) = T(n a) + T(a) + n
Lehrstuhl für Praktische Informatik III Norman May B6, 29, Raum C0.05 68131 Mannheim Telefon: (0621) 181 2517 Email: [email protected] Matthias Brantner B6, 29, Raum C0.05 68131 Mannheim
Übungsklausur Algorithmen I
Name: Vorname: Matrikelnr.: Tutorium: Jun.-Prof. Hofheinz, Jun.-Prof. Meyerhenke (ITI, KIT) 08.06.2015 Übungsklausur Algorithmen I Aufgabe 1. (Algorithm Engineering) [2 Punkte] Nennen Sie zwei Konzepte,
Grundlagen: Algorithmen und Datenstrukturen
Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2010
3. Übungsblatt zu Algorithmen I im SoSe 2017
Karlsruher Institut für Technologie Prof. Dr. Jörn Müller-Quade Institut für Theoretische Informatik Björn Kaidel, Sebastian Schlag, Sascha Witt 3. Übungsblatt zu Algorithmen I im SoSe 2017 http://crypto.iti.kit.edu/index.php?id=799
Grundlagen: Algorithmen und Datenstrukturen
Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Dr. Hanjo Täubig Jeremias Weihmann Sommersemester 2014 Übungsblatt 2 28. April 2014 Grundlagen: Algorithmen und
Algorithmen II Vorlesung am
Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum
Grundzüge von Algorithmen und Datenstrukturen, WS 15/16: Lösungshinweise zum 13. Übungsblatt
U N S A R I V E R S A V I E I T A S N I S S Grundzüge von Algorithmen und Datenstrukturen, WS /6: Lösungshinweise zum 3. Übungsblatt Christian Hoffmann, Fabian Bendun Aufgabe 3. (a) Sei j i + = n die Größe
Vorlesung Datenstrukturen
Vorlesung Datenstrukturen Einleitung und Grundlagen Maike Buchin 18.4.2017 Verantwortliche Dozentin Organisation der Übungen Übungsleiter Korrekteure Maike Buchin [email protected] Raum NA 1/70 Sprechzeiten:
Übungen zu Algorithmentechnik WS 09/10
Übungen zu Algorithmentechnik WS 09/10 1. Kurzsitzung Thomas Pajor 22. Oktober 2009 1/ 25 Eure Übungsleiter Tanja Hartmann [email protected] Raum 306, Gebäude 50.34 Thomas Pajor [email protected] Raum 322,
6 Quicksort. die mittlere Laufzeit Θ(n log n) beträgt und. die in der asymptotischen Notation verborgenen Konstanten sehr klein sind.
Algorithmen und Datenstrukturen 132 6 Quicksort In diesem Abschnitt wird Quicksort, ein weiterer Sortieralgorithmus, vorgestellt. Trotz einer eher langsamen Worst-Case Laufzeit von Θ(n 2 ) ist Quicksort
Karlsruher Institut für Technologie Institut für Theoretische Informatik. Übungsklausur Algorithmen I
Vorname: Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Jörn Müller-Quade 21.06.2017 Übungsklausur Algorithmen I Aufgabe 1. Kleinaufgaben 8 Punkte Aufgabe 2. Hashing 6 Punkte
Informatik II. Vorlesung am D-BAUG der ETH Zürich. Felix Friedrich & Hermann Lehner FS 2018
1 Informatik II Vorlesung am D-BAUG der ETH Zürich Felix Friedrich & Hermann Lehner FS 2018 23 1. Einführung Algorithmen und Datenstrukturen, erstes Beispiel 24 Ziele der Vorlesung Verständnis des Entwurfs
