Algorithmen II Vorlesung am

Größe: px
Ab Seite anzeigen:

Download "Algorithmen II Vorlesung am"

Transkript

1 Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum II Wintersemester 0/0 in der Helmholtz-Gemeinschaft

2 Schnitte minimalen Gewichts: MinCut Algorithmen II Wintersemester 0/0

3 Problem MINCUT Problem: MINCUT Gegeben sei ein Graph G = (V, E) mit Kantengewichtsfunktion c : E R + 0. Finde einen nichttrivialen Schnitt (S, V \ S) minimalen Gewichts in G, d.h. finde S V mit S V, sodass c(s, V \ S) := c({u, v}) {u, v} E, u S, v V \ S minimal wird. (S, V\S) wird minimaler Schnitt genannt Algorithmen II Wintersemester 0/0

4 Problem MINCUT Problem: MINCUT Gegeben sei ein Graph G = (V, E) mit Kantengewichtsfunktion c : E R + 0. Finde einen nichttrivialen Schnitt (S, V \ S) minimalen Gewichts in G, d.h. finde S V mit S V, sodass c(s, V \ S) := c({u, v}) {u, v} E, u S, v V \ S minimal wird. (S, V\S) wird minimaler Schnitt genannt. S V \ S c(s, V \ S) = Algorithmen II Wintersemester 0/0

5 Schnittberechnung mittels Flussalgorithmus Bemerkung: Dualität zu maximalem Fluss (Bemerkung.) Zu gegebenen s, t V kann ein minimaler s-t-schnitt mit einem Flussalgorithmus (z.b. Ford & Fulkerson, Goldberg & Tarjan) berechnet werden. Das Minimum über alle Paare s, t V liefert einen global minimalen Schnitt. ( ) V Θ( V ) Flussberechnungen. Da im minimalen Schnitt jeder Knoten von irgendeinem anderen getrennt wird, kann man stattdessen s V auch festhalten und t V \ {s} wähle. V Flussberechnungen. Heute: Effizientere Berechnung eines minimalen Schnittes ohne Flussalgorithmus. Algorithmen II Wintersemester 0/0

6 Stark verbundene Knoten Definition: Am stärksten verbundene Knoten (Definition.) Zu S V und v V \ S sei c(s, v) = {u, v} E u S c({u, v}). Den Knoten v V \ S, für den c(s, v) maximal wird, nennen wir auch den am stärksten mit S verbundenen Knoten. S c(s, ) = + = 5 c(s, ) = c(s, 8) = Knoten ist am stärksten mit S verbunden. Algorithmen II Wintersemester 0/0

7 Verschmelzen zweier Knoten Definition: Verschmelzen zweier Knoten (Definition.) Seien s, t V. Dann können s und t wie folgt verschmolzen werden. s und t werden durch einen neuen Knoten x s,t ersetzt. Alle Kanten die vorher zu s oder t inzident waren sind jetzt zu x s,t inzident (abgesehen von {s, t}, falls s und t adjazent waren). Mehrfachkanten werden aufgelöst indem Kantengewichte addiert werden , 7 8 Algorithmen II Wintersemester 0/0 Verschmelzen der Knoten und 7. 5, 7 5 8

8 Algorithmus von Stoer & Wagner Überblick Der Algorithmus von Stoer & Wagner besteht V Phasen. In jeder Phase i wird ein Schnitt in einem Graphen G i = (V i, E i ) berechnet, der Schnitt der Phase i. G i entsteht aus G i durch Verschmelzen geeigneter Knoten, wobei G = G. Ergebnis des Algorithmus ist der minimale Schnitt aller Schnitte der einzelnen Phasen i (für i V ). Ablauf einer Phase i Starte mit S i = {a}, wobei a ein beliebiger Startknoten in G i ist. Füge iterativ den am stärksten zu S i verbundenen Knoten zu S i hinzu. Seien s und t die als vorletztes bzw. als letztes zu S i hinzugefügten Knoten. Der Schnitt der Phase i ist (V i \ {t}, {t}). G i+ entsteht aus G i durch Verschmelzen von s und t. Algorithmen II Wintersemester 0/0

9 Algorithmus von Stoer & Wagner Beispiel Phase G = G S = {} (beliebig gewählter Startknoten) Algorithmen II Wintersemester 0/0

10 Algorithmus von Stoer & Wagner Beispiel Phase G = G S = {} S = {, } (beliebig gewählter Startknoten) ( am stärksten zu {} verbunden) Algorithmen II Wintersemester 0/0

11 Algorithmus von Stoer & Wagner Beispiel Phase G = G S = {} S = {, } (beliebig gewählter Startknoten) ( am stärksten zu {} verbunden) S = {,, } ( am stärksten zu {, } verbunden) Algorithmen II Wintersemester 0/0

12 Algorithmus von Stoer & Wagner Beispiel Phase G = G S = {} S = {, } (beliebig gewählter Startknoten) ( am stärksten zu {} verbunden) S = {,, } ( am stärksten zu {, } verbunden) S = {,,, 7} Algorithmen II Wintersemester 0/0

13 Algorithmus von Stoer & Wagner Beispiel Phase G = G S = {} S = {, } (beliebig gewählter Startknoten) ( am stärksten zu {} verbunden) S = {,, } ( am stärksten zu {, } verbunden) S = {,,, 7} S = {,,, 7, 8} Algorithmen II Wintersemester 0/0

14 Algorithmus von Stoer & Wagner Beispiel Phase G = G S = {} S = {, } (beliebig gewählter Startknoten) ( am stärksten zu {} verbunden) S = {,, } ( am stärksten zu {, } verbunden) S = {,,, 7} S = {,,, 7, 8} S = {,,, 7, 8, } Algorithmen II Wintersemester 0/0

15 Algorithmus von Stoer & Wagner Beispiel Phase G = G S = {} S = {, } (beliebig gewählter Startknoten) ( am stärksten zu {} verbunden) S = {,, } ( am stärksten zu {, } verbunden) S = {,,, 7} S = {,,, 7, 8} S = {,,, 7, 8, } S = {,,, 7, 8,, 5} Algorithmen II Wintersemester 0/0

16 Algorithmus von Stoer & Wagner Beispiel Phase G = G S = {} S = {, } (beliebig gewählter Startknoten) ( am stärksten zu {} verbunden) S = {,, } ( am stärksten zu {, } verbunden) S = {,,, 7} S = {,,, 7, 8} S = {,,, 7, 8, } S = {,,, 7, 8,, 5} S = {,,, 7, 8,, 5, } Schnitt der Phase: {V \ {}, {}} Gewicht 5 s t Algorithmen II Wintersemester 0/0

17 Algorithmus von Stoer & Wagner Beispiel Phase G = G S = {} S = {, } (beliebig gewählter Startknoten) ( am stärksten zu {} verbunden) S = {,, } ( am stärksten zu {, } verbunden) S = {,,, 7} S = {,,, 7, 8} S = {,,, 7, 8, } S = {,,, 7, 8,, 5} S = {,,, 7, 8,, 5, } Schnitt der Phase: {V \ {}, {}} Gewicht 5 Verschmelzen von s und t ergibt G s t, Algorithmen II Wintersemester 0/0

18 Algorithmus von Stoer & Wagner Beispiel Phase G = G mit und 5 verschmolzen S = {} (beliebig gewählter Startknoten), Algorithmen II Wintersemester 0/0

19 Algorithmus von Stoer & Wagner Beispiel Phase G = G mit und 5 verschmolzen S = {} S = {, {, 5}} (beliebig gewählter Startknoten), Algorithmen II Wintersemester 0/0

20 Algorithmus von Stoer & Wagner Beispiel Phase G = G mit und 5 verschmolzen S = {} S = {, {, 5}} S = {, {, 5}, } (beliebig gewählter Startknoten), Algorithmen II Wintersemester 0/0

21 Algorithmus von Stoer & Wagner Beispiel Phase G = G mit und 5 verschmolzen S = {} S = {, {, 5}} S = {, {, 5}, } S = {, {, 5},, } (beliebig gewählter Startknoten), Algorithmen II Wintersemester 0/0

22 Algorithmus von Stoer & Wagner Beispiel Phase G = G mit und 5 verschmolzen S = {} S = {, {, 5}} S = {, {, 5}, } S = {, {, 5},, } S = {, {, 5},,, } (beliebig gewählter Startknoten), Algorithmen II Wintersemester 0/0

23 Algorithmus von Stoer & Wagner Beispiel Phase G = G mit und 5 verschmolzen S = {} S = {, {, 5}} S = {, {, 5}, } S = {, {, 5},, } S = {, {, 5},,, } S = {, {, 5},,,, 7} (beliebig gewählter Startknoten), Algorithmen II Wintersemester 0/0

24 Algorithmus von Stoer & Wagner Beispiel Phase G = G mit und 5 verschmolzen S = {} S = {, {, 5}} S = {, {, 5}, } S = {, {, 5},, } S = {, {, 5},,, } S = {, {, 5},,,, 7} S = {, {, 5},,,, 7, 8} (beliebig gewählter Startknoten) s t, Schnitt der Phase: {V \ {8}, {8}} Gewicht 5 Verschmelzen von s und t ergibt G, 5 7, 8 Algorithmen II Wintersemester 0/0

25 Algorithmus von Stoer & Wagner Beispiel Phase Schnitt der Phase: {V \ {}, {}} Gewicht 5 Phase Schnitt der Phase: {V \ {8}, {8}} Gewicht 5 Phase Schnitt der Phase: {V \ {{7, 8}}, {{7, 8}}} Gewicht 7 Phase Schnitt der Phase: {V \ {{, 7, 8}}, {{, 7, 8}}} Gewicht 7 Phase 5 Schnitt der Phase: {V 5 \ {{,, 7, 8}}, {{,, 7, 8}}} Gewicht Phase Schnitt der Phase: {V \ {{, 5}}, {{, 5}}} Gewicht 7 Phase 7 Schnitt der Phase: {V 7 \ {}, {}} Gewicht 9 siehe Skript Der Schnitt aus Phase 5 ist minimal unter den Schnitten der einzelnen Phasen. Der Algorithmus von Stoer & Wagner gibt diesen Schnitt aus (Beweis, dass der so bestimmte Schnitt immer ein minimaler Schnitt ist folgt später.) Algorithmen II Wintersemester 0/0

26 Algorithmus von Stoer & Wagner Laufzeit MINSCHNITTPHASE(G i, c, a) S {a} t a while S V i do v Knoten aus V i \ S sodass c(s, v) maximal S S {v} s t t v O() O(log V + deg(v)) O() Speichere (V i \ {t}, {t}) als SCHNITT-DER-PHASE Konstruiere aus G i Graph G i+ durch Verschmelzen von s und t Benutze einen FIBONACCI-HEAP um c(s, u) für alle u V i \ S zu speichern. Maximum v entfernen: O(log V ) Nachbarn von v updaten: O(deg(v)) Algorithmen II Wintersemester 0/0

27 Algorithmus von Stoer & Wagner Laufzeit MINSCHNITTPHASE(G i, c, a) S {a} t a while S V i do v Knoten aus V i \ S sodass c(s, v) maximal S S {v} s t t v O() O( V log V + E ) O(log V + deg(v)) O() Speichere (V i \ {t}, {t}) als SCHNITT-DER-PHASE Konstruiere aus G i Graph G i+ durch Verschmelzen von s und t Benutze einen FIBONACCI-HEAP um c(s, u) für alle u V i \ S zu speichern. Maximum v entfernen: O(log V ) Nachbarn von v updaten: O(deg(v)) Jeder Knoten wird nur einmal zu S hinzugefügt. deg(v) = E O( E ) v V Algorithmen II Wintersemester 0/0

28 Algorithmus von Stoer & Wagner Laufzeit MINSCHNITTPHASE(G i, c, a) S {a} t a while S V i do v Knoten aus V i \ S sodass c(s, v) maximal S S {v} s t t v O( V log V + E ) O() O( V log V + E ) O(log V + deg(v)) O() Speichere (V i \ {t}, {t}) als SCHNITT-DER-PHASE Konstruiere aus G i Graph G i+ durch Verschmelzen von s und t O( E ) Benutze einen FIBONACCI-HEAP um c(s, u) für alle u V i \ S zu speichern. Maximum v entfernen: O(log V ) Nachbarn von v updaten: O(deg(v)) Jeder Knoten wird nur einmal zu S hinzugefügt. deg(v) = E O( E ) v V Algorithmen II Wintersemester 0/0

29 Algorithmus von Stoer & Wagner Laufzeit MINSCHNITTPHASE(G i, c, a) O( V log V + E ) MIN-SCHNITT(G, c, a) G G for i = to V do MINSCHNITTPHASE(G i, c, a) if SCHNITT-DER-PHASE ist kleiner als MIN-SCHNITT then speichere SCHNITT-DER-PHASE als MIN-SCHNITT Gib MIN-SCHNITT aus. O( V log V + V E ) O() O( V log V + V E ) O( V log V + E ) O() O() Lemma: Laufzeit des Algorithmus von Stoer & Wagner Der Algorithmus von Stoer & Wagner hat eine Laufzeit von O( V log V + V E ). Zum Vergleich: Der Flussalgorithmus von Goldberg & Tarjan hat eine Laufzeit von O( V E log( V / E )) Algorithmen II Wintersemester 0/0

30 Algorithmus von Stoer & Wagner Korrektheit Definition: s-t-schnitt Für s, t V, s t nenne den Schnitt (S, V \ S) mit s S und t V \ S einen s-t-schnitt. Ein s-t-schnitt trennt Knoten u und v, wenn u S und v V \ S. Lemma: SCHNITT-DER-PHASE ist minimaler s-t-schnitt (Lemma.5) Sei (S, V \ S) der SCHNITT-DER-PHASE in einem Graphen G = (V, E) mit Kostenfunktion c : E R + 0 und Startknoten a V. Dann ist (S, V \ S) minimal unter allen s-t-schnitten, wobei s und t vorletzter bzw. letzter betrachteter Knoten ist. Algorithmen II Wintersemester 0/0

31 Algorithmus von Stoer & Wagner Korrektheit Definition: s-t-schnitt Für s, t V, s t nenne den Schnitt (S, V \ S) mit s S und t V \ S einen s-t-schnitt. Ein s-t-schnitt trennt Knoten u und v, wenn u S und v V \ S. Lemma: SCHNITT-DER-PHASE ist minimaler s-t-schnitt (Lemma.5) Sei (S, V \ S) der SCHNITT-DER-PHASE in einem Graphen G = (V, E) mit Kostenfunktion c : E R + 0 und Startknoten a V. Dann ist (S, V \ S) minimal unter allen s-t-schnitten, wobei s und t vorletzter bzw. letzter betrachteter Knoten ist. Beweis: Zeige: Für jeden s-t-schnitt (S, V \ S ) gilt: c(s, V \ S) c(s, V \ S ) a s t a s t S V \ S V \ S S Algorithmen II Wintersemester 0/0

32 Algorithmus von Stoer & Wagner Korrektheit Beweis: Zeige: Für jeden s-t-schnitt (S, V \ S ) gilt: c(s, V \ S) c(s, V \ S ) Definition: aktive Knoten MINSCHNITTPHASE betrachtet die Knoten aus V gemäß einer linearen Ordnung, die mit a beginnt und mit s und t endet. Ein Knoten v V heißt aktiv (bzgl. S ), wenn {S, V \ S } den Knoten v von seinem Vorgänger trennt. a s t a s t S V \ S V \ S S Algorithmen II Wintersemester 0/0

33 Algorithmus von Stoer & Wagner Korrektheit Beweis: Zeige: Für jeden s-t-schnitt (S, V \ S ) gilt: c(s, V \ S) c(s, V \ S ) Definition: aktive Knoten MINSCHNITTPHASE betrachtet die Knoten aus V gemäß einer linearen Ordnung, die mit a beginnt und mit s und t endet. Ein Knoten v V heißt aktiv (bzgl. S ), wenn {S, V \ S } den Knoten v von seinem Vorgänger trennt. a s t a s t S V \ S V \ S Definition: Für v V \ {a} sei S v Menge der Knoten vor v. Sei weiter V v = S v {v} sowie S v = S V v. a v s t a v s t S S V \ S V \ S v {v} V v \ S v Betrachte Einschränkung von G auf V v für aktiven Knoten v. Zeige: c(s V, {v}) c(s v, V v \ S v ) (zeigt genau das gewünschte für v = t) S v S S Algorithmen II Wintersemester 0/0

34 Algorithmus von Stoer & Wagner Korrektheit () Satz: Korrektheit des Algorithmus von Stoer & Wagner (Satz.) Der minimale Schnitt von allen Ergebnissen der V Ausführungen von MIN- SCHNITTPHASE ist ein minimaler, nichttrivialer Schnitt in G = (V, E) mit V. Algorithmen II Wintersemester 0/0

35 Algorithmus von Stoer & Wagner Korrektheit () Satz: Korrektheit des Algorithmus von Stoer & Wagner (Satz.) Der minimale Schnitt von allen Ergebnissen der V Ausführungen von MIN- SCHNITTPHASE ist ein minimaler, nichttrivialer Schnitt in G = (V, E) mit V. Beweis: Induktion über V. Induktionsanfang: V = ist trivial. Induktionsschritt: V Betrachte Phase mit vorletztem bzw. letztem Knoten s und t. Fall : G hat einen nichttrivialen minimalen Schnitt, der s von t trennt. Schnitt der ersten Phase ist ein nichttrivialer minimaler Schnitt. Fall : G hat keinen nichttrivialen minimalen Schnitt, der s von t trennt. In jedem nichttrivialen minimalen Schnitt liegen s und t auf der gleichen Seite. Verschmilzt man s und t, so induziert ein minimaler Schnitt im resultierenden Graph G einen in minimalen Schnitt in G. Laut Induktionsvoraussetzung liefert der Algorithmus einen minimalen Schnitt für G. Algorithmen II Wintersemester 0/0

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 07..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

Algorithmentechnik - U bung 3 4. Sitzung Tanja Hartmann 03. Dezember 2009

Algorithmentechnik - U bung 3 4. Sitzung Tanja Hartmann 03. Dezember 2009 Algorithmentechnik - U bung 3 4. Sitzung Tanja Hartmann 03. Dezember 2009 I NSTITUT F U R T HEORETISCHE I NFORMATIK, P ROF. D R. D OROTHEA WAGNER KIT Universita t des Landes Baden-Wu rttemberg und nationales

Mehr

Maximale s t-flüsse in Planaren Graphen

Maximale s t-flüsse in Planaren Graphen Maximale s t-flüsse in Planaren Graphen Vorlesung Algorithmen für planare Graphen 6. Juni 2017 Guido Brückner INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 16 Programm: Einführung

Mehr

Algorithmen für Planare Graphen

Algorithmen für Planare Graphen Algorithmen für Planare Graphen 12. Juni 2018, Übung 4 Lars Gottesbüren, Michael Hamann INSTITUT FÜR THEORETISCHE INFORMATIK KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu Prüfungstermine

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am..03 Randomisierte Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

Maximale s t-flüsse in Planaren Graphen

Maximale s t-flüsse in Planaren Graphen Maximale s t-flüsse in Planaren Graphen Vorlesung Algorithmen für planare Graphen June 18, 2012 Ignaz Rutter INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg

Mehr

Lösungshinweise 3 Vorlesung Algorithmentechnik im WS 08/09

Lösungshinweise 3 Vorlesung Algorithmentechnik im WS 08/09 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Lösungshinweise Vorlesung Algorithmentechnik im WS 08/09 Problem : Kreuzende Schnitte Zwei Schnitte (S, V \ S) und (T, V \ T ) in einem

Mehr

3. Musterlösung. Problem 1: Boruvka MST

3. Musterlösung. Problem 1: Boruvka MST Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner. Musterlösung Problem : Boruvka MST pt (a) Beweis durch Widerspruch. Sei T MST von G, e die lokal minimale Kante eines

Mehr

Maximale s t-flüsse in Planaren Graphen

Maximale s t-flüsse in Planaren Graphen Maximale s t-flüsse in Planaren Graphen Vorlesung Algorithmen für planare Graphen June 1, 2015 Ignaz Rutter INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg

Mehr

Kürzeste-Wege-Algorithmen und Datenstrukturen

Kürzeste-Wege-Algorithmen und Datenstrukturen Kürzeste-Wege-Algorithmen und Datenstrukturen Institut für Informatik Universität zu Köln SS 2009 Teil 1 Inhaltsverzeichnis 1 Kürzeste Wege 2 1.1 Voraussetzungen................................ 2 1.2

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

5. Bäume und Minimalgerüste

5. Bäume und Minimalgerüste 5. Bäume und Minimalgerüste Charakterisierung von Minimalgerüsten 5. Bäume und Minimalgerüste Definition 5.1. Es ein G = (V, E) ein zusammenhängender Graph. H = (V,E ) heißt Gerüst von G gdw. wenn H ein

Mehr

Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist:

Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist: Svenja Hüning, Michael Kerber, Hannah Schreiber WS 2016/2017 Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist: Hinweise: Dieses Blatt präsentiert Beispiellösungen zu

Mehr

Wiederholung zu Flüssen

Wiederholung zu Flüssen Universität Konstanz Methoden der Netzwerkanalyse Fachbereich Informatik & Informationswissenschaft SS 2008 Prof. Dr. Ulrik Brandes / Melanie Badent Wiederholung zu Flüssen Wir untersuchen Flüsse in Netzwerken:

Mehr

Effizienter Planaritätstest Vorlesung am

Effizienter Planaritätstest Vorlesung am Effizienter Planaritätstest Vorlesung am 23.04.2014 INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER Satz Gegebenen einen Graphen G = (V, E) mit n Kanten und m Knoten, kann in O(n + m) Zeit

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 4 Programm des

Mehr

Minimale Schnitte und Schnittbäume

Minimale Schnitte und Schnittbäume Minimale Schnitte und Schnittbäume Studienarbeit von Myriam Freidinger Betreuer: Prof. Dr. Dorothea Wagner, Robert Görke ITI Prof. Dr. Dorothea Wagner, Universität Karlsruhe 23. Februar 2007 Danksagung

Mehr

Laufzeit. Finden eines Matchings maximaler Kardinalität dauert nur O( E min{ V 1, V 2 }) mit der Ford Fulkerson Methode.

Laufzeit. Finden eines Matchings maximaler Kardinalität dauert nur O( E min{ V 1, V 2 }) mit der Ford Fulkerson Methode. Effiziente Algorithmen Flußprobleme 81 Laufzeit Finden eines Matchings maximaler Kardinalität dauert nur O( E min{ V 1, V 2 }) mit der Ford Fulkerson Methode. Der Fluß ist höchstens f = min{ V 1, V 2 }.

Mehr

Voronoi-Diagramme. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK

Voronoi-Diagramme. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 29.05.2011 Das Postamt-Problem b(p, q) = {x R 2 : xp = xq } p q h(p, q) h(q, p) = {x :

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen Lerneinheit : Kürzeste Pfade in Graphen Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 016.6.01 Einleitung Diese Lerneinheit beschäftigt

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 03.12.2013 Algorithmische Geometrie: Schnitte von Strecken Sweep-Line INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg

Mehr

Algorithmen II Vorlesung am 15.11.2012

Algorithmen II Vorlesung am 15.11.2012 Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 11 FS 14

Datenstrukturen & Algorithmen Lösungen zu Blatt 11 FS 14 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 14. Mai

Mehr

2. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2006/ April 2007

2. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2006/ April 2007 2. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2006/2007 12. April 2007 Hier Aufkleber mit Name und Matrikelnr. anbringen Vorname: Nachname: Matrikelnummer: Beachten Sie: Bringen Sie den Aufkleber

Mehr

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung.

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung. Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 14. November 2007 1 / 22 2 / 22 Gliederung eulersche und semi-eulersche Graphen Charakterisierung eulerscher Graphen Berechnung eines

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Kürzeste Wege Maike Buchin 4. und 6.7.2017 Einführung Motivation: Bestimmung von kürzesten Wegen ist in vielen Anwendungen, z.b. Routenplanung, ein wichtiges Problem. Allgemeine

Mehr

3. Minimale Spannbäume. Definition 99 T heißt minimaler Spannbaum (MSB, MST) von G, falls T Spannbaum von G ist und gilt:

3. Minimale Spannbäume. Definition 99 T heißt minimaler Spannbaum (MSB, MST) von G, falls T Spannbaum von G ist und gilt: 3. Minimale Spannbäume Sei G = (V, E) ein einfacher ungerichteter Graph, der o.b.d.a. zusammenhängend ist. Sei weiter w : E R eine Gewichtsfunktion auf den Kanten von G. Wir setzen E E: w(e ) = e E w(e),

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 17.01.013 Parametrisierte Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

4.2 Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition 4.2.1

4.2 Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition 4.2.1 Allgemeines. Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition.. (a) Ein Graph G =(V, E) heißt kreisfrei, wenn er keinen Kreis besitzt. Beispiel: Ein kreisfreier Graph: FG KTuEA, TU Ilmenau

Mehr

Voronoi-Diagramme INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie

Voronoi-Diagramme INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 03.06.2014 1 Das Postamt-Problem b(p, q) = {x 2 R 2 : xp = xq } p q h(p, q) h(q, p) = {x

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

Graphalgorithmen Netzwerkalgorithmen. Laufzeit

Graphalgorithmen Netzwerkalgorithmen. Laufzeit Netzwerkalgorithmen Laufzeit (Folie 390, Seite 78 im Skript) Finden eines Matchings maximaler Kardinalität dauert nur O( E min{ V, V 2 }) mit der Ford Fulkerson Methode. Der Fluß ist höchstens f = min{

Mehr

Kap. 6.5: Minimale Spannbäume ff

Kap. 6.5: Minimale Spannbäume ff Kap. 6.: Minimale Spannbäume ff Professor Dr. Karsten Klein Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 20. VO 2. TEIL DAP2 SS 2009 2. Juli 2009 SS08 1 Überblick 6.:

Mehr

Algorithmen & Komplexität

Algorithmen & Komplexität Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik steger@inf.ethz.ch Kürzeste Pfade Problem Gegeben Netzwerk: Graph G = (V, E), Gewichtsfunktion w: E N Zwei Knoten: s, t Kantenzug/Weg

Mehr

10. Übung Algorithmen I

10. Übung Algorithmen I INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Bäume

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 018/19 1. Vorlesung Minimale Spannbäume Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Motivation ) Kantengewichte w : E R >0 ) w(e ) := e E w(e)

Mehr

Richtig oder falsch? Richtig oder falsch? Richtig oder falsch? Mit dynamischer Programmierung ist das Knapsack- Problem in Polynomialzeit lösbar.

Richtig oder falsch? Richtig oder falsch? Richtig oder falsch? Mit dynamischer Programmierung ist das Knapsack- Problem in Polynomialzeit lösbar. Gegeben sei ein Netzwerk N = (V, A, c, s, t) wie in der Vorlesung. Ein maximaler s-t-fluss kann immer mit Hilfe einer Folge von höchstens A Augmentationsschritten gefunden werden. Wendet man den Dijkstra-Algorithmus

Mehr

Algorithmik WS 07/ Vorlesung, Andreas Jakoby Universität zu Lübeck. 10 Matching-Probleme

Algorithmik WS 07/ Vorlesung, Andreas Jakoby Universität zu Lübeck. 10 Matching-Probleme 10 Matching-Probleme 10.1 Definition von Matching-Probleme Definition 21 [2-dimensionales Matching] Sei G = (V, E) ein ungerichteter Graph und E E. E ist ein Matching, wenn für alle Kantenpaare e 1, e

Mehr

Bipartites Matching. Gegeben: Ein bipartiter, ungerichteter Graph (V 1, V 2, E). Gesucht: Ein Matching (Paarung) maximaler Kardinalität.

Bipartites Matching. Gegeben: Ein bipartiter, ungerichteter Graph (V 1, V 2, E). Gesucht: Ein Matching (Paarung) maximaler Kardinalität. Netzwerkalgorithmen Bipartites Matching (Folie 90, Seite 80 im Skript) Gegeben: Ein bipartiter, ungerichteter Graph (V, V, E). Gesucht: Ein Matching (Paarung) maximaler Kardinalität. Ein Matching ist eine

Mehr

Graphenalgorithmen und lineare Algebra Hand in Hand Prof. Dr. Henning Meyerhenke

Graphenalgorithmen und lineare Algebra Hand in Hand Prof. Dr. Henning Meyerhenke Graphenalgorithmen und lineare Algebra Hand in Hand Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008 Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 2007/08 Lösungsblatt 9

Mehr

9 Minimum Spanning Trees

9 Minimum Spanning Trees Im Folgenden wollen wir uns genauer mit dem Minimum Spanning Tree -Problem auseinandersetzen. 9.1 MST-Problem Gegeben ein ungerichteter Graph G = (V,E) und eine Gewichtsfunktion w w : E R Man berechne

Mehr

lässt sich auch ableiten, dass es einen augmentierenden Pfad der Länge höchstens

lässt sich auch ableiten, dass es einen augmentierenden Pfad der Länge höchstens Praktikum Algorithmen-Entwurf (Teil 5)..5 Matchings in Graphen Es sei ein ungerichteter Graph G = (V, E) gegeben. Ein Matching in G ist eine Teilmenge M E, so dass keine zwei Kanten aus M einen Endpunkt

Mehr

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 22.04.2014 Überlagern von Kartenebenen Beispiel: Gegeben zwei verschiedene Kartenebenen,

Mehr

Berechnung von Abständen

Berechnung von Abständen 3. Kreis- und Wegeprobleme Abstände in Graphen Abstände in Graphen Definition 3.4. Es sei G = (V, E) ein Graph. Der Abstand d(v, w) zweier Knoten v, w V ist die minimale Länge eines Weges von v nach w.

Mehr

Betriebswirtschaftliche Optimierung

Betriebswirtschaftliche Optimierung Institut für Statistik und OR Uni Graz 1 Approximationsalgorithmen auf metrischen Instanzen Minimum Spanning Tree Definition (Spannbaum) Ein Spannbaum in einem Graphen G = (V,E) ist ein kreisfreier Teilgraph

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Universität Bochum Lehrstuhl für Kryptologie und IT-Sicherheit Prof. Dr. Alexander May M. Ritzenhofen, M. Mansour Al Sawadi, A. Meurer Lösungsblatt zur Vorlesung Diskrete Mathematik 1 WS 008/09 Blatt

Mehr

Übung 5 Algorithmen II

Übung 5 Algorithmen II Michael Axtmann michael.axtmann@kit.edu http://algo.iti.kit.edu/algorithmenii_ws6.php - 0 Axtmann: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 17 (8.7.2014) Minimale Spannbäume II Union Find, Prioritätswarteschlangen Algorithmen und Komplexität Minimaler Spannbaum Gegeben: Zus. hängender,

Mehr

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 24.04.2011 Überlagern von Kartenebenen Beispiel: Gegeben zwei verschiedene Kartenebenen,

Mehr

Klausur. 18. Juli 2008, 10:15-12:15 Uhr. Name:... Matrikelnummer:... Anzahl beschriebener Blätter (ohne Aufgabenblatt):... D(p) : Y = p x X + p y

Klausur. 18. Juli 2008, 10:15-12:15 Uhr. Name:... Matrikelnummer:... Anzahl beschriebener Blätter (ohne Aufgabenblatt):... D(p) : Y = p x X + p y GRUNDZÜGE DER ALGORITHMISCHEN GEOMETRIE Klausur 18. Juli 2008, 10:15-12:15 Uhr Name:................................... Matrikelnummer:................................... Anzahl beschriebener Blätter (ohne

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Naiver Algorithmus für Hamiltonkreis

Naiver Algorithmus für Hamiltonkreis Naiver Algorithmus für Hamiltonkreis Algorithmus HAMILTON EINGABE: G = ([n], E) in Adjazenzmatrixdarstellung 1 Für alle Permutationen π : [n] [n]. 1 Falls (π(1), π(2),..., π(n)) ein Kreis in G ist, AUSGABE

Mehr

9. Übung Algorithmen I

9. Übung Algorithmen I Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der

Mehr

Betriebliche Optimierung

Betriebliche Optimierung Betriebliche Optimierung Joachim Schauer Institut für Statistik und OR Uni Graz Joachim Schauer ( Institut für Statistik und OR Uni Graz Betriebliche ) Optimierung 1 / 21 1 Approximationsalgorithmen auf

Mehr

2. Das single-source-shortest-path-problem

2. Das single-source-shortest-path-problem . Das single-source-shortest-path-problem Zunächst nehmen wir an, dass d 0 ist. Alle kürzesten Pfade von a nach b sind o.b.d.a. einfache Pfade.. Dijkstra s Algorithmus Gegeben: G = (V, A), (A = V V ),

Mehr

Effiziente Algorithmen I

Effiziente Algorithmen I 9. Präsenzaufgabenblatt, WiSe 2013/14 Übungstunden am 13.01. & 15.01.2014 Aufgabe Q Gegeben sei ein Fluss-Netzwerk mit Digraph D = (V, A), Knotenkapazitäten c(u, v) 0, Quelle s und Senke t. Kann sich der

Mehr

3.2 Generischer minimaler Spannbaum-Algorithmus

3.2 Generischer minimaler Spannbaum-Algorithmus 3.2 Generischer minimaler Spannbaum-Algorithmus Initialisiere Wald F von Bäumen, jeder Baum ist ein singulärer Knoten (jedes v V bildet einen Baum) while Wald F mehr als einen Baum enthält do wähle einen

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Prof. Dr. Erika Ábrahám Datenstrukturen und Algorithmen 1/1 Datenstrukturen und Algorithmen Vorlesung 14: Prof. Dr. Erika Ábrahám Theorie Hybrider Systeme Informatik 2 http://ths.rwth-aachen.de/teaching/ss-14/

Mehr

Relationen und DAGs, starker Zusammenhang

Relationen und DAGs, starker Zusammenhang Relationen und DAGs, starker Zusammenhang Anmerkung: Sei D = (V, E). Dann ist A V V eine Relation auf V. Sei andererseits R S S eine Relation auf S. Dann definiert D = (S, R) einen DAG. D.h. DAGs sind

Mehr

Vorlesung 2 KÜRZESTE WEGE

Vorlesung 2 KÜRZESTE WEGE Vorlesung 2 KÜRZESTE WEGE 34 Kürzeste Wege im Graphen Motivation! Heute:! Kürzeste Wege von einem Knoten (SSSP)! Kürzeste Wege zwischen allen Knotenpaaren (APSP)! Viele Anwendungen:! Navigationssysteme!

Mehr

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 24.04.2011 Überlagern von Kartenebenen Beispiel: Gegeben zwei verschiedene Kartenebenen,

Mehr

Vorlesungstermin 2: Graphentheorie II. Markus Püschel David Steurer. Algorithmen und Datenstrukturen, Herbstsemester 2018, ETH Zürich

Vorlesungstermin 2: Graphentheorie II. Markus Püschel David Steurer. Algorithmen und Datenstrukturen, Herbstsemester 2018, ETH Zürich Vorlesungstermin 2: Graphentheorie II Markus Püschel David Steurer Algorithmen und Datenstrukturen, Herbstsemester 2018, ETH Zürich Wiederholung: Vollständige Induktion Ziel: zeige n N. A(n) für eine Aussage

Mehr

8.4 Digraphen mit negativen Kantengewichten Grundsätzliches Betrachte Startknoten s und einen Kreis C mit Gesamtlänge < 0.

8.4 Digraphen mit negativen Kantengewichten Grundsätzliches Betrachte Startknoten s und einen Kreis C mit Gesamtlänge < 0. 8.4 Digraphen mit negativen Kantengewichten 8.4.1 Grundsätzliches Betrachte Startknoten s und einen Kreis C mit Gesamtlänge < 0. k 4 5 1 s 1 3 2 C k 0 k 3 1 1 1 k 1 k 2 v Sollte ein Pfad von s nach C und

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 17. Januar 2012 INSTITUT FÜR THEORETISCHE 0 KIT 18.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Lernmodul 7 Algorithmus von Dijkstra

Lernmodul 7 Algorithmus von Dijkstra Folie 1 von 30 Lernmodul 7 Algorithmus von Dijkstra Quelle: http://www.map24.de Folie 2 von 30 Algorithmus von Dijkstra Übersicht Kürzester Weg von A nach B in einem Graphen Problemstellung: Suche einer

Mehr

Eulerweg, Eulerkreis. Das Königsberger Brückenproblem. Definition 3.1. Ein Weg, der jede Kante von G genau einmal

Eulerweg, Eulerkreis. Das Königsberger Brückenproblem. Definition 3.1. Ein Weg, der jede Kante von G genau einmal 3. Kreis- und Wegeprobleme Kapitelübersicht 3. Kreis- und Wegeprobleme Eulerweg, Eulerkreis Charakterisierung von eulerschen Graphen Bestimmung von eulerschen Wegen und Kreisen Hamiltonsche Graphen Definition

Mehr

Breitensuche BFS (Breadth First Search)

Breitensuche BFS (Breadth First Search) Breitensuche BFS (Breadth First Search) Algorithmus BREITENSUCHE EINGABE: G = (V, E) als Adjazenzliste, Startknoten s V 1 Für alle v V 1 If (v = s) then d[v] 0 else d[v] ; 2 pred[v] nil; 2 Q new Queue;

Mehr

Kombinatorische Algorithmen zur Berechnung von Marktequilibria

Kombinatorische Algorithmen zur Berechnung von Marktequilibria Seminar über Algorithmen Beispielbild Kombinatorische Algorithmen zur Berechnung von Marktequilibria 12.11.2013, Sebastian Stugk Übersicht 1. Marktmodelle und Gleichgewichtsdefinition 2. Das Eisenberg-Gale-Programm

Mehr

Algorithmen I - Tutorium 28 Nr. 11

Algorithmen I - Tutorium 28 Nr. 11 Algorithmen I - Tutorium 28 Nr. 11 13.07.2017: Spaß mit Schnitten, Kreisen und minimalen Spannbäumen Marc Leinweber marc.leinweber@student.kit.edu INSTITUT FÜR THEORETISCHE INFORMATIK (ITI), PROF. DR.

Mehr

durch Einfügen von Knoten konstruiert werden kann.

durch Einfügen von Knoten konstruiert werden kann. Satz von Kuratowski Definition Unterteilung eines Graphen Sei G = (V, E) und e = {u, v} E. 1 Das Einfügen eines neuen Knoten w in die Kante e führt zum Graphen G = (V {w}, E \ e {{u, w}, {w, v}}). 2 Der

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Die Forschungsuniversität Meyerhenke, in der Institut für Theoretische Informatik

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Minimale Spannbäume Maike Buchin 18.7., 20.7.2017 Einführung Motivation: Verbinde Inseln mit Fähren oder Städte mit Schienen und verbrauche dabei möglichst wenig Länge. Problem:

Mehr

Optimieren von Schnittplänen

Optimieren von Schnittplänen 30. Juli, 015 Inhaltsverzeichnis 1 Einführung 3 4 Worum geht es? Wir wollen möglichst effizient Druckbögen zerschneiden Dazu verwenden wir nur Guillotinen-Schnitte Worum geht es? Wir wollen möglichst effizient

Mehr

3 Klassifikation wichtiger Optimierungsprobleme

3 Klassifikation wichtiger Optimierungsprobleme 3 Klassifikation wichtiger Optimierungsprobleme 3.1 Das MIN- -TSP Wir kehren nochmal zurück zum Handlungsreisendenproblem für Inputs (w {i,j} ) 1 i

Mehr

15. Elementare Graphalgorithmen

15. Elementare Graphalgorithmen Graphen sind eine der wichtigste Modellierungskonzepte der Informatik Graphalgorithmen bilden die Grundlage vieler Algorithmen in der Praxis Zunächst kurze Wiederholung von Graphen. Dann Darstellungen

Mehr

Polygontriangulierung

Polygontriangulierung Vorlesung Algorithmische Geometrie Polygone triangulieren LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 26.04.2011 Das Kunstgalerie-Problem

Mehr

6. Musterlösung. Problem 1: Abgeschlossenheit der Addition *

6. Musterlösung. Problem 1: Abgeschlossenheit der Addition * Universität Karlsruhe Algorithmentehnik Fakultät für Informatik WS 05/06 ITI Wagner 6. Musterlösung Problem 1: Abgeshlossenheit der Addition * Zeigen oder widerlegen Sie: Die Summe 1 2 zweier Kreise ist

Mehr

\ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E.

\ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E. Das Komplement Ḡ = (V, ( V ) \ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E. Ein Graph H = (V, E )

Mehr

Grundzüge von Algorithmen und Datenstrukturen, WS 15/16: Lösungshinweise zum 13. Übungsblatt

Grundzüge von Algorithmen und Datenstrukturen, WS 15/16: Lösungshinweise zum 13. Übungsblatt U N S A R I V E R S A V I E I T A S N I S S Grundzüge von Algorithmen und Datenstrukturen, WS /6: Lösungshinweise zum 3. Übungsblatt Christian Hoffmann, Fabian Bendun Aufgabe 3. (a) Sei j i + = n die Größe

Mehr

1. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2009/2010

1. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2009/2010 . Klausur zur Vorlesung Algorithmentechnik Wintersemester 2009/200 Lösung! Beachten Sie: Bringen Sie den Aufkleber mit Ihrem Namen und Matrikelnummer auf diesem Deckblatt an und beschriften Sie jedes Aufgabenblatt

Mehr

Matchings in Graphen. Praktikum Diskrete Optimierung (Teil 5)

Matchings in Graphen. Praktikum Diskrete Optimierung (Teil 5) Praktikum Diskrete Optimierung (Teil 5) 6.05.009 Matchings in Graphen Es sei ein ungerichteter Graph G = (V, E) gegeben. Ein Matching in G ist eine Teilmenge M E, so dass keine zwei Kanten aus M einen

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Dr. Hanjo Täubig Lehrstuhl für Eziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester 2007/08

Mehr

Algorithmen I - Tutorium 28 Nr. 3

Algorithmen I - Tutorium 28 Nr. 3 Algorithmen I - Tutorium 28 Nr. 3 18.05.2016: Spaß mit Listen, Arrays und amortisierter Analyse Marc Leinweber marc.leinweber@student.kit.edu INSTITUT FÜR THEORETISCHE INFORMATIK (ITI), PROF. DR. JÖRN

Mehr

4. Kreis- und Wegeprobleme

4. Kreis- und Wegeprobleme 4. Kreis- und Wegeprobleme Kapitelübersicht 4. Kreis- und Wegeprobleme Charakterisierung von eulerschen Graphen Bestimmung von eulerschen Wegen und Kreisen Hamiltonsche Graphen Abstände in Graphen Berechnung

Mehr

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V.

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V. Kapitel 4 Graphenalgorithmen 4.1 Definitionen Definition 4.1.1. Der Graph G = (V, E) ist über die beiden Mengen V und E definiert, wobei V die Menge der Knoten und E die Menge der Kanten in dem Graph ist.

Mehr

Bäume und Wälder. Definition 1

Bäume und Wälder. Definition 1 Bäume und Wälder Definition 1 Ein Baum ist ein zusammenhängender, kreisfreier Graph. Ein Wald ist ein Graph, dessen Zusammenhangskomponenten Bäume sind. Ein Knoten v eines Baums mit Grad deg(v) = 1 heißt

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 7 und 8: Euler- und Hamilton-Graphen Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 17. April 2018 1/96 WIEDERHOLUNG Eulersche

Mehr

1 Kürzeste Pfade in Graphen

1 Kürzeste Pfade in Graphen Praktikum Algorithmen-Entwurf (Teil 3) 03.11.2011 1 1 Kürzeste Pfade in Graphen Es sei ein gerichteter Graph G = (V, E) mit V = n Knoten, E = m Kanten und Kantengewichten c : E R gegeben. Ein Pfad in G

Mehr

2. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2009/2010

2. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2009/2010 2. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2009/2010 Hier Aufkleber mit Name und Matrikelnummer anbringen Vorname: Nachname: Matrikelnummer: Beachten Sie: Bringen Sie den Aufkleber mit

Mehr

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel 3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

Freie Bäume und Wälder

Freie Bäume und Wälder (Martin Dietzfelbinger, Stand 4.6.2011) Freie Bäume und Wälder In dieser Notiz geht es um eine besondere Sorte von (ungerichteten) Graphen, nämlich Bäume. Im Gegensatz zu gerichteten Bäumen nennt man diese

Mehr

Datenstrukturen und Algorithmen SS07

Datenstrukturen und Algorithmen SS07 Datenstrukturen und Algorithmen SS0 Datum:.6.200 Michael Belfrage mbe@student.ethz.ch belfrage.net/eth Programm von Heute Minimaler Spannbaum (MST) Challenge der Woche Fibonacci Heap Minimaler Spannbaum

Mehr