9. Übung Algorithmen I
|
|
|
- Clemens Schumacher
- vor 9 Jahren
- Abrufe
Transkript
1 Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische Informatik
2 Übersicht Statistik der Mittsemesterklausur Grundlagen der Graphentheorie Bäume Eulersche und Hamiltonsche Kreise Bellman-Ford-Algorithmus Negative Kreise finden 2 Timo Bingmann, Christian Schulz
3 Statistik der Mittsemesterklausur 3 Timo Bingmann, Christian Schulz
4 Punkteverteilung 20 Teilnehmer Punkte 4 Timo Bingmann, Christian Schulz
5 Punkte pro Aufgabe Prozent der Punktzahl DList Invariante Karatsuba-Ofman Heap Formeln Hashtabelle erzeugen Duplikat finden unbeschränktes Array Zweierpotenz Kreis im DAG markieren Hash-Kollisionen Sorts Vor/Nachteile Master-Theorem Matrixmultiplikation Listen/Arrays Vor/Nachteile HT verkettet vs offen Listen in HTs Sentinels Heap deletemin 5 Timo Bingmann, Christian Schulz
6 Grundlagen der Graphentheorie 6 Timo Bingmann, Christian Schulz
7 Graphen und Relationen Relation Ist eine Menge M gegeben, dann heißt R M M eine Relation und man schreibt auch x R y, falls (x, y) R. Spezielle Relationen: symmetrisch, transitiv, antisymmetrisch, Äquivalenz-Relationen, etc. Beispiele: x = y, x y oder x y (teilt). gerichteter Graph Ein gerichteter Graph G = (V, E) besteht aus Knoten V und Kanten E, wobei V nicht leer ist und E V V ist. ungerichteter Graph Ein ungerichteter Graph G = (V, E) besteht aus Knoten V und Kanten E, wobei V nicht leer ist und E {{x, y} x, y V, x y} ist. 7 Timo Bingmann, Christian Schulz
8 Teilbarkeitsgraph Ein gerichteter Graph G = (V, E) mit V = {1,..., 9} und E = {(x, y) x, y V, x y und x y}, wobei x y genau dann, wenn x teilt y, also n N : xn = y gilt Timo Bingmann, Christian Schulz
9 Der Hyperwürfel Q 3 Ein ungerichteter Graph G = (V, E) mit V = {{0, 1} 3 } und E = {{x, y} x, y V und x y {100, 010, 001}} Zwei Knoten x, y V sind also adjazent, wenn x und y sich in genau einer Ziffer unterscheiden. 9 Timo Bingmann, Christian Schulz
10 Adjazenz und Knotengrad Sei G = (V, E) ein ungerichteter Graph. Bereits bekannt: Zwei Knoten x, y V mit x y heißen genau dann adjazent, wenn {x, y} E. Ein Knoten x V und eine Kante e E heißen genau dann inzident, wenn x e. Für ein Knoten x V ist die Adjazenzmenge oder Nachbarn-Menge also Adj(x) = {y V x y und {x, y} E}. Der Grad eines Knoten x V ist deg(x) := Adj(x). (auch deg G (x) oder d G (x) oder γ G (x) oder...) 10 Timo Bingmann, Christian Schulz
11 Knoten mit speziellem Knotengrad Ein Knoten v V mit deg(v) = 0 heißt isoliert. Ein Knoten v V mit deg(v) = 1 heißt Randknoten. Ein Graph G = (V, E) heißt knotenregulär vom Grad r, wenn deg(v) = r für alle v V gilt. Beispiel: der Hyperwürfel Q 3 ist 3-knotenregulär. Ein ( V 1)-knotenregulärer Graph heißt vollständig. K 6 K 4 K 5 11 Timo Bingmann, Christian Schulz
12 Handshake-Lemma Lemma: Ist G = (V, E) ein ungerichteter Graph, dann gilt deg(v) = 2 E. v V 12 Timo Bingmann, Christian Schulz
13 Handshake-Lemma Lemma: Ist G = (V, E) ein ungerichteter Graph, dann gilt deg(v) = 2 E. v V Beweis: Betrachte die Menge M := {(v, e) v V, e E mit v e}. 12 Timo Bingmann, Christian Schulz
14 Handshake-Lemma Lemma: Ist G = (V, E) ein ungerichteter Graph, dann gilt deg(v) = 2 E. v V Beweis: Betrachte die Menge M := {(v, e) v V, e E mit v e}. Für jede Kante e E sind genau zwei Paare in M, also M = 2 E. 12 Timo Bingmann, Christian Schulz
15 Handshake-Lemma Lemma: Ist G = (V, E) ein ungerichteter Graph, dann gilt deg(v) = 2 E. v V Beweis: Betrachte die Menge M := {(v, e) v V, e E mit v e}. Für jede Kante e E sind genau zwei Paare in M, also M = 2 E. Für jeden Knoten v V sind genau alle ausgehenden Kanten in M, also M = v V deg(v). 12 Timo Bingmann, Christian Schulz
16 Handshake-Lemma Lemma: Ist G = (V, E) ein ungerichteter Graph, dann gilt deg(v) = 2 E. v V Beweis: Betrachte die Menge M := {(v, e) v V, e E mit v e}. Für jede Kante e E sind genau zwei Paare in M, also M = 2 E. Für jeden Knoten v V sind genau alle ausgehenden Kanten in M, also M = v V deg(v). Korollar: In jedem Graph gibt es eine gerade Anzahl von Knoten mit ungeradem Knotengrad. 12 Timo Bingmann, Christian Schulz
17 Wege, Kreise und Zusammenhang Ist G = (V, E) ein ungerichteter Graph, dann heißt eine Folge (v 0, e 1, v 1, e 2,..., v n 1, e n, v n ) mit v i V und e i E eine Kantenfolge, ein Kantenweg oder nur Weg (path), wenn e i = {v i 1, v i } für i = 1,..., n. Alternativ, kann man in Graphen ohne Mehrfachkanten eine Kantenfolge auch durch die Knotenspur (v 0,..., v n ) beschreiben. heißt eine Kantenfolge ein Kantenpfad oder nur Pfad (simple path), wenn alle besuchten Knoten verschieden sind. heißen zwei Knoten x, y V verbindbar (connected), wenn es einen Weg mit x = v 0 und y = v n gibt. heißt der Graph G zusammenhängend (connected), wenn jedes Paar (x, y) V V verbindbar ist. 13 Timo Bingmann, Christian Schulz
18 Wege, Kreise und Zusammenhang Ist G = (V, E) ein ungerichteter Graph, dann heißt ein Kantenfolge (v 0, e 1, v 1, e 2,..., v n 1, e n, v n ) ein Kantenkreis oder Kantenzyklus (cycle), wenn v 0 = v n. heißt der Graph G kreisfrei, kreislos oder zykelfrei (cycle free), wenn G keinen Kantenkreis enthält. 14 Timo Bingmann, Christian Schulz
19 Bäume 15 Timo Bingmann, Christian Schulz
20 Warum Bäume? H H H H H H H H H H H H C C C C C C C C H H H H H H H H H Oktan H H H H C H H C C C C C H C H C H H H H H H H ein Isooktan H H H H H C H H H C C C C C H H H C H H H H C H H H ein anderes Isooktan 16 Timo Bingmann, Christian Schulz
21 Charakterisierung von Bäumen Definition: Ein ungerichteter Graph heißt Baum, wenn es von jedem Knoten zu jedem anderen Knoten genau einen Kantenweg gibt. Satz: Für einen ungerichteten Graphen G = (V, E) sind äquivalent: 1 G ist ein Baum. 2 G ist zusammenhängend und E = V 1. 3 G ist zusammenhängend und kreislos. 4 G ist kreislos und E = V 1. 5 G ist maximal kreislos: G ist kreislos und jede zusätzliche Kante zwischen nicht-adjazenten Knoten ergibt einen Kreis. 6 G ist minimal zusammenhängend: G ist zusammenhängend und bei Entfernen einer beliebige Kante zerfällt G. 17 Timo Bingmann, Christian Schulz
22 Satz von Cayley Ist G = (V, E) ein zusammenhängender ungerichteter Graph, dann heißt ein Untergraph (V, E ) mit E E ein G aufspannender Baum, wenn dieser ein Baum ist. Satz von Cayley Im vollständigen Graph K n gibt es genau n n 2 verschiedene K n aufspannende Bäume. Beispiel: K 4 hat folgende 16 aufspannende Bäume: 18 Timo Bingmann, Christian Schulz
23 Eulersche und Hamiltonsche Kreise Ein Kantenkreis heißt Eulersch, wenn er alle Kanten des Graphen genau einmal enthält. Ein Kantenkreis heißt Hamiltonsch, wenn er alle Knoten des Graphen genau einmal enthält (Beginn und Ende einmal gezählt). Ein Graph heißt Eulersch/Hamiltonsch, wenn er einen Eulerschen/Hamiltonschen Kreis enthält. 19 Timo Bingmann, Christian Schulz
24 Eulersche und Hamiltonsche Kreise Ein Kantenkreis heißt Eulersch, wenn er alle Kanten des Graphen genau einmal enthält. Ein Kantenkreis heißt Hamiltonsch, wenn er alle Knoten des Graphen genau einmal enthält (Beginn und Ende einmal gezählt). Ein Graph heißt Eulersch/Hamiltonsch, wenn er einen Eulerschen/Hamiltonschen Kreis enthält. 19 Timo Bingmann, Christian Schulz
25 Satz von Euler (Graphen) Satz: Ein Graph G = (V, E) mit E ist genau dann Eulersch, wenn G zusammenhängend ist und alle Knoten geraden Knotengrad haben. 20 Timo Bingmann, Christian Schulz
26 Satz von Euler (Graphen) Satz: Ein Graph G = (V, E) mit E ist genau dann Eulersch, wenn G zusammenhängend ist und alle Knoten geraden Knotengrad haben. Beweis: = Klar, denn G muss zusammenhängend sein und beim Passieren eines Knoten wird dieser durch eine Kante betreten und durch eine andere verlassen. Da jede Kante genau einmal verwendet wird, muss der Knotengrad aller Knoten gerade sein. 20 Timo Bingmann, Christian Schulz
27 Satz von Euler (Graphen) Satz: Ein Graph G = (V, E) mit E ist genau dann Eulersch, wenn G zusammenhängend ist und alle Knoten geraden Knotengrad haben. Beweis: = Angenommen der Graph hat diese Eigenschaften, so betrachtet man eine Kantenpfad P = (v 0, e 1, v 1, e 2,..., v r 1, e r, v r ) maximaler Länge, in dem also keine Kante zweimal vorkommt. Behauptung 1: v 0 = v r. 20 Timo Bingmann, Christian Schulz
28 Satz von Euler (Graphen) Satz: Ein Graph G = (V, E) mit E ist genau dann Eulersch, wenn G zusammenhängend ist und alle Knoten geraden Knotengrad haben. Beweis: = Angenommen der Graph hat diese Eigenschaften, so betrachtet man eine Kantenpfad P = (v 0, e 1, v 1, e 2,..., v r 1, e r, v r ) maximaler Länge, in dem also keine Kante zweimal vorkommt. Behauptung 1: v 0 = v r. Wäre v 0 v r, dann ist v 0 zu einer ungeraden Anzahl Kanten in P inzident. Da v 0 aber geraden Knotengrad hat, gibt es eine inzidente Kante e / P. Der Pfad P kann mit e verlängert werden, ist also nicht maximal! Widerspruch = v 0 = v r, also ist P ein Kreis. 20 Timo Bingmann, Christian Schulz
29 Satz von Euler (Graphen) Satz: Ein Graph G = (V, E) mit E ist genau dann Eulersch, wenn G zusammenhängend ist und alle Knoten geraden Knotengrad haben. Beweis: = Angenommen der Graph hat diese Eigenschaften, so betrachtet man eine Kantenkreis C = (v 0, e 1, v 1, e 2,..., v r 1, e r, v 0 ) maximaler Länge, in dem also keine Kante zweimal vorkommt. Behauptung 2: E(C) := {e i i = 1,..., r} = E. 20 Timo Bingmann, Christian Schulz
30 Satz von Euler (Graphen) Satz: Ein Graph G = (V, E) mit E ist genau dann Eulersch, wenn G zusammenhängend ist und alle Knoten geraden Knotengrad haben. Beweis: = Angenommen der Graph hat diese Eigenschaften, so betrachtet man eine Kantenkreis C = (v 0, e 1, v 1, e 2,..., v r 1, e r, v 0 ) maximaler Länge, in dem also keine Kante zweimal vorkommt. Behauptung 2: E(C) := {e i i = 1,..., r} = E. Angenommen E(C) E, so betrachten wir G := (V, E \ E(C)). Da G zusammenhängt, muss G und C einen gemeinsamen Knoten w mit deg G (w) > 0 haben. 20 Timo Bingmann, Christian Schulz
31 Satz von Euler (Graphen) Satz: Ein Graph G = (V, E) mit E ist genau dann Eulersch, wenn G zusammenhängend ist und alle Knoten geraden Knotengrad haben. Beweis: = Angenommen der Graph hat diese Eigenschaften, so betrachtet man eine Kantenkreis C = (v 0, e 1, v 1, e 2,..., v r 1, e r, v 0 ) maximaler Länge, in dem also keine Kante zweimal vorkommt. Behauptung 2: E(C) := {e i i = 1,..., r} = E. Angenommen E(C) E, so betrachten wir G := (V, E \ E(C)). Da G zusammenhängt, muss G und C einen gemeinsamen Knoten w mit deg G (w) > 0 haben. Alle Knoten in G haben geraden Knotengrad, also kann man in G einen Kreis C finden, der durch w geht. 20 Timo Bingmann, Christian Schulz
32 Satz von Euler (Graphen) Satz: Ein Graph G = (V, E) mit E ist genau dann Eulersch, wenn G zusammenhängend ist und alle Knoten geraden Knotengrad haben. Beweis: = Angenommen der Graph hat diese Eigenschaften, so betrachtet man eine Kantenkreis C = (v 0, e 1, v 1, e 2,..., v r 1, e r, v 0 ) maximaler Länge, in dem also keine Kante zweimal vorkommt. Behauptung 2: E(C) := {e i i = 1,..., r} = E. Angenommen E(C) E, so betrachten wir G := (V, E \ E(C)). Da G zusammenhängt, muss G und C einen gemeinsamen Knoten w mit deg G (w) > 0 haben. Alle Knoten in G haben geraden Knotengrad, also kann man in G einen Kreis C finden, der durch w geht. C kann an Knoten w mit C verlängert werden. Widerspruch zur Maximalität = E(C) = E. 20 Timo Bingmann, Christian Schulz
33 Algorithmus: Eulersche Kreise Idee: Erweitere einen Kantenpfad solange, bis er Eulersch wird. Überprüfe, ob jeder Knoten geraden Grad hat. Wähle v 0 V beliebig, setze P := (v 0 ). Sei P = (v 0, e 1, v 1,..., e i, v i ) der bisher konstruierte Pfad und G = (V, E \ E(P)) der Restgraph. 21 Timo Bingmann, Christian Schulz
34 Algorithmus: Eulersche Kreise Idee: Erweitere einen Kantenpfad solange, bis er Eulersch wird. Überprüfe, ob jeder Knoten geraden Grad hat. Wähle v 0 V beliebig, setze P := (v 0 ). Sei P = (v 0, e 1, v 1,..., e i, v i ) der bisher konstruierte Pfad und G = (V, E \ E(P)) der Restgraph. Ist E = E(P) so ist P ein gesuchter Eulerscher Kreis. Fertig. Sonst wähle eine zum Knoten v i inzident Kante e i+1 E \ E(P), wobei Kanten bevorzugt werden, die keine Brücken sind. Eine Kante ist keine Brücke, wenn G und (V, E \ {e 1,..., e i, e i+1 }) gleich viele Komponenten haben. Verlängere P mit der Kante e i+1 und wiederhole diesen Schnitt. 21 Timo Bingmann, Christian Schulz
35 Schmankerl: Graph-Isomorphie Welche Graphen sind gleich (isomorph)? 22 Timo Bingmann, Christian Schulz
36 Schmankerl: Graph-Isomorphie Welche Graphen sind gleich (isomorph)? Tipp: Es gibt fünf Klassen. 22 Timo Bingmann, Christian Schulz
37 Bellman-Ford-Algorithmus Wiederholung Ausgehend von einem Knoten s berechne kürzesten Wege-Baum 1: procedure BellmanFord(s : NodeId) : NodeArray NodeArray 2: d =,..., : NodeArray of R {, } 3: parent =,..., : NodeArray of NodeId 4: d[s] := 0; parent[s] := s 5: for i := 1 to n 1 do 6: forall e E do relax(e) 7: 8: forall e = (u, v) E do 9: if d[u] + c(e) < d[v] then infect(v) 10: return (d, parent) Erinnerung Kante (u, v) relaxieren: 1 wenn d[u] + c(u, v) < d[v] dann d[v] := d[u] + c(u, v), parent[v] := u 23 Timo Bingmann, Christian Schulz
38 Bellman-Ford-Algorithmus Wiederholung 1: procedure infect(v : NodeId) 2: if d[v] > then 3: d[v] = 4: forall e = (v, w) E do infect(w) 5: return (d, parent) Ziel: Korrektheit beweisen 1 zeige dies für Knoten v mit < µ[v] < 2 zeige dies für Knoten v mit = µ[v] 3 zeige dies für Knoten v mit = µ[v] (trivial) 24 Timo Bingmann, Christian Schulz
39 Bellman-Ford-Algorithmus Fall 1 relaxiere alle Kanten (in bel. Reihenfolge) n 1-mal alle kürzesten Pfade in G haben höchstens n 1 Kanten jeder kürzeste Pfad ist Teilfolge dieser Relaxierungen 25 Timo Bingmann, Christian Schulz
40 Bellman-Ford-Algorithmus Fall 1 jeder kürzeste Pfad ist eine Teilfolge dieser Relaxierungen t 1 t 2 {}}{{}}{{}}{ R =... relax(e 1 )... relax(e 2 )... relax(e k )..., R = (n 1) E. p = e 1, e 2,..., e k = s, v 1, v 2,..., v k ein kürzester Weg t k 25 Timo Bingmann, Christian Schulz
41 Bellman-Ford-Algorithmus Fall 2 Korrektheit für Knoten v mit = µ[v] sei e = (u, v) mit d[u] + c(e) < d[v] nach Relaxierungen (Zeile 7) d[v] = (kürzeste Wege ändern sich nicht mehr, siehe Fall 1) mittels infect: alle von v erreichbaren Knoten w d[w] = falls d[v] im post-processing nicht auf gesetzt gilt: d[x] + c(e) d[y] für jede Kante (x, y) von jedem Pfad von s nach v damit d[s] + c(p) d[v] für jeden Pfad p von s nach v damit d[v] µ(v) und damit d[v] = µ(v) 26 Timo Bingmann, Christian Schulz
42 Negative Kreise finden 1: procedure BellmanFord(s : NodeId) : NodeArray NodeArray 2: d =,..., : NodeArray of R {, } 3: parent =,..., : NodeArray of NodeId 4: d[s] := 0; parent[s] := s 5: for i := 1 to n 1 do 6: forall e E do relax(e) 7: Find negative cycle 8:... 9: return negativer Kreis ist gerichteter Kreis mit Gewicht < 0 Fragestellung: negativer Kreis in G (und gebe einen aus) 27 Timo Bingmann, Christian Schulz
43 Negative Kreise finden 1: procedure BellmanFord(s : NodeId) : NodeArray NodeArray 2: d =,..., : NodeArray of R {, } 3: parent =,..., : NodeArray of NodeId 4: d[s] := 0; parent[s] := s 5: for i := 1 to n 1 do 6: forall e E do relax(e) 7: Find negative cycle 8:... 9: return Timo Bingmann, Christian Schulz s 2
44 Negative Kreise finden 1: procedure BellmanFord(s : NodeId) : NodeArray NodeArray 2: d =,..., : NodeArray of R {, } 3: parent =,..., : NodeArray of NodeId 4: d[s] := 0; parent[s] := s 5: for i := 1 to n 1 do 6: forall e E do relax(e) 7: Find negative cycle 8:... 9: return Reachability? s R 27 Timo Bingmann, Christian Schulz
45 Negative Kreise finden Allgemein Hilfsknoten H + Kanten (H, v) für v V mit Gewicht 0 H Nach Ausführung von Bellman-Ford (in Zeile 7): negativen Kreise C: (u, v) C : d[u] + c(e) < d[v] 28 Timo Bingmann, Christian Schulz
46 Negativen Kreis ausgeben Nach Ausführung von Bellman-Ford (in Zeile 7): negativen Kreise C: (u, v) C : d[u] + c(e) < d[v] Ausgabe eines negativen Kreises: Übungsblatt 29 Timo Bingmann, Christian Schulz
47 30 Timo Bingmann, Christian Schulz
10. Übung Algorithmen I
INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Bäume
8. Übung zu Algorithmen I 15. Juni 2016
8. Übung zu Algorithmen I 15. Juni 2016 Lisa Kohl [email protected] (mit Folien von Julian Arz, Timo Bingmann, Sebastian Schlag, Christian Staudt und Christoph Striecks) Nachtrag: Quicksort, alternative
INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS
Julian Arz, Timo Bingmann, Sebastian Schlag INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Julian Universität Arz, des Timo LandesBingmann, Baden-Württemberg Sebastian und Schlag nationales
Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung.
Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 14. November 2007 1 / 22 2 / 22 Gliederung eulersche und semi-eulersche Graphen Charakterisierung eulerscher Graphen Berechnung eines
Bemerkung: Der vollständige Graph K n hat n(n 1)
Bemerkung: Der vollständige Graph K n hat n(n 1) 2 Kanten. Bew: Abzählen! Definition 111. Graphen mit n paarweise zyklisch verbundenen Kanten heißen Kreise (vom Grad n) und werden mit C n bezeichnet. Beispiel
Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen)
WS 2015/16 Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15
Vollständiger Graph. Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete).
Vollständiger Graph Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete). Mit K n wird der vollständige Graph mit n Knoten bezeichnet. Bemerkung
Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume)
WS 2016/17 Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16
Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza)
WS 2013/14 Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2013ws/ds/uebung/ 22. Januar 2014 ZÜ DS ZÜ XIII
Nachbarschaft, Grad, regulär, Inzidenz
Nachbarschaft, Grad, regulär, Inzidenz Definition Eigenschaften von Graphen Sei G = (V, E) ein ungerichteter Graph. 1 Die Nachbarschaftschaft Γ(u) eines Knoten u V ist Γ(u) := {v V {u, v} E}. 2 Der Grad
Für die Anzahl der Kanten in einem vollständigen Graphen (und damit für die maximale Anzahl von Kanten in einem einfachen Graphen) gilt:
Der K 4 lässt sich auch kreuzungsfrei zeichnen: Für die Anzahl der Kanten in einem vollständigen Graphen (und damit für die maximale Anzahl von Kanten in einem einfachen Graphen) gilt: ( ) n n (n 1) E
4. Kreis- und Wegeprobleme
4. Kreis- und Wegeprobleme Kapitelübersicht 4. Kreis- und Wegeprobleme Charakterisierung von eulerschen Graphen Bestimmung von eulerschen Wegen und Kreisen Hamiltonsche Graphen Abstände in Graphen Berechnung
5. Bäume und Minimalgerüste
5. Bäume und Minimalgerüste Charakterisierung von Minimalgerüsten 5. Bäume und Minimalgerüste Definition 5.1. Es ein G = (V, E) ein zusammenhängender Graph. H = (V,E ) heißt Gerüst von G gdw. wenn H ein
Lösungen zu Kapitel 5
Lösungen zu Kapitel 5 Lösung zu Aufgabe : (a) Es gibt derartige Graphen: (b) Offensichtlich besitzen 0 der Graphen einen solchen Teilgraphen. Lösung zu Aufgabe : Es sei G = (V, E) zusammenhängend und V
Freie Bäume und Wälder
(Martin Dietzfelbinger, Stand 4.6.2011) Freie Bäume und Wälder In dieser Notiz geht es um eine besondere Sorte von (ungerichteten) Graphen, nämlich Bäume. Im Gegensatz zu gerichteten Bäumen nennt man diese
Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr)
WS 2011/12 Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2011ws/ds/uebung/ 25. Januar 2012 ZÜ DS ZÜ XIII
Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008
Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 2007/08 Lösungsblatt 9
Algorithmen II Vorlesung am
Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum
1. Übung Algorithmen I
Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der
Eulerweg, Eulerkreis. Das Königsberger Brückenproblem. Definition 3.1. Ein Weg, der jede Kante von G genau einmal
3. Kreis- und Wegeprobleme Kapitelübersicht 3. Kreis- und Wegeprobleme Eulerweg, Eulerkreis Charakterisierung von eulerschen Graphen Bestimmung von eulerschen Wegen und Kreisen Hamiltonsche Graphen Definition
= n (n 1) 2 dies beruht auf der Auswahl einer zweielementigen Teilmenge aus V = n. Als Folge ergibt sich, dass ein einfacher Graph maximal ( n E = 2
1 Graphen Definition: Ein Graph G = (V,E) setzt sich aus einer Knotenmenge V und einer (Multi)Menge E V V, die als Kantenmenge bezeichnet wird, zusammen. Falls E symmetrisch ist, d.h.( u,v V)[(u,v) E (v,u)
10. Übungsblatt zu Algorithmen I im SS 2010
Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter Sanders G.V. Batz, C. Schulz, J. Speck 0. Übungsblatt zu Algorithmen I im SS 00 http//algo.iti.kit.edu/algorithmeni.php
Grundbegriffe der Informatik
Grundbegriffe der Informatik Kapitel 15: Graphen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik
Graphentheorie Graphentheorie. Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke
Graphen Graphentheorie Graphentheorie Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke 2 Was ist ein Graph? Ein Graph ist in der Graphentheorie eine abstrakte Struktur,
3 Klassifikation wichtiger Optimierungsprobleme
3 Klassifikation wichtiger Optimierungsprobleme 3.1 Das MIN- -TSP Wir kehren nochmal zurück zum Handlungsreisendenproblem für Inputs (w {i,j} ) 1 i
Fortgeschrittene Netzwerk- und Graph-Algorithmen
Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester
Algorithmen und Datenstrukturen SS09. Foliensatz 16. Michael Brinkmeier. Technische Universität Ilmenau Institut für Theoretische Informatik
Foliensatz 16 Michael Brinkmeier Technische Universität Ilmenau Institut für Theoretische Informatik Sommersemester 2009 TU Ilmenau Seite 1 / 45 Graphen TU Ilmenau Seite 2 / 45 Graphen 1 2 3 4 5 6 7 8
Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen
Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Bernhard Ganter WS 2013/14 1 Eulersche Graphen Kantenzug Ein Kantenzug in einem Graphen (V, E) ist eine Folge (a 0, a 1,..., a n ) von Knoten
Algorithmische Graphentheorie
Algorithmische Graphentheorie Vorlesung 4: Suchstrategien Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca [email protected] 14. April 2017 HALBORDNUNG TOPOLOGISCHE ORDNUNG TOPOLOGISCHES
KAPITEL 3 MATCHINGS IN BIPARTITEN GRAPHEN
KAPITEL 3 MATCHINGS IN BIPARTITEN GRAPHEN F. VALLENTIN, A. GUNDERT 1. Definitionen Notation 1.1. Ähnlich wie im vorangegangenen Kapitel zunächst etwas Notation. Wir beschäftigen uns jetzt mit ungerichteten
Das Briefträgerproblem
Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................
Grundbegriffe der Informatik
Grundbegriffe der Informatik Einheit 11: Graphen Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2010/2011 1/59 Graphische Darstellung von Zusammenhängen schon
Graphen. Leonhard Euler ( )
Graphen Leonhard Euler (1707-1783) 2 Graph Ein Graph besteht aus Knoten (nodes, vertices) die durch Kanten (edges) miteinander verbunden sind. 3 Nachbarschaftsbeziehungen Zwei Knoten heissen adjazent (adjacent),
Einheit 11 - Graphen
Einheit - Graphen Bevor wir in medias res (eigentlich heißt es medias in res) gehen, eine Zusammenfassung der wichtigsten Definitionen und Notationen für Graphen. Graphen bestehen aus Knoten (vertex, vertices)
1. Einige Begriffe aus der Graphentheorie
. Einige Begriffe aus der Graphentheorie Notation. Sei M eine Menge, n N 0. Dann bezeichnet P n (M) die Menge aller n- elementigen Teilmengen von M, und P(M) die Menge aller Teilmengen von M, d.h. die
Zentralübung zur Vorlesung Diskrete Strukturen
WS 2010/11 Zentralübung zur Vorlesung Diskrete Strukturen Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2010ws/ds/uebung/ 2. Februar 2011 ZÜ DS ZÜ XIII 1. Übungsbetrieb:
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Prof. Martin Lercher Institut für Informatik Heinrich-Heine-Universität Düsseldorf Teil 10 Suche in Graphen Version vom 13. Dezember 2016 1 / 2 Vorlesung 2016 / 2017 2 /
Algorithmen und Datenstrukturen 2-1. Seminar -
Algorithmen und Datenstrukturen 2-1. Seminar - Dominic Rose Bioinformatics Group, University of Leipzig Sommersemster 2010 Outline 1. Übungsserie: 3 Aufgaben, insgesamt 30 28 Punkte A1 Spannbäume (10 8
Studientag zur Algorithmischen Mathematik
Studientag zur Algorithmischen Mathematik Eulertouren, 2-Zusammenhang, Bäume und Baumisomorphismen Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 22. Mai 2011 Outline
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume
Effiziente Algorithmen und Datenstrukturen I Kapitel 9: Minimale Spannbäume Christian Scheideler WS 008 19.0.009 Kapitel 9 1 Minimaler Spannbaum Zentrale Frage: Welche Kanten muss ich nehmen, um mit minimalen
Bäume und Wälder. Seminar: Graphentheorie Sommersemester 2015 Dozent: Dr. Thomas Timmermann
Bäume und Wälder Seminar: Graphentheorie Sommersemester 2015 Dozent: Dr. Thomas Timmermann Ida Feldmann 2-Fach Bachelor Mathematik und Biologie 6. Fachsemester Inhaltsverzeichnis Einleitung 1 1. Bäume
Algorithmische Methoden für schwere Optimierungsprobleme
Algorithmische Methoden für schwere Optimierungsprobleme Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund
Euler und Hamiltonkreise
Euler und Hamiltonkreise 1. Königsberger Brücken 2. Eulerwege und Kreise Definition, Algorithmus mit Tiefensuche 3. Hamiltonwege und Kreise Definition 4. Problem des Handlungsreisenden Enumeration und
Westfählische Wilhelms-Universität. Eulersche Graphen. Autor: Jan-Hendrik Hoffeld
Westfählische Wilhelms-Universität Eulersche Graphen Autor: 21. Mai 2015 Inhaltsverzeichnis 1 Das Königsberger Brückenproblem 1 2 Eulertouren und Eulersche Graphen 2 3 Auffinden eines eulerschen Zyklus
Bäume und Wälder. Definition 1
Bäume und Wälder Definition 1 Ein Baum ist ein zusammenhängender, kreisfreier Graph. Ein Wald ist ein Graph, dessen Zusammenhangskomponenten Bäume sind. Ein Knoten v eines Baums mit Grad deg(v) = 1 heißt
2. November Gradfolgen Zusammenhang Kürzeste Wege. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37
2. November 2011 Gradfolgen Zusammenhang Kürzeste Wege H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37 Satz von Erdős und Gallai Eine Partition einer natürlichen Zahl ist genau dann die Gradfolge
WS 2008/09. Diskrete Strukturen
WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
Übungsklausur Algorithmen I
Universität Karlsruhe, Institut für Theoretische Informatik Prof. Dr. P. Sanders 26.5.2010 svorschlag Übungsklausur Algorithmen I Hiermit bestätige ich, dass ich die Klausur selbständig bearbeitet habe:
Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 6: Graphentheorie
Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kap. 6: Graphentheorie Lang 6 Beutelspacher 8.1-8.5 Meinel 11 zur Vertiefung: Aigner 6, 7 (7.4: Algorithmus von Dijkstra) Matousek
15. Elementare Graphalgorithmen
Graphen sind eine der wichtigste Modellierungskonzepte der Informatik Graphalgorithmen bilden die Grundlage vieler Algorithmen in der Praxis Zunächst kurze Wiederholung von Graphen. Dann Darstellungen
Graphentheorie. Formale Grundlagen (WIN) 2008S, F. Binder. Vorlesung im 2008S
Minimale Graphentheorie Formale Grundlagen (WIN) Franz Binder Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Minimale Inhalt
Graphen. Graphen und ihre Darstellungen
Graphen Graphen und ihre Darstellungen Ein Graph beschreibt Beziehungen zwischen den Elementen einer Menge von Objekten. Die Objekte werden als Knoten des Graphen bezeichnet; besteht zwischen zwei Knoten
1. Einführung. Grundbegriffe und Bezeichnungen. Beispiele. gerichtete Graphen. 1. Einführung Kapitelübersicht
1. Einführung Kapitelübersicht 1. Einführung Grundbegriffe und Bezeichnungen Beispiele Bäume gerichtete Graphen Graphentheorie HS Bonn-Rhein-Sieg, WS 2014/15 15 Das Königsberger Brückenproblem Beispiel
Minimal spannende Bäume
http://www.uni-magdeburg.de/harbich/ Minimal spannende Fakultät für Informatik Otto-von-Guericke-Universität 2 Inhalt Definition Wege Untergraphen Kantengewichtete Graphen Minimal spannende Algorithmen
Diskrete Mathematik. Hamiltonsche Graphen Teil I. Karina Arndt
Diskrete Mathematik Hamiltonsche Graphen Teil I Karina Arndt 21.06.2006 Übersicht Einleitung Hamiltonsch und eulersch Hamiltonsche Kreise Hamiltonsche Graphen neu zeichnen Kreise und Wege Reguläre Graphen
4.2 Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition 4.2.1
Allgemeines. Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition.. (a) Ein Graph G =(V, E) heißt kreisfrei, wenn er keinen Kreis besitzt. Beispiel: Ein kreisfreier Graph: FG KTuEA, TU Ilmenau
Grundlagen: Algorithmen und Datenstrukturen
Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 00
Maximale s t-flüsse in Planaren Graphen
Maximale s t-flüsse in Planaren Graphen Vorlesung Algorithmen für planare Graphen 6. Juni 2017 Guido Brückner INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg
Graphentheorie. Zusammenhang. Zusammenhang. Zusammenhang. Rainer Schrader. 13. November 2007
Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 13. November 2007 1 / 84 2 / 84 Gliederung stest und Schnittkanten älder und Bäume minimal aufspannende Bäume Der Satz von Menger 2-zusammenhängende
Tutoraufgabe 1 (Suchen in Graphen):
Prof. aa Dr. E. Ábrahám Datenstrukturen und Algorithmen SS14 F. Corzilius, S. Schupp, T. Ströder Tutoraufgabe 1 (Suchen in Graphen): a) Geben Sie die Reihenfolge an, in der die Knoten besucht werden, wenn
André Krischke Helge Röpcke. Graphen und Netzwerktheorie Grundlagen Methoden Anwendungen
André Krischke Helge Röpcke Graphen und Netzwerktheorie Grundlagen Methoden Anwendungen 8 Grundbegriffe der Graphentheorie für die Kante, die die beiden Knoten und verbindet. Der linke Graph in Bild. kann
Diskrete Mathematik 1
Ruhr-Universität Bochum Lehrstuhl für Kryptologie und IT-Sicherheit Prof. Dr. Alexander May M. Ritzenhofen, M. Mansour Al Sawadi, A. Meurer Lösungsblatt zur Vorlesung Diskrete Mathematik 1 WS 2008/09 Blatt
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
3. Musterlösung. Problem 1: Boruvka MST
Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner. Musterlösung Problem : Boruvka MST pt (a) Beweis durch Widerspruch. Sei T MST von G, e die lokal minimale Kante eines
Übungsblatt 2 - Lösung
Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 2 - Lösung Vorlesung Algorithmentechnik im WS 08/09 Ausgabe 04. November 2008 Abgabe 8. November, 5:0 Uhr (im Kasten vor Zimmer
Vorlesung 2 KÜRZESTE WEGE
Vorlesung 2 KÜRZESTE WEGE 34 Kürzeste Wege im Graphen Motivation! Heute:! Kürzeste Wege von einem Knoten (SSSP)! Kürzeste Wege zwischen allen Knotenpaaren (APSP)! Viele Anwendungen:! Navigationssysteme!
8 Diskrete Optimierung
8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von
Programmiertechnik II
Graph-Algorithmen Anwendungsgebiete "Verbundene Dinge" oft Teilproblem/Abstraktion einer Aufgabenstellung Karten: Wie ist der kürzeste Weg von Sanssouci nach Kunnersdorf? Hypertext: Welche Seiten sind
2. Repräsentationen von Graphen in Computern
2. Repräsentationen von Graphen in Computern Kapitelinhalt 2. Repräsentationen von Graphen in Computern Matrizen- und Listendarstellung von Graphen Berechnung der Anzahl der verschiedenen Kantenzüge zwischen
Fortgeschrittene Netzwerk- und Graph-Algorithmen
Fortgeschrittene Netzwerk- und Graph-Algorithmen Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester 2010/11
Kombinatorische Optimierung
Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 4 Programm des
1.Aufgabe: Minimal aufspannender Baum
1.Aufgabe: Minimal aufspannender Baum 11+4+8 Punkte v 1 v 2 1 3 4 9 v 3 v 4 v 5 v 7 7 4 3 5 8 1 4 v 7 v 8 v 9 3 2 7 v 10 Abbildung 1: Der Graph G mit Kantengewichten (a) Bestimme mit Hilfe des Algorithmus
Graphentheorie 1. Diskrete Strukturen. Sommersemester Uta Priss ZeLL, Ostfalia. Hausaufgaben Graph-Äquivalenz SetlX
Graphentheorie 1 Diskrete Strukturen Uta Priss ZeLL, Ostfalia Sommersemester 2016 Diskrete Strukturen Graphentheorie 1 Slide 1/19 Agenda Hausaufgaben Graph-Äquivalenz SetlX Diskrete Strukturen Graphentheorie
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
11. Übung Algorithmen I
Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der Helmholtz-Gemeinschaft
Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen
Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden [email protected] WS 2009/10 1 Bernhard Ganter, TU Dresden Modul
Kurs 1663 Datenstrukturen" Musterlösungen zur Klausur vom Seite 1. Musterlösungen zur Hauptklausur Kurs 1663 Datenstrukturen 15.
Kurs 1663 Datenstrukturen" Musterlösungen zur Klausur vom 15.08.98 Seite 1 Musterlösungen zur Hauptklausur Kurs 1663 Datenstrukturen 15. August 1998 Kurs 1663 Datenstrukturen" Musterlösungen zur Klausur
5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c)
5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) mit V = {1,...,n} und E {(v, w) 1 apple v, w apple n, v 6= w}. c : E!
12. Übung Algorithmen I
12. Übung Algorithmen I Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und 12. Übung Algorithmen
Wie findet man den optimalen Weg zum Ziel? Klassische Probleme der Kombinatorischen Optimierung
Wie findet man den optimalen Weg zum Ziel? Klassische Probleme der Kombinatorischen Optimierung Teilnehmer/innen: Markus Dahinten, Graf Münster Gymnasium Bayreuth Robert Fay, Herder Gymnasium Berlin Falko
Breitensuche BFS (Breadth First Search)
Breitensuche BFS (Breadth First Search) Algorithmus BREITENSUCHE EINGABE: G = (V, E) als Adjazenzliste, Startknoten s V 1 Für alle v V 1 If (v = s) then d[v] 0 else d[v] ; 2 pred[v] nil; 2 Q new Queue;
Isomorphie von Bäumen
Isomorphie von Bäumen Alexandra Weinberger 23. Dezember 2011 Inhaltsverzeichnis 1 Einige Grundlagen und Definitionen 2 1.1 Bäume................................. 3 1.2 Isomorphie..............................
Graphenalgorithmen I
enalgorithmen I Tobias Pröger 21. Dezember 2016 Erklärung: Diese Mitschrift ist als Ergänzung zur Vorlesung gedacht. Wir erheben keinen Anspruch auf Vollständigkeit und Korrektheit. Wir sind froh über
Fünf-Farben-Satz. Seminar aus reiner Mathematik, WS 13/14. Schweighofer Lukas, November Seite 1
Der Fünf- Farben-Satz Seminar aus reiner Mathematik, WS 13/14 Schweighofer Lukas, November 2013 Seite 1 Inhaltsverzeichnis Vorwort...3 Graphentheoretische Grundlagen...4 Satz 2 (Eulerscher Polyedersatz)...7
Zweizusammenhang und starker Zusammenhang
.. Zeizusammenhang und starker Zusammenhang Carsten Gutenger Vorlesung Algorithmen und Datenstrukturen WS /. Januar Zeizusammenhang Betrachte ein Netzerk (Graph) Z.B. Computernetzerk, Flug- oder Schienennetzerk
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik Vorlesung am 17. Januar 2012 INSTITUT FÜR THEORETISCHE 0 KIT 18.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der
Anmerkungen zur Übergangsprüfung
DM11 Slide 1 Anmerkungen zur Übergangsprüfung Aufgabeneingrenzung Aufgaben des folgenden Typs werden wegen ihres Schwierigkeitsgrads oder wegen eines ungeeigneten fachlichen Schwerpunkts in der Übergangsprüfung
Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V.
Kapitel 4 Graphenalgorithmen 4.1 Definitionen Definition 4.1.1. Der Graph G = (V, E) ist über die beiden Mengen V und E definiert, wobei V die Menge der Knoten und E die Menge der Kanten in dem Graph ist.
9. Übung Algorithmen I
INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Musterlösung
