12. Übung Algorithmen I

Größe: px
Ab Seite anzeigen:

Download "12. Übung Algorithmen I"

Transkript

1 12. Übung Algorithmen I Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und 12. Übung Algorithmen I nationales Forschungszentrum in der Helmholtz-Gemeinschaft Fakultät für Informatik Institut für Theoretische Informatik

2 Inhalt Organisatorisches Klausur Programmierwettbewerb Übersicht der Übungen 2 Timo Bingmann, Christian Schulz 12. Übung Algorithmen I Fakultät für Informatik Institut für Theoretische Informatik

3 Organisatorisches Klausuranmeldung Klausuranmeldung bis einschließlich Bei Problemen mit der Anmeldung: zwei s: an (mit uns im CC). an Studienbüro (mit uns im CC). 3 Timo Bingmann, Christian Schulz 12. Übung Algorithmen I Fakultät für Informatik Institut für Theoretische Informatik

4 Organisatorisches Handbeschriebenes Merkblatt Ein A4 doppelseitig handbeschriebenes Blatt. Maschinenerzeugte Blätter werden eingesammelt! Bonuspunkte für die Klausur Insgesamt: 305 normale Übungspunkte erreichbar (Zusatzpunkte sind nicht in 100% enthalten) x Übungspunkten werden linear skaliert auf [0, 3] Bonuspunkte (bis zu 5%) in der Klausur: x 76 Punkte 0 Bonuspunkte, 76 < x 152 Punkte 1 Bonuspunkt, 152 < x 228 Punkte 2 Bonuspunkte, x > 228 Punkte 3 Bonuspunkte. 4 Timo Bingmann, Christian Schulz 12. Übung Algorithmen I Fakultät für Informatik Institut für Theoretische Informatik

5 Programmierwettbewerb 5 Timo Bingmann, Christian Schulz 12. Übung Algorithmen I Fakultät für Informatik Institut für Theoretische Informatik

6 Programmierwettbewerb Statistik: Sieben Einsendungen. Programmiersprachen: C, C++, Java, C# und BASIC Zwischen 1096 und 181 Zeilen Quellcode (sloccount) 6 Timo Bingmann, Christian Schulz 12. Übung Algorithmen I Fakultät für Informatik Institut für Theoretische Informatik

7 Programmierwettbewerb Statistik: Sieben Einsendungen. Programmiersprachen: C, C++, Java, C# und BASIC Zwischen 1096 und 181 Zeilen Quellcode (sloccount) Abweichung von korrekter DNA in zehn Testfällen: test1 test2 test3 test4 test5 test6 test7 test8 test9 test10 Summe BASIC Physicist Batzill Henningsen Labeit Miltenberger Vier Nibble terminiert nicht in 3h Weber Timo Bingmann, Christian Schulz 12. Übung Algorithmen I Fakultät für Informatik Institut für Theoretische Informatik

8 Preisverleihung Platz 1: Johannes Batzill 7 Timo Bingmann, Christian Schulz 12. Übung Algorithmen I Fakultät für Informatik Institut für Theoretische Informatik

9 Preisverleihung Platz 1: Platz 2: Johannes Batzill Fabian Miltenberger 7 Timo Bingmann, Christian Schulz 12. Übung Algorithmen I Fakultät für Informatik Institut für Theoretische Informatik

10 Preisverleihung Platz 1: Platz 2: Platz 3: Johannes Batzill Fabian Miltenberger Julian Labeit Hauke Henningsen 7 Timo Bingmann, Christian Schulz 12. Übung Algorithmen I Fakultät für Informatik Institut für Theoretische Informatik

11 Worum geht es? Referenz und Fragmente ( Reads ) von Patient gegeben Gesucht: Patienten DNA Schwierigkeit: Reads ungeordnet und sehr fehlerbehaftet (2%)

12 Gegeben: Referenz

13 Gegeben: Reads Gegeben: Referenz

14 Gesucht: Patient Gegeben: Reads Gegeben: Referenz

15 Abweichung 2% Patient Reads sind ungeordnet Reads 0,1% Referenz

16 Patient Reads AGGCTAGGCCTGAGTCAACGGTCCCGTGAGCTGT Referenz

17 Referenz indizieren Lösung Anhand Indizierung für jedes einzelne Read beste Position ermitteln Angeordnete Reads überlagern und so auf Patienten DNA schließen

18 Referenz indizieren Patient Hashtabelle Reads Referenz

19 Referenz indizieren Patient Hashtabelle Reads insert(key, value) key Referenz

20 Referenz indizieren Patient Hashtabelle Reads GCCGTAGAA value key Referenz

21 Referenz indizieren Patient Hashtabelle Reads key GCCGTAGAA insert(key, value) key Referenz

22 Referenz indizieren Patient Hashtabelle AACGTTTAG GCCGTAGAA Reads Referenz

23 Anhand Indizierung für jedes einzelne Read beste Position ermitteln Hashtabelle AACGTTTAG GCCGTAGAA Reads Referenz

24 Anhand Indizierung für jedes einzelne Read beste Position ermitteln Hashtabelle AACGTTTAG GCCGTAGAA key Reads Referenz

25 Anhand Indizierung für jedes einzelne Read beste Position ermitteln Hashtabelle AACGTTTAG GCCGTAGAA key Reads Referenz

26 Anhand Indizierung für jedes einzelne Read beste Position ermitteln Hashtabelle AACGTTTAG GCCGTAGAA key Reads Referenz

27 Anhand Indizierung für jedes einzelne Read beste Position ermitteln Hashtabelle AACGTTTAG GCCGTAGAA key Reads Referenz

28 Anhand Indizierung für jedes einzelne Read beste Position ermitteln Hashtabelle AACGTTTAG GCCGTAGAA Reads Referenz

29 Anhand Indizierung für jedes einzelne Read beste Position ermitteln Reads Referenz

30 Überlagerung Angeordnete Reads überlagern und so auf Patienten DNA schließen Patient Reads

31 Ein paar technische Daten Bei den Testdaten existieren Reads, jedes ist ~300 Zeichen lang (500mib insgesamt) Referenz der Testdaten ist 50mib lang, enthält also = Säure-Base-Paare Die Hashtabelle hat 2 24 = Einträge Die Keys sind 12 Zeichen lang und werden direkt auf Hashtabelleneinträge abgebildet Es werden für die Testdaten gesamt knapp weniger als 2gib Hauptspeicher vom Programm verwendet Parallelisierung: Je 8 Reads werden gleichzeitig verarbeitet Braucht etwa 520 Sekunden zum Finden der Lösung Verwendete Sprache: C (MinGW als Compiler, pthreads API für die Parallelisierung)

32 Quellcode

33 Siegerprogramm Nicht Referenz, sondern Reads werden indiziert Anschließend wird Referenz durchlaufen, und nur eindeutig positionierbaren Reads fest eine Position zugeordnet, für lediglich sehr wahrscheinlich zuordnenbare Reads wird Stelle mit höchster Ähnlichkeit gemerkt Bereits fest positionierte Reads werden dabei berücksichtigt Reads mit lediglich hoher Ähnlichkeit werden erst anschließend zur Bildung der Patienten-DNA, zusammen mit der Referenz und den fest positionierten Reads, verwendet

34 Übersicht der Übungensinhalte 8 Timo Bingmann, Christian Schulz 12. Übung Algorithmen I Fakultät für Informatik Institut für Theoretische Informatik

35 Übersicht der Übungen I Die folgende Übersicht der Inhalte der Übungen umfasst nicht alles Wichtige für die Klausur! Aber: ausgeschlossene Inhalten werden nicht in der Klausur verlangt. 9 Timo Bingmann, Christian Schulz 12. Übung Algorithmen I Fakultät für Informatik Institut für Theoretische Informatik

36 Übersicht der Übungen II 1. Übung O-Kalkül: Definitionen, Intuition, Äquivalenzen, Logarithmen. Invarianten: in Schleifen, zur Korrektheit, Nachbedingungen, Induktion. Modellierung mit Graphen: DAG Prüfung, Landkarten, Partitionierung (Definition). nicht: Karatsuba-Ofman Rechnung. 2. Übung Rekurrenzen: Raten, Abschätzen, Substitution, Induktion, Master-Theorem. nicht: generierende Funktionen. 10 Timo Bingmann, Christian Schulz 12. Übung Algorithmen I Fakultät für Informatik Institut für Theoretische Informatik

37 Übersicht der Übungen III 3. Übung Amortisierte Analyse: Binärzähler, Aggregatmethode, Kontomethode. Anwendung amortisierte Analyse: Hotlist-Datenstruktur, Unbounded Array. Hashtabellen: Duplikaterkennung, LRU-Pager (Kombination verkettete Liste und Hashtabellen). 11 Timo Bingmann, Christian Schulz 12. Übung Algorithmen I Fakultät für Informatik Institut für Theoretische Informatik

38 Übersicht der Übungen IV 4. Übung Hashing: Unbounded Hashtables, universelle Hashfunktionen, Bit-Matrix-Multiplikation als Hashfunktion. nicht: Bloom Filter. Deamortisierung: unbounded Arrays. Sortieren: Übersicht, Selection Sort, Insertion Sort, Merge Sort, Quick Sort, Ternary Quick Sort, Quick-Select. nicht: average case Insertion Sort. 5. Übung 12 Timo Bingmann, Christian Schulz 12. Übung Algorithmen I Fakultät für Informatik Institut für Theoretische Informatik

39 Übersicht der Übungen V 6. Übung Vollständige Binärbäume: Definitionen, implizite Darstellung. Heapsort mit Max-Heap: Algorithmen und Anwendung. Adressierbare binäre Heaps: Operationen, Invariante und Pseudocode. 7. Übung nicht: Rot-Schwarz Bäume. Binäre Suchbäume: Catalan-Zahlen. Hashing: von Zeichenketten (nicht: Code). 13 Timo Bingmann, Christian Schulz 12. Übung Algorithmen I Fakultät für Informatik Institut für Theoretische Informatik

40 Übersicht der Übungen VI 8. Übung Graphen Grundlagen: Adjazenzfeld, Symmetrie, DAGs, Potenzierung. Analyse: Teilgraphen, knoteninduzierte Teilgraphen, K -core. Algorithmen: Durchmesser, Breitensuche. nicht: Details der Graphpartitionierung (Multilevel Framework, Initial Partitioning, Bubbling, Anwendungen). 9. Übung Graphen (2) Definitionen: Relationen, Hyperwürfel, vollständige Graphen, etc (alles sehr wichtig). Sätze: Handshake-Lemma und Korollar, Charakterisierung von Bäumen. nicht: Satz von Cayley, Eulersche und Hamiltonsche Kreise. kürzeste Wege: Bellman-Ford und Finden negativer Kreise. 14 Timo Bingmann, Christian Schulz 12. Übung Algorithmen I Fakultät für Informatik Institut für Theoretische Informatik

41 Übersicht der Übungen VII 10. Übung Exkurse nicht: Contraction Hierarchies. nicht: Filter-Kruskal MST. Lineare Programmierung: Modellbildung, Anwendung, 2D-Lösen. nicht: Dualitätssatz der LP oder das MST LP, (aber: kürzeste Wege LP). 11. Übung Dynamische Programmierung: Anwendung, Fibonacci-Zahlen, Largest One Submatrix, Maximale Teilfolge, Maximum Submatrix. nicht: Faltungscodes, Schieberegister, Trellis, Viterbi-Algorithmus. 12. Übung nicht: evolutionäre Graphpartitionierung 15 Timo Bingmann, Christian Schulz 12. Übung Algorithmen I Fakultät für Informatik Institut für Theoretische Informatik

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS Julian Arz, Timo Bingmann, Sebastian Schlag INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Julian Universität Arz, des Timo LandesBingmann, Baden-Württemberg Sebastian und Schlag nationales

Mehr

11. Übung Algorithmen I

11. Übung Algorithmen I Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

1. Übung Algorithmen I

1. Übung Algorithmen I Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der

Mehr

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS Julian Arz, Timo Bingmann, Sebastian Schlag INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Julian Universität Arz, des Timo LandesBingmann, Baden-Württemberg Sebastian und Schlag nationales

Mehr

9. Übung Algorithmen I

9. Übung Algorithmen I Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der

Mehr

4. Übung zu Algorithmen I 17. Mai 2017

4. Übung zu Algorithmen I 17. Mai 2017 4. Übung zu Algorithmen I 17. Mai 2017 Björn Kaidel [email protected] (mit Folien von Julian Arz, Timo Bingmann, Lisa Kohl, Christian Schulz, Sebastian Schlag und Christoph Striecks) Organisatorisches

Mehr

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS Julian Arz, Timo Bingmann, Sebastian Schlag INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS KIT Julian Universität Arz, des Timo LandesBingmann, Baden-Württemberg Sebastian und Schlag nationales 2.

Mehr

Konvexe Hülle. Abbildung: [Wikipedia]: Nicht-konvexe Menge (links), konvexe Menge (rechts) KIT Institut für Theoretische Informatik 510

Konvexe Hülle. Abbildung: [Wikipedia]: Nicht-konvexe Menge (links), konvexe Menge (rechts) KIT Institut für Theoretische Informatik 510 Konvexe Hülle Definition konvexe Menge: Für je zwei beliebige Punkte, die zur Menge gehören, liegt auch stets deren Verbindungsstrecke ganz in der Menge. Abbildung: [Wikipedia]: Nicht-konvexe Menge (links),

Mehr

Übungsklausur Algorithmen I

Übungsklausur Algorithmen I Universität Karlsruhe, Institut für Theoretische Informatik Prof. Dr. P. Sanders 26.5.2010 svorschlag Übungsklausur Algorithmen I Hiermit bestätige ich, dass ich die Klausur selbständig bearbeitet habe:

Mehr

3. Übung Algorithmen I

3. Übung Algorithmen I INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Hashtabellen:

Mehr

Karlsruher Institut für Technologie. Klausur Algorithmen I

Karlsruher Institut für Technologie. Klausur Algorithmen I Klausur-ID: Vorname: Matrikelnummer: Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Jörn Müller-Quade 11. April 2018 Klausur Algorithmen I Aufgabe 1. Kleinaufgaben 15 Punkte

Mehr

Algorithmen 1 Tutorium

Algorithmen 1 Tutorium Algorithmen 1 Tutorium Tutorium 13 Misch Sadler 18. Juli 2011 INHALT: VIELES Übersicht 1 Dynamische Programmierung 2 Wiederholung 3 Klausuraufgaben 4 Ende Misch Sadler Algo 1 Tut 18. Juli 2011 2/21 Übersicht

Mehr

7. Übung Algorithmen I

7. Übung Algorithmen I Timo Bingmann, Dennis Luxen INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS Timo Bingmann, Dennis Luxen KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

NAME, VORNAME: Studiennummer: Matrikel:

NAME, VORNAME: Studiennummer: Matrikel: TU Ilmenau, Fakultat IA Institut für Theoretische Informatik FG Komplexitätstheorie und Effiziente Algorithmen Prof. Dr. (USA) M. Dietzfelbinger Klausur Algorithmen und Datenstrukturen SS08, Ing.-Inf.

Mehr

Karlsruher Institut für Technologie Institut für Theoretische Informatik. Übungsklausur Algorithmen I

Karlsruher Institut für Technologie Institut für Theoretische Informatik. Übungsklausur Algorithmen I Vorname: Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Jörn Müller-Quade 21.06.2017 Übungsklausur Algorithmen I Aufgabe 1. Kleinaufgaben 8 Punkte Aufgabe 2. Hashing 6 Punkte

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Martin Dietzfelbinger Kurt Mehlhorn Peter Sanders Algorithmen und Datenstrukturen Die Grundwerkzeuge Springer Vieweg 1 Vorspeise: Arithmetik für ganze Zahlen 1 1.1 Addition 2 1.2 Multiplikation: Die Schulmethode

Mehr

Carlos Camino Grundlagen: Algorithmen und Datenstrukturen SS 2015

Carlos Camino Grundlagen: Algorithmen und Datenstrukturen SS 2015 Themenüberblick Dieses Dokument stellt eine Art Checkliste für eure Klausurvorbereitung dar. Zu jedem Thema im Skript sind hier ein paar Leitfragen aufgelistet. Ab Seite 4 findet ihr alle Zusammenfassungen,

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 7 (21.5.2014) Binäre Suche, Hashtabellen I Algorithmen und Komplexität Abstrakte Datentypen : Dictionary Dictionary: (auch: Maps, assoziative

Mehr

DAP2-Klausur

DAP2-Klausur DAP2-Klausur 09.10.2004 Vorname : Familienname: Ich studiere (Bitte markieren): Informatik (inkl. angewandte Informatik)/ Lehramt Informatik/Informationstechnik/ Physik/Mathe/Statistik/Sonstiges: Bitte

Mehr

Karlsruher Institut für Technologie Institut für Theoretische Informatik. Klausur Algorithmen I

Karlsruher Institut für Technologie Institut für Theoretische Informatik. Klausur Algorithmen I Vorname: Matrikelnummer: Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Jörn Müller-Quade 4. September 2017 Klausur Algorithmen I Aufgabe 1. Kleinaufgaben 15 Punkte Aufgabe

Mehr

Datenstrukturen und Algorithmen 2. Klausur SS 2001

Datenstrukturen und Algorithmen 2. Klausur SS 2001 UNIVERSITÄT PADERBORN FACHBEREICH 7 (MATHEMATIK INFORMATIK) Datenstrukturen und Algorithmen 2. Klausur SS 200 Lösungsansätze Dienstag, 8. September 200 Name, Vorname:...................................................

Mehr

Matrikelnummer: Klausur Algorithmen I, Blatt 1 von 16

Matrikelnummer: Klausur Algorithmen I, Blatt 1 von 16 Klausur Algorithmen I, 7.07.00 Blatt von 6 Aufgabe. Kleinaufgaben [9 Punkte] a. Geben Sie eine Familie von DAGs an, in der alle DAGs Ω(n ) Kanten haben bei n Knoten. Für jedes n N >0 ein Graph G n = (V

Mehr

4. Übung Algorithmen I

4. Übung Algorithmen I Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der

Mehr

Inhaltsübersicht. Vorwort 15. Vorwort zur deutschen Ausgabe 22. Kapitel 1 Elemente der Programmierung 25. Kapitel 2 Funktionen und Module 203

Inhaltsübersicht. Vorwort 15. Vorwort zur deutschen Ausgabe 22. Kapitel 1 Elemente der Programmierung 25. Kapitel 2 Funktionen und Module 203 Inhaltsübersicht Vorwort 15 Vorwort zur deutschen Ausgabe 22 Kapitel 1 Elemente der Programmierung 25 Kapitel 2 Funktionen und Module 203 Kapitel 3 Objektorientierte Programmierung 335 Kapitel 4 Algorithmen

Mehr

Wie beim letzten Mal - bitte besucht: http://pingo.upb.de/549170 Ihr seid gleich wieder gefragt... Übung Algorithmen I 4.5.16 Lukas Barth [email protected] (Mit Folien von Julian Arz, Timo Bingmann,

Mehr

Inhaltsverzeichnis. Teil 1 Grundlagen 21. Teil 2 Datenstrukturen 85

Inhaltsverzeichnis. Teil 1 Grundlagen 21. Teil 2 Datenstrukturen 85 Inhaltsverzeichnis Vorwort 13 Umfang 14 Einsatz als Unterrichtsmittel 14 Algorithmen mit Praxisbezug 15 Programmiersprache 16 Danksagung 17 Vorwort des Java-Beraters 18 Hinweise zu den Übungen 19 Teil

Mehr

Übung Algorithmen I

Übung Algorithmen I Übung Algorithmen I 10.5.17 Sascha Witt [email protected] (Mit Folien von Lukas Barth, Julian Arz, Timo Bingmann, Sebastian Schlag und Christoph Striecks) Roadmap Listen Skip List Hotlist Amortisierte

Mehr

10. Übung Algorithmen I

10. Übung Algorithmen I INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Bäume

Mehr

Übungsklausur Algorithmen I

Übungsklausur Algorithmen I Jun.-Prof. Hofheinz, Jun.-Prof. Meyerhenke (ITI, KIT) 08.06.2015 Übungsklausur Algorithmen I Aufgabe 1. (Algorithm Engineering) Nennen Sie zwei Konzepte, die Algorithm Engineering im Gegensatz zu theoretischer

Mehr

Algorithmen I - Tutorium 28 Nr. 2

Algorithmen I - Tutorium 28 Nr. 2 Algorithmen I - Tutorium 28 Nr. 2 11.05.2017: Spaß mit Invarianten (die Zweite), Rekurrenzen / Mastertheorem und Merging Marc Leinweber [email protected] INSTITUT FÜR THEORETISCHE INFORMATIK

Mehr

Übungsklausur Algorithmen I

Übungsklausur Algorithmen I Name: Vorname: Matrikelnr.: Tutorium: Jun.-Prof. Hofheinz, Jun.-Prof. Meyerhenke (ITI, KIT) 08.06.2015 Übungsklausur Algorithmen I Aufgabe 1. (Algorithm Engineering) [2 Punkte] Nennen Sie zwei Konzepte,

Mehr

Datenstrukturen und Algorithmen (SS 2013) Prof. Dr. Leif Kobbelt Thomas Ströder, Fabian Emmes, Sven Middelberg, Michael Kremer

Datenstrukturen und Algorithmen (SS 2013) Prof. Dr. Leif Kobbelt Thomas Ströder, Fabian Emmes, Sven Middelberg, Michael Kremer Präsenzübung Datenstrukturen und Algorithmen (SS 2013) Prof. Dr. Leif Kobbelt Thomas Ströder, Fabian Emmes, Sven Middelberg, Michael Kremer Dienstag, 28. Mai 2013 Nachname: Vorname: Matrikelnummer: Studiengang:

Mehr

3. Übung Algorithmen I

3. Übung Algorithmen I Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der

Mehr

Willkommen zur Vorlesung. Algorithmen und Datenstrukturen

Willkommen zur Vorlesung. Algorithmen und Datenstrukturen Willkommen zur Vorlesung Algorithmen und Datenstrukturen Mein Name: Andreas Berndt Zum Dozenten Diplom-Informatiker (TU Darmstadt) Derzeit Software-Entwickler für Web- Applikationen Derzeitige Sprachen:

Mehr

Algorithmen und Datenstrukturen Tafelübung 14. Jens Wetzl 8. Februar 2012

Algorithmen und Datenstrukturen Tafelübung 14. Jens Wetzl 8. Februar 2012 Algorithmen und Datenstrukturen Tafelübung 14 Jens Wetzl 8. Februar 2012 Folien Keine Garantie für Vollständigkeit und/oder Richtigkeit Keine offizielle Informationsquelle LS2-Webseite Abrufbar unter:

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Universität Innsbruck Institut für Informatik Zweite Prüfung 16. Oktober 2008 Algorithmen und Datenstrukturen Name: Matrikelnr: Die Prüfung besteht aus 8 Aufgaben. Die verfügbaren Punkte für jede Aufgabe

Mehr

Informatik II Prüfungsvorbereitungskurs

Informatik II Prüfungsvorbereitungskurs Informatik II Prüfungsvorbereitungskurs Tag 4, 9.6.2017 Giuseppe Accaputo [email protected] 1 Aufbau des PVK Tag 1: Java Teil 1 Tag 2: Java Teil 2 Tag 3: Algorithmen & Komplexität Tag 4: Dynamische Datenstrukturen,

Mehr

Klausur Algorithmen und Datenstrukturen

Klausur Algorithmen und Datenstrukturen Technische Universität Braunschweig Wintersemester 2014/2015 Institut für Betriebssysteme und Rechnerverbund Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Dr. Christian Scheffer Klausur Algorithmen

Mehr

Datenstrukturen (SoSe 12) Klausur (Modulabschlussprüfung)

Datenstrukturen (SoSe 12) Klausur (Modulabschlussprüfung) Goethe-Universität Frankfurt am Main 27. Juli 2012 Institut für Informatik Theorie komplexer Systeme Dr. Mariano Zelke Datenstrukturen (SoSe 12) Klausur (Modulabschlussprüfung) Name: Vorname: Studiengang:

Mehr

Übung Algorithmen I

Übung Algorithmen I Übung Algorithmen I 24.5.17 Sascha Witt [email protected] (Mit Folien von Lukas Barth, Julian Arz, Timo Bingmann, Sebastian Schlag und Christoph Striecks) Organisatorisches Übungsklausur Am 21.06.2017

Mehr

Inhaltsverzeichnis. Einführende Bemerkungen 11. Das Fach Informatik 11 Zielsetzung der Vorlesung Grundbegriffe

Inhaltsverzeichnis. Einführende Bemerkungen 11. Das Fach Informatik 11 Zielsetzung der Vorlesung Grundbegriffe Inhaltsverzeichnis Einführende Bemerkungen 11 Das Fach Informatik 11 Zielsetzung der Vorlesung 12 1. Grundbegriffe 1 3 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Information und Nachricht 1.1.1 Information 1.1.2 Nachricht

Mehr

Algorithmen und Datenstrukturen 12

Algorithmen und Datenstrukturen 12 12. Juli 2012 1 Besprechung Blatt 11 Fragen 2 Binary Search Binäre Suche in Arrays Binäre Suchbäume (Binary Search Tree) 3 Sortierverfahren Allgemein Heapsort Bubblesort Insertionsort Mergesort Quicksort

Mehr

Algorithmen und Datenstrukturen 1 VU 6.0 Nachtragstest SS Oktober 2014

Algorithmen und Datenstrukturen 1 VU 6.0 Nachtragstest SS Oktober 2014 Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.813 Algorithmen und Datenstrukturen 1 VU 6.0 Nachtragstest SS 2014 22. Oktober

Mehr

Robert Sedgewick. Algorithmen in Java. »il 1-4 Grundlagen Datenstrykturen Sortleren Suchen. java-beratung durch Michael Schidlowsky

Robert Sedgewick. Algorithmen in Java. »il 1-4 Grundlagen Datenstrykturen Sortleren Suchen. java-beratung durch Michael Schidlowsky Robert Sedgewick Algorithmen in Java»il 1-4 Grundlagen Datenstrykturen Sortleren Suchen java-beratung durch Michael Schidlowsky 3., überarbeitete Auflage PEARSON ein Imprint von Pearson Education München

Mehr

8. Übung Algorithmen I

8. Übung Algorithmen I INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Grundlagen

Mehr

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php? Algorithmen I Prof. Jörn Müller-Quade 17.05.2017 Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?id=799 (Folien von Peter Sanders) KIT Institut für Theoretische Informatik

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume)

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) WS 2016/17 Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Inhaltsverzeichnis. 7.9 Aufgaben...207

Inhaltsverzeichnis. 7.9 Aufgaben...207 Inhaltsverzeichnis 1 Die Programmiersprache C im Überblick... 1 1.1 Kurzer historischer Abriss..... 1 1.2 Grundlegende Konzepte... 2 1.2.1 Zeichenvorrat von C.... 2 1.2.2 Ausdrücke... 6 1.2.3 Aufbau der

Mehr

9 Minimum Spanning Trees

9 Minimum Spanning Trees Im Folgenden wollen wir uns genauer mit dem Minimum Spanning Tree -Problem auseinandersetzen. 9.1 MST-Problem Gegeben ein ungerichteter Graph G = (V,E) und eine Gewichtsfunktion w w : E R Man berechne

Mehr

Klausur Algorithmen und Datenstrukturen SS August Arbeitszeit 90 min

Klausur Algorithmen und Datenstrukturen SS August Arbeitszeit 90 min TU Ilmenau, Fakultät für Informatik und Automatisierung FG Komplexitätstheorie und Effiziente Algorithmen Univ.-Prof. Dr. M. Dietzfelbinger, Dipl.-Ing. C. Mattern Klausur Algorithmen und Datenstrukturen

Mehr

Übung Algorithmen I

Übung Algorithmen I Übung Algorithmen I 18.5.16 Lukas Barth [email protected] (Mit Folien von Julian Arz, Timo Bingmann, Sebastian Schlag und Christoph Striecks) Roadmap Sortieren Kleine Wiederholung Visualisierungen Adaptives

Mehr

Heapsort / 1 A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

Heapsort / 1 A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] Heapsort / 1 Heap: Ein Array heißt Heap, falls A [i] A [2i] und A[i] A [2i + 1] (für 2i n bzw. 2i + 1 n) gilt. Beispiel: A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] Heapsort / 2 Darstellung eines Heaps als

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2018 Dr. Stefanie Demirci Computer Aided Medical Procedures Technische Universität München Organisatorisches: Keine Vorlesung nächste Woche wegen

Mehr

Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)).

Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). 8. Untere Schranken für Sortieren Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). Werden nun gemeinsame Eigenschaften dieser Algorithmen untersuchen. Fassen gemeinsame

Mehr

Informatik II: Algorithmen & Datenstrukturen. Blättern Sie nicht um bevor Sie dazu aufgefordert werden!

Informatik II: Algorithmen & Datenstrukturen. Blättern Sie nicht um bevor Sie dazu aufgefordert werden! Albert-Ludwigs-Universität Institut für Informatik Prof. Dr. F. Kuhn Informatik II: Algorithmen & Datenstrukturen Montag, 29. August, 2014, 14:00 17:00 Name:...........................................................

Mehr

Robert Sedgewick. Algorithmen in Java. Teil 1-4 Grundlagen Datenstrukturen Sortieren Suchen. Java-Beratung durch Michael Schidlowsky

Robert Sedgewick. Algorithmen in Java. Teil 1-4 Grundlagen Datenstrukturen Sortieren Suchen. Java-Beratung durch Michael Schidlowsky Robert Sedgewick Algorithmen in Java Teil 1-4 Grundlagen Datenstrukturen Sortieren Suchen Java-Beratung durch Michael Schidlowsky 3., überarbeitete Auflage \ PEARSON ein Imprint von Pearson Education München

Mehr

Humboldt-Universität zu Berlin Berlin, den Institut für Informatik

Humboldt-Universität zu Berlin Berlin, den Institut für Informatik Humboldt-Universität zu Berlin Berlin, den 15.06.2015 Institut für Informatik Prof. Dr. Ulf Leser Übungen zur Vorlesung M. Bux, B. Grußien, J. Sürmeli, S. Wandelt Algorithmen und Datenstrukturen Übungsblatt

Mehr

Algorithmen I - Tutorium 28 Nr. 12

Algorithmen I - Tutorium 28 Nr. 12 Algorithmen I - Tutorium 28 Nr. 12 20.07.2017: Spaß mit Dynamischer und Linearer Programmierung Marc Leinweber [email protected] INSTITUT FÜR THEORETISCHE INFORMATIK (ITI), PROF. DR. JÖRN

Mehr

Datenstrukturen und Algorithmen (SS 2013)

Datenstrukturen und Algorithmen (SS 2013) Datenstrukturen und Algorithmen (SS 2013) Präsenzübung Musterlösung Dienstag, 28.05.2013 Aufgabe 1 (Allgemeine Fragen [20 Punkte]) 1. Tragen Sie in der folgenden Tabelle die Best-, Average- und Worst-Case-

Mehr

Übung: Algorithmen und Datenstrukturen SS 2007

Übung: Algorithmen und Datenstrukturen SS 2007 Übung: Algorithmen und Datenstrukturen SS 2007 Prof. Lengauer Sven Apel, Michael Claÿen, Christoph Zengler, Christof König Blatt 5 Votierung in der Woche vom 04.06.0708.06.07 Aufgabe 12 Manuelle Sortierung

Mehr

2. Klausur Datenstrukturen und Algorithmen SS 2014

2. Klausur Datenstrukturen und Algorithmen SS 2014 Prof. aa Dr. E. Ábrahám F. Corzilius, S. Schupp, T. Ströder 2. Klausur Datenstrukturen und Algorithmen SS 2014 Vorname: Nachname: Studiengang (bitte genau einen markieren): Informatik Bachelor Informatik

Mehr

Inhaltsverzeichnis. Teil 1 Grundlagen 23

Inhaltsverzeichnis. Teil 1 Grundlagen 23 Inhaltsverzeichnis Vorwort 11 Umfang 12 Einsatz als Unterrichtsmittel 12 Algorithmen mit Praxisbezug 13 Programmiersprache 14 Danksagung 15 Vorwort des C++-Beraters 16 Hinweise zu den Übungen 21 Teil 1

Mehr

Name:... Vorname:... Matr.-Nr.:... Studiengang:...

Name:... Vorname:... Matr.-Nr.:... Studiengang:... Technische Universität Braunschweig Sommersemester 2011 IBR - Abteilung Algorithmik Prof. Dr. Sándor Fekete Christiane Schmidt Klausur Algorithmen und Datenstrukturen 01.09.2011 Name:.....................................

Mehr

Themenübersicht Verwendung im Studium Voraussetzungen Ziele Website zum Buch Danksagungen... 21

Themenübersicht Verwendung im Studium Voraussetzungen Ziele Website zum Buch Danksagungen... 21 Vorwort 15 Themenübersicht... 15 Verwendung im Studium... 17 Voraussetzungen... 18 Ziele.... 19 Website zum Buch... 20 Danksagungen... 21 Vorwort zur deutschen Ausgabe 22 Übersetzung... 22 Verwendung in

Mehr

8. A & D - Heapsort. Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können.

8. A & D - Heapsort. Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können. 8. A & D - Heapsort Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können. Genauer werden wir immer wieder benötigte Operationen durch Datenstrukturen unterstützen.

Mehr

8. Übung zu Algorithmen I 15. Juni 2016

8. Übung zu Algorithmen I 15. Juni 2016 8. Übung zu Algorithmen I 15. Juni 2016 Lisa Kohl [email protected] (mit Folien von Julian Arz, Timo Bingmann, Sebastian Schlag, Christian Staudt und Christoph Striecks) Nachtrag: Quicksort, alternative

Mehr

Informatik II Prüfungsvorbereitungskurs

Informatik II Prüfungsvorbereitungskurs Informatik II Prüfungsvorbereitungskurs Tag 4, 23.6.2016 Giuseppe Accaputo [email protected] 1 Programm für heute Repetition Datenstrukturen Unter anderem Fragen von gestern Point-in-Polygon Algorithmus Shortest

Mehr

Informatik II Vorlesung am D-BAUG der ETH Zürich

Informatik II Vorlesung am D-BAUG der ETH Zürich Informatik II Vorlesung am D-BAUG der ETH Zürich Vorlesung 9, 2.5.2016 [Nachtrag zu Vorlesung : Numerische Integration, Zusammenfassung Objektorientierte Programmierung] Dynamische Datenstrukturen II:

Mehr

Graphen. Definitionen

Graphen. Definitionen Graphen Graphen werden häufig als Modell für das Lösen eines Problems aus der Praxis verwendet, wie wir im Kapitel 1 gesehen haben. Der Schweizer Mathematiker Euler hat als erster Graphen verwendet, um

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Datenstrukturen und Algorithmen Jedes Programm verwendet Datenstrukturen und Algorithmen um seine Aufgabe zu erfüllen Diese müssen offenbar zunächst sorgfältig dem speziellen Problem entsprechend ausgewählt

Mehr

Klausur Algorithmen und Datenstrukturen

Klausur Algorithmen und Datenstrukturen Technische Universität Braunschweig Wintersemester 2013/2014 Institut für Betriebssysteme und Rechnerverbund Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Stephan Friedrichs Klausur Algorithmen und

Mehr

Klausur Informatik B April Teil I: Informatik 3

Klausur Informatik B April Teil I: Informatik 3 Informatik 3 Seite 1 von 8 Klausur Informatik B April 1998 Teil I: Informatik 3 Informatik 3 Seite 2 von 8 Aufgabe 1: Fragekatalog (gesamt 5 ) Beantworten Sie folgende Fragen kurz in ein oder zwei Sätzen.

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Rheinisch-Westfälische Technische Hochschule Aachen Lehrstuhl für Informatik VI Algorithmen und Datenstrukturen Vorlesungsmitschrift zur Vorlesung im SS 2004 Prof. Dr.-Ing. H. Ney Letzte Überarbeitung:

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen VO 708.031 Um was geht es? Datenstrukturen Algorithmen Algorithmus Versuch einer Erklärung: Ein Algorithmus nimmt bestimmte Daten als Input und transformiert diese nach festen

Mehr