Klausur Algorithmen und Datenstrukturen
|
|
|
- Curt Fleischer
- vor 7 Jahren
- Abrufe
Transkript
1 Technische Universität Braunschweig Wintersemester 2013/2014 Institut für Betriebssysteme und Rechnerverbund Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Stephan Friedrichs Klausur Algorithmen und Datenstrukturen Name: Vorname: Matr.-Nr.: Studiengang: Bachelor Master Andere Mit der Veröffentlichung meines Klausurergebnisses unter meiner Matrikelnummer bin ich einverstanden Unterschrift Hinweise: Bitte das Deckblatt vollständig ausfüllen. Die Klausur besteht aus 14 Blättern, bitte auf Vollständigkeit überprüfen. Erlaubte Hilfsmittel: Keine. Eigenes Papier ist nicht erlaubt. Die Rückseiten der Blätter dürfen beschrieben werden. Die Heftung der Blätter darf nicht entfernt werden. Die Klausur ist mit 50 % der Punkte bestanden. Antworten die nicht gewertet werden sollen bitte deutlich durchstreichen. Mit Bleistift oder in Rot geschriebene Klausurteile können nicht gewertet werden. Werden mehrere Antworten gegeben, werten wir die mit der geringsten Punktzahl. Sämtliche Algorithmen, Datenstrukturen, Sätze und Begriffe beziehen sich, sofern nicht explizit anders angegeben, auf die in der Vorlesung vorgestellte Variante. Die Bearbeitungszeit für die Klausur beträgt 120 Minuten. Aufgabe Σ Punkte Erreicht Note Seite 1 / 14
2 Aufgabe 1: Graphen (9+3+3 Punkte) v 3 v 2 v 8 v 1 v 5 v 7 v 4 v 6 Abbildung 1: Der Graph G. a) Wende Breitensuche auf den Graphen G aus Abbildung 1 an; starte dabei mit dem Knoten v 1. Falls zu einem Zeitpunkt mehrere Knoten für den nächsten Schritt in Frage kommen, wähle denjenigen mit dem kleinsten Index. Gib die Menge R des Algorithmus Graph-Scan jedesmal an, wenn sie sich ändert und zeichne den gefundenen Baum T. Seite 2 / 14
3 b) Zeichne einen Graphen mit mindestens 8 Knoten, bei dem alle Knoten geraden Grad haben, der keinen Eulerweg besitzt. c) Zeige oder widerlege: Eine Kantenfolge, die kein Weg ist, ist kein Pfad. Seite 3 / 14
4 Aufgabe 2: AVL-Bäume ( Punkte) Abbildung 2: Der AVL-Baum T. Gegeben ist der AVL-Baum T aus Abbildung 2. Führe nacheinander folgende Operationen aus (damit sind die Algorithmen aus der Vorlesung gemeint, die die AVL-Eigenschaft erhalten); zeichne dabei alle Schritte jeder Operation in einen separaten Baum: a) Insert(T, 58) b) Insert(T, 4) c) Insert(T, 3) d) Insert(T, 2) e) Insert(T, 1) Seite 4 / 14
5 Seite 5 / 14
6 Aufgabe 3: Komplexität Seien f, g, h : N R drei Funktionen. a) Zeige oder widerlege: f O(g), g Ω(h) h O(f) ( Punkte) b) Zeige oder widerlege: g O(f), f Θ(h) g Θ(h) Seite 6 / 14
7 c) Zeige: 10n 3 5n 2 log 4 n 14 Θ(n 3 ). Gib dazu explizit geeignete Konstanten c 1, c 2 und n 0 aus der Definition an und zeige, dass sie die Definition erfüllen. d) Gesucht ist ein Algorithmus, der n Elemente bearbeiten soll. Dazu gibt es zwei Möglichkeiten: (i) Die Elemente werden der Reihe nach bearbeitet, das dauert O(n) pro Element. (ii) Die Elemente werden erst sortiert. Dadurch reduziert sich die Bearbeitungszeit pro Element auf O(log n). Welche Laufzeiten ergeben sich für beide Varianten, wenn für (ii) ein möglichst schnelles Sortierverfahren verwendet wird? Welche Vorgehensweise ist asymptotisch schneller? Seite 7 / 14
8 Aufgabe 4: Rekursionen ( Punkte) a) Wie lautet das Mastertheorem aus der Vorlesung? b) Bestimme mit Hilfe des Mastertheorems das asymptotische Wachstum der Rekursion ( n ) ( n ) T (n) = 8 T + 3n + 32 T. 4 8 Bestimme die Werte aller im Mastertheorem auftretender Parameter. Seite 8 / 14
9 c) Bestimme mit Hilfe des Mastertheorems das asymptotische Wachstum der Rekursion ( n ) ( ) n U(n) = n + 14 U 2 + U + 4n Bestimme die Werte aller im Mastertheorem auftretender Parameter. d) Bestimme mit Hilfe des Mastertheorems das asymptotische Wachstum der Rekursion ( n ) ( n ) V (n) = 3 V + 5 V n n3. Bestimme die Werte aller im Mastertheorem auftretender Parameter. Seite 9 / 14
10 e) Was ist die Worst-Case Laufzeit von Quicksort (ohne Begründung)? f) Wir untersuchen eine Variante von Quicksort, die als Pivotelement den Median des zu sortierenden Teilbereichs verwendet. Der Median von n Elementen lässt sich in Θ(n) bestimmen. Benutze das Mastertheorem, um die Laufzeit dieser Quicksort-Variante zu bestimmen. (Hinweis: Beim Median handelt es sich um dasjenige Element, das das zu sortierende Feld in zwei gleich große Teilfelder zerlegt.) Seite 10 / 14
11 Aufgabe 5: Hashing (10 Punkte) Wir betrachten ein anfangs leeres Array A der Größe 7, es gibt also die Speicherzellen A[0], A[1],..., A[6]. In diesem führen wir offenes Hashing mit der folgenden Hashfunktion durch: t(i, x) = ( x i 2 + i ) mod 7 Dabei ist x ein einzusetzender Schlüssel und i die Nummer des Versuches, x in eine unbesetzte Speicherzelle des Arrays zu schreiben, beginnend bei i = 0. Berechne zu jedem der folgenden Schlüssel die Position, die er in A bekommt: 3, 12, 4, 14 Dabei sollen die Schlüssel in der gegebenen Reihenfolge eingefügt werden und der Rechenweg soll klar erkennbar sein. Trage die Elemente in das Array in Abbildung 3 ein. A[0] A[1] A[2] A[3] A[4] A[5] A[6] Abbildung 3: Die Hashtabelle A. Seite 11 / 14
12 Aufgabe 6: Sortieren (11 Punkte) A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10]A[11]A[12]A[13]A[14]A[15]A[16] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10]A[11]A[12]A[13]A[14]A[15]A[16] Abbildung 4: Mergesort im Array A. Wende die Funktion Merge(A, 9, 12, 16) aus Mergesort auf das gefüllte Array oben in Abbildung 4 an. Gib dabei die temporären Variablen n 1 und n 2, sowie die Felder L und R an (jeweils nur das Endresultat). Führe Schritt für Schritt das Mergen von L und R in A durch, mache dabei bei jedem Schritt kenntlich, woher das aktuelle Element stammt. Trage das Ergebnis in das leere Feld unten in Abbildung 4 ein. Seite 12 / 14
13 Aufgabe 7: Algorithmenentwurf Gegeben sei ein binärer Suchbaum B. (6+3 Punkte) a) Gib einen Algorithmus an, der in O(n) alle Elemente von B in absteigend sortierter Reihenfolge ausgibt. Die Ausgabe eines Elements erfolgt mittels Print(x). b) Begründe, warum dein Algorithmus in O(n) liegt. Die Laufzeit von Print liegt in O(1). Seite 13 / 14
14 Aufgabe 8: Kurzfragen ( Punkte) a) Die Tiefensuche beruht auf dem FIFO-Prinzip. wahr falsch b) Breitensuche kann man auch parallel ausführen. wahr falsch c) Gegeben zwei Funktionen f und g mit f O(g). Dann gilt für alle natürlichen Zahlen n, dass f(n) g(n). d) Die Folge der Fibonacci-Zahlen wächst exponentiell, aber asymptotisch langsamer als 2 n. wahr falsch wahr falsch e) Das Mastertheorem erlaubt das Lösen nichtlinearer Rekursionen. wahr falsch f) Man kann schneller als in Ω(n log n) sortieren, wenn man über geeignete Rechneroperationen verfügt. g) Die Größe einer Inzidenzmatrix eines Graphen mit n Knoten ist O(n 2 ). wahr falsch wahr falsch Viel Erfolg Seite 14 / 14
Klausur Algorithmen und Datenstrukturen
Technische Universität Braunschweig Sommersemester 2013 IBR - Abteilung Algorithmik Prof. Dr. Sándor Fekete Dr. Christiane Schmidt Stephan Friedrichs Klausur Algorithmen und Datenstrukturen 22.08.2013
Name:... Vorname:... Matrikel-Nr.:... Unterschrift:...
Studiengang Bachelor of Computer Science Modulprüfung Praktische Informatik 1 Wintersemester 2010 / 2011 Name:... Vorname:... Matrikel-Nr.:... Unterschrift:... Hinweise: 1.) Schreiben Sie Ihren Namen und
Algorithmen & Datenstrukturen 1. Klausur
Algorithmen & Datenstrukturen 1. Klausur 7. Juli 2010 Name Matrikelnummer Aufgabe mögliche Punkte erreichte Punkte 1 35 2 30 3 30 4 15 5 40 6 30 Gesamt 180 1 Seite 2 von 14 Aufgabe 1) Programm Analyse
Vorname:... Matrikel-Nr.:... Unterschrift:...
Fachhochschule Mannheim Hochschule für Technik und Gestaltung Fachbereich Informatik Studiengang Bachelor of Computer Science Algorithmen und Datenstrukturen Wintersemester 2003 / 2004 Name:... Vorname:...
Algorithmen und Datenstrukturen
1 Algorithmen und Datenstrukturen Wintersemester 2014/15 3. Vorlesung Laufzeitanalyse Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Recap: Diskutieren Sie mit Ihrer NachbarIn! 1. 2. 3. Was sind
Algorithmik Übung 3 Prof. Dr. Heiner Klocke. Sortierfolge nach Werten: 7 8 9 10 Bube Dame König As nach Farben: Karo ( ) Herz ( ) Piek ( ) Kreuz ( )
Algorithmi Übung 3 Prof. Dr. Heiner Kloce Winter 11/12 16.10.2011 Divide&Conquer- Algorithmen lassen sich gut als reursive Algorithmen darstellen. Das Prinzip eines reursiven Algorithmus beruht darauf,
Datenstrukturen & Algorithmen
Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen
2 Sortieren. Beispiel: Es seien n = 8 und a = i : a i : ϕ(i) : a ϕ(i) :
2 Sortieren Das Sortieren einer Datenfolge ist eines der am leichtesten zu verstehenden und am häufigsten auftretenden algorithmischen Probleme. In seiner einfachsten Form besteht das Problem darin, eine
Klausur Informatik B April Teil I: Informatik 3
Informatik 3 Seite 1 von 8 Klausur Informatik B April 1998 Teil I: Informatik 3 Informatik 3 Seite 2 von 8 Aufgabe 1: Fragekatalog (gesamt 5 ) Beantworten Sie folgende Fragen kurz in ein oder zwei Sätzen.
JAVA - Suchen - Sortieren
Übungen Informatik I JAVA - Suchen - Sortieren http://www.fbi-lkt.fh-karlsruhe.de/lab/info01/tutorial Übungen Informatik 1 Folie 1 Inhalt Suchen/Sortieren binary search mergesort bubblesort Übungen Informatik
Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g:
TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 2 Prof. Dr. Helmut Seidl, S. Pott,
Klausur Datenstrukturen und Algorithmen SoSe 2012
Prof. aa Dr. Ir. Joost-Pieter Katoen Christian Dehnert, Jonathan Heinen, Thomas Ströder, Sabrina von Styp Klausur Datenstrukturen und Algorithmen SoSe 2012 Vorname: Nachname: Studiengang (bitte genau einen
Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen
Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 1 für die Übung
186.172 Algorithmen und Datenstrukturen 1 VL 4.0 1. Übungstest WS 2010/11 26. November 2010
Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 1. Übungstest WS 2010/11 26.
Übersicht. Datenstrukturen und Algorithmen. Übersicht. Divide-and-Conquer. Vorlesung 9: Quicksort (K7)
Datenstrukturen und Algorithmen Vorlesung 9: (K7) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://www-i2.rwth-aachen.de/i2/dsal0/ Algorithmus 8. Mai 200 Joost-Pieter
1. Musterlösung. Problem 1: Average-case-Laufzeit vs. Worst-case-Laufzeit
Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner Musterlösung Problem : Average-case-Laufzeit vs Worst-case-Laufzeit pt (a) Folgender Algorithmus löst das Problem der
Übungsblatt 1. f(n) = f(n) = O(g(n)) g(n) = O(f(n)) Zeigen oder widerlegen Sie: 3 n = Θ(2 n ) Aufgabe 1.2 Gegeben sei die folgende Funktion:
Übungsblatt 1 Aufgabe 1.1 Beweisen oder widerlegen Sie, dass für die im Folgenden definierte Funktion f(n) die Beziehung f(n) = Θ(n 4 ) gilt. Beachten Sie, dass zu einem vollständigen Beweis gegebenenfalls
Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen
Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung
Tutoraufgabe 1 (Vollständige Induktion): Tutoraufgabe 2 (Rotationen): Datenstrukturen und Algorithmen SS15 Übungsblatt 5 (Abgabe 3.6.
Prof. aa Dr. Ir. Joost-Pieter Katoen Allgemeine Hinweise: Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder Die Hausaufgaben sollen in Gruppen von je - Studierenden aus der gleichen
Algorithmen und Datenstrukturen 1-1. Seminar -
Algorithmen und Datenstrukturen 1-1. Seminar - Dominic Rose Bioinformatics Group, University of Leipzig Wintersemester 2009/10 Inhalt der ersten beiden Vorlesungen Algorithmenbegriff Komplexität, Asymptotik
INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS
Julian Arz, Timo Bingmann, Sebastian Schlag INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Julian Universität Arz, des Timo LandesBingmann, Baden-Württemberg Sebastian und Schlag nationales
13. Binäre Suchbäume
1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),
Name: Seite 2. Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort.
Name: Seite 2 Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort. Aufgabe 1 (8 Punkte) 1. Wie viele negative Zahlen (ohne 0) lassen sich im 4-Bit-Zweierkomplement darstellen?
Klausur Grundlagen der Informatik Hochschule Ravensburg-Weingarten
Klausur Grundlagen der Informatik Hochschule Ravensburg-Weingarten Semester: AI2, WI2 Bearbeitungszeit: 90 Min. Hilfsmittel: kein prog. C SS 2010, 07.07.2010 90% Punkte entspr. Note 1,0 50% Punkte entspr.
Modulklausur Konstruktion und Analyse ökonomischer Modelle
Modulklausur Konstruktion und Analyse ökonomischer Modelle Aufgabenheft Termin: 04.03.2015, 09:00-11:00 Uhr Prüfer: Univ.-Prof. Dr. J. Grosser Aufbau der Klausur Pflichtaufgabe Maximale Punktzahl: 34 Wahlpflichtaufgabe
1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie
Gliederung 1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie 4/2, Folie 1 2014 Prof. Steffen Lange - HDa/FbI
Abschnitt: Algorithmendesign und Laufzeitanalyse
Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher
Datenstrukturen. Mariano Zelke. Sommersemester 2012
Datenstrukturen Mariano Zelke Sommersemester 2012 Mathematische Grundlagen: Das Handwerkszeug Mariano Zelke Datenstrukturen 2/26 Formeln: n - i = n (n+1) 2 und - i=1 k i=0 a i = ak+1 1 a 1, falls a 1 Rechnen
DAP2-Klausur 07.08.2004
DAP2-Klausur 07.08.2004 Vorname : Familienname: Ich studiere (Bitte markieren): Informatik/Inform. Lehramt/Inf.technik/Physik/ Mathe/Statistik/Sonstiges: Bitte beachten: Auf jedem Blatt Matrikelnummer
Datenstrukturen & Algorithmen
Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Dynamische Programmierung Einführung Ablaufkoordination von Montagebändern Längste gemeinsame Teilsequenz Optimale
Datenstrukturen und Algorithmen
Datenstrukturen und Algorithmen VO 708.031 27.10.2011 [email protected] 1 Wiederholung Wir vergleichen Algorithmen anhand des ordnungsmäßigen Wachstums von T(n), S(n), Asymptotische Schranken: O-Notation:
Sortierverfahren für Felder (Listen)
Sortierverfahren für Felder (Listen) Generell geht es um die Sortierung von Daten nach einem bestimmten Sortierschlüssel. Es ist auch möglich, daß verschiedene Daten denselben Sortierschlüssel haben. Es
Grundlagen der Programmierung
Grundlagen der Programmierung Algorithmen und Datenstrukturen Die Inhalte der Vorlesung wurden primär auf Basis der angegebenen Literatur erstellt. Darüber hinaus sind viele Teile direkt aus der Vorlesung
Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf
Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005 Paradigmen im Algorithmenentwurf Problemlösen Problem definieren Algorithmus entwerfen
Beispiellösungen zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 6
Robert Elsässer u.v.a. Paderborn, 29. Mai 2008 Beispiellösungen zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 6 Aufgabe 1 (6 Punkte): Zunächst sollte klar sein, daß ein vollständiger Binärer
Was bisher geschah ADT Menge mit Operationen: Suche nach einem Element Einfügen eines Elementes Löschen eines Elementes Realisierung durch
Was bisher geschah ADT Menge mit Operationen: Suche nach einem Element Einfügen eines Elementes Löschen eines Elementes Realisierung durch verschiedene Datenstrukturen: lineare Datenstrukturen: Array,
Prof. Dr. Heinrich Müller; Dr. Frank Weichert 7. September 2015
Technische Universität Dortmund Informatik VII (Graphische Systeme) Prof. Dr. Heinrich Müller; Dr. Frank Weichert 7. September 2015 Übungsaufgaben zum Vorkurs Informatik Wintersemester 2015/2016 Teil I
Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny
Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 2 Datenstrukturen 2.1 Einführung Syntax: Definition einer formalen Grammatik, um Regeln einer formalen Sprache (Programmiersprache) festzulegen.
2. Schriftliche Leistungskontrolle (EK)
TheGI 1: Grundlagen und algebraische Strukturen Prof. Dr.-Ing. Uwe Nestmann - 10. Februar 2009 2. Schriftliche Leistungskontrolle (EK) Punktzahl In dieser schriftlichen Leistungskontrolle sind 100 Punkte
Programmieren I. Kapitel 7. Sortieren und Suchen
Programmieren I Kapitel 7. Sortieren und Suchen Kapitel 7: Sortieren und Suchen Ziel: Varianten der häufigsten Anwendung kennenlernen Ordnung Suchen lineares Suchen Binärsuche oder Bisektionssuche Sortieren
MATHEMATISCHE ANALYSE VON ALGORITHMEN
MATHEMATISCHE ANALYSE VON ALGORITHMEN Michael Drmota Institut für Diskrete Mathematik und Geometrie, TU Wien [email protected] www.dmg.tuwien.ac.at/drmota/ Ringvorlesung SS 2008, TU Wien Algorithmus
Datenstrukturen & Algorithmen
Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik Peter Widmayer
Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)).
8. Untere Schranken für Sortieren Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). Werden nun gemeinsame Eigenschaften dieser Algorithmen untersuchen. Fassen gemeinsame
Klausur. Betriebssysteme SS 2007
Matrikelnummer: 9999999 Klausur FB Informatik und Mathematik Prof. R. Brause Betriebssysteme SS 2007 Vorname: Nachname: Matrikelnummer: Geburtsdatum: Studiengang: Bitte tragen Sie auf jeder Seite Ihre
Programmiertechnik II
2007 Martin v. Löwis Priority Queues and Heapsort 2007 Martin v. Löwis 2 Priority Queue Abstrakter Datentyp Inhalt: Elemente mit Priorität Operationen: Einfügen: Angabe des Elements und seiner Priorität
2. Übungsblatt zu Algorithmen II im WS 2016/2017
Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter Sanders Dr. Christian Schulz, Dr. Simon Gog Michael Axtmann. Übungsblatt zu Algorithmen II im WS 016/017 Aufgabe
Abschnitt 18: Effizientes Suchen in Mengen
Abschnitt 18: Effizientes Suchen in Mengen 18. Effizientes Suchen in Mengen 18.1 Vollständig ausgeglichene binäre Suchbäume 18.2 AVL-Bäume 18.3 Operationen auf AVL-Bäumen 18.4 Zusammenfassung 18 Effizientes
TheGI 1: Grundlagen und algebraische Strukturen Prof. Dr.-Ing. Uwe Nestmann - 09. Februar 2010. 2. Schriftliche Leistungskontrolle (EK)
TheGI 1: Grundlagen und algebraische Strukturen Prof. Dr.-Ing. Uwe Nestmann - 09. Februar 2010 2. Schriftliche Leistungskontrolle (EK) Punktzahl In dieser schriftlichen Leistungskontrolle sind 100 Punkte
Grundlagen: Algorithmen und Datenstrukturen
Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2010
1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert
Inhalt Einführung 1. Arrays 1. Array unsortiert 2. Array sortiert 3. Heap 2. Listen 1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert 3. Bäume
12 (2-4)-Bäume Implementierbare Funktionen. (2-4)-Bäume sind durch folgende Eigenschaften deniert: 1. Alle Äste sind gleich lang
12 (2-4)-Bäume (2-4)-Bäume sind durch folgende Eigenschaften deniert: 1. Alle Äste sind gleich lang 2. Die Ordnung (maximale Anzahl der Söhne eines Knotens) ist gleich 4 3. Innere Knoten haben 2 Söhne
Einführung in die Informatik I Kapitel II.3: Sortieren
1 Einführung in die Informatik I Kapitel II.3: Sortieren Prof. Dr.-Ing. Marcin Grzegorzek Juniorprofessur für Mustererkennung im Institut für Bildinformatik Department Elektrotechnik und Informatik Fakultät
Inhaltsverzeichnis. Einführende Bemerkungen 11. Das Fach Informatik 11 Zielsetzung der Vorlesung Grundbegriffe
Inhaltsverzeichnis Einführende Bemerkungen 11 Das Fach Informatik 11 Zielsetzung der Vorlesung 12 1. Grundbegriffe 1 3 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Information und Nachricht 1.1.1 Information 1.1.2 Nachricht
Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete
Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:
Beispiellösung zur Prüfung Datenstrukturen und Algorithmen D-INFK
Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik Peter Widmayer
Kapitel 2: Analyse der Laufzeit von Algorithmen Gliederung
Gliederung 1. Motivation / Einordnung / Grundlagen 2. Analyse der Laufzeit von Algorithmen 3. Untere Schranken für algorithmische Probleme 4. Sortier- und Selektionsverfahren 5. Paradigmen des Algorithmenentwurfs
Kapitel 3: Untere Schranken für algorithmische Probleme Gliederung
Gliederung 1. Grundlagen 2. Analyse der Laufzeit von Algorithmen 3. Untere Schranken für algorithmische Probleme 4. Sortier- und Selektionsverfahren 5. Paradigmen des Algorithmenentwurfs 6. Ausgewählte
Technische Führung. Bachelor. mer. meiner Note zusammen ... Diplom. gründlich. Sie lesbar! 5. 6. 7. Wenn Sie. Viel Erfolg! max. Punktzahl.
Technische Universität Braunschweig Institut für Organisation und Führung Bachelorprüfung/Diplomvorprüfung Einführung in die Unternehmensführung (BWL 1) Wintersemester 2009/2010, 11. Februar 2010 Name,
Sortieralgorithmen. Jan Pöschko. 18. Januar Problemstellung Definition Warum Sortieren?... 2
Jan Pöschko 18. Januar 2007 Inhaltsverzeichnis 1 Problemstellung 2 1.1 Definition................................... 2 1.2 Warum Sortieren?.............................. 2 2 Einfache Sortieralgorithmen
Programmiertechnik II
Bäume Symboltabellen Suche nach Werten (items), die unter einem Schlüssel (key) gefunden werden können Bankkonten: Schlüssel ist Kontonummer Flugreservierung: Schlüssel ist Flugnummer, Reservierungsnummer,...
Klausur zur Vorlesung Höhere Mathematik I
Name: 28. Januar 2004, 8.30-10.30 Uhr Allgemeine Hinweise: Dauer der Klausur: Zugelassene Hilfsmittel: 120 min, 2 Zeitstunden Vorlesungsmitschrift, Übungen, Formelsammlung Schreiben Sie bitte auf dieses
3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1
3.2 Binäre Suche Beispiel 6.5.1: Intervallschachtelung (oder binäre Suche) (Hier ist n die Anzahl der Elemente im Feld!) Ein Feld A: array (1..n) of Integer sei gegeben. Das Feld sei sortiert, d.h.: A(i)
Technische Universität Braunschweig Institut für Programmierung und Reaktive Systeme
Technische Universität Braunschweig Institut für Programmierung und Reaktive Systeme Programmieren I Dr. Werner Struckmann 7. September 2015 Name: Vorname: Matrikelnummer: Kennnummer: Anrede: Frau Herr
Algorithmen und Datenstrukturen Wintersemester 2004/ November T(n) = T(n a) + T(a) + n
Lehrstuhl für Praktische Informatik III Norman May B6, 29, Raum C0.05 68131 Mannheim Telefon: (0621) 181 2517 Email: [email protected] Matthias Brantner B6, 29, Raum C0.05 68131 Mannheim
Kapiteltests zum Leitprogramm Binäre Suchbäume
Kapiteltests zum Leitprogramm Binäre Suchbäume Björn Steffen Timur Erdag überarbeitet von Christina Class Binäre Suchbäume Kapiteltests für das ETH-Leitprogramm Adressaten und Institutionen Das Leitprogramm
Datenstrukturen und Algorithmen
Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/32 Datenstrukturen und Algorithmen Vorlesung 7: Sortieren (K2) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group
S=[n] Menge von Veranstaltungen J S kompatibel mit maximaler Größe J
Greedy-Strategie Definition Paradigma Greedy Der Greedy-Ansatz verwendet die Strategie 1 Top-down Auswahl: Bestimme in jedem Schritt eine lokal optimale Lösung, so dass man eine global optimale Lösung
Übersicht. Berechnung der Potenz für zwei ganze Zahlen Klausuraufgabe SS 2010! Berechnung der Cosinus-Funktion Klausuraufgabe WS 2010/2011!
Algorithmen und Datenstrukturen Wintersemester 2012/13 8. Vorlesung Algorithmen in Java Jan-Henrik Haunert Lehrstuhl für Informatik I Übersicht Berechnung der Potenz für zwei ganze Zahlen Klausuraufgabe
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Datenstrukturen: Anordnung von Daten, z.b. als Liste (d.h. in bestimmter Reihenfolge) Beispiel: alphabetisch sortiertes Wörterbuch... Ei - Eibe - Eidotter... als Baum (d.h.
Randomisierte Algorithmen 2. Erste Beispiele
Randomisierte Algorithmen Randomisierte Algorithmen 2. Erste Beispiele Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2016/2017 1 / 35 Randomisierter Identitätstest
Kurs 1661 Datenstrukturen I Klausur am Seite 1. Hinweise zur Bearbeitung der Klausur zum Kurs 1661 Datenstrukturen I
Kurs 1661 Datenstrukturen I Klausur am 18.9.2010 Seite 1 Hinweise zur Bearbeitung der Klausur zum Kurs 1661 Datenstrukturen I Bitte lesen Sie sich diese Hinweise vollständig und aufmerksam durch, bevor
Institut für Programmierung und Reaktive Systeme 24. Juni Programmieren II. 14. Übungsblatt
Technische Universität Braunschweig Dr. Werner Struckmann Institut für Programmierung und Reaktive Systeme 2. Juni 2016 Programmieren II 1. Übungsblatt Hinweis: Auf diesem Übungsblatt finden Sie die fünfte,
Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 3, Donnerstag 6.
Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 3, Donnerstag 6. November 2014 (O-Notation, Theta, Omega) Junior-Prof. Dr. Olaf Ronneberger
Es sei a 2 und b 2a 1. Definition Ein (a, b)-baum ist ein Baum mit folgenden Eigenschaften:
Binäre Suchbäume (a, b)-bäume (Folie 173, Seite 56 im Skript) Es sei a 2 und b 2a 1. Definition Ein (a, b)-baum ist ein Baum mit folgenden Eigenschaften: 1 Jeder Knoten hat höchstens b Kinder. 2 Jeder
Klausur zur Mathematik für Biologen
Mathematisches Institut der Heinrich-Heine-Universität DÜSSELDORF WS 2002/2003 12.02.2003 (1) Prof. Dr. A. Janssen / Dr. H. Weisshaupt Klausur zur Mathematik für Biologen Bitte füllen Sie das Deckblatt
Klausur zur Veranstaltung Programmierung (fortgeschrittene Konzepte)
Klausur zur Veranstaltung Programmierung (fortgeschrittene Konzepte) Bearbeitungszeit: 100 Minuten (14:15-15:55) Gesamtpunktzahl: 80 Punkte + 30 Zusatzpunkte Die Punktzahlen sind in etwa so bemessen, dass
Binäre Suchbäume. Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps
Binäre Suchbäume Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps Mengen n Ziel: Aufrechterhalten einer Menge (hier: ganzer Zahlen) unter folgenden Operationen: Mengen n Ziel: Aufrechterhalten einer
Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz
Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz Datenstruktur BDD 1986 von R. Bryant vorgeschlagen zur Darstellung von aussagenlogischen Formeln (genauer: Booleschen Funktionen)
Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen
Was bisher geschah abstrakter Datentyp : Signatur Σ und Axiome Φ z.b. ADT Menge zur Verwaltung (Finden, Einfügen, Entfernen) mehrerer Elemente desselben Typs Spezifikation einer Schnittstelle Konkreter
Beispiel zu Datenstrukturen
zu Datenstrukturen Passend zum Kurs 01661 Version Juni 2008 Dieter Hoffmann Dipl.-Inform. Diese Kurshilfe zum Kurs Datenstrukuren I (Kursnummer 01661) bei Prof. Dr. Güting (Lehrgebiet Praktische Informatik
Grundfachklausur Teil 2 / Statik II
Technische Universität Darmstadt Institut für Werkstoffe und Mechanik im Bauwesen Fachgebiet Statik Prof. Dr.-Ing. Jens Schneider Grundfachklausur Teil 2 / Statik II im Sommersemester 204, am 08.09.204
1 topologisches Sortieren
Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung
Kapitel 6 Elementare Sortieralgorithmen
Kapitel 6 Elementare Sortieralgorithmen Ziel: Kennenlernen elementarer Sortierverfahren und deren Effizienz Zur Erinnerung: Das Sortier-Problem Gegeben: Folge A von n Elementen a 1, a 2,..., a n ; Eine
Numerische Verfahren und Grundlagen der Analysis
Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 16 4. Groß-O R. Steuding (HS-RM)
Vorlesung 4 BETWEENNESS CENTRALITY
Vorlesung 4 BETWEENNESS CENTRALITY 101 Aufgabe! Szenario: Sie arbeiten bei einem sozialen Online-Netzwerk. Aus der Netzwerk-Struktur Ihrer Benutzer sollen Sie wichtige Eigenschaften extrahieren. [http://www.fahrschule-vatterodt.de/
Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler
Wintersemester 2007/08 27.2.2008 Dr. Sascha Kurz Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler Bitte lesbar ausfüllen, Zutreffendes ankreuzen Herr Frau Name, Vorname: Anschrift:
Übersicht. Datenstrukturen und Algorithmen Vorlesung 5: Rekursionsgleichungen (K4) Übersicht. Binäre Suche. Joost-Pieter Katoen. 20.
Übersicht Datenstrukturen und Algorithmen Vorlesung 5: (K4) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://www-i2.informatik.rwth-aachen.de/i2/dsal12/ 20.
Wie beim letzten Mal - bitte besucht: http://pingo.upb.de/549170 Ihr seid gleich wieder gefragt... Übung Algorithmen I 4.5.16 Lukas Barth [email protected] (Mit Folien von Julian Arz, Timo Bingmann,
Algorithmen und Datenstrukturen (AuD) Prof. Dr. Claudia Eckert und Dr. Thomas Stibor
Algorithmen und Datenstrukturen (AuD) Prof. Dr. Claudia Eckert und Dr. Thomas Stibor Organisatorisches: Vorlesung 4 SWS, Zentralübung 2 SWS: 6 Credit Points Mi 9:45 11:15 Raum 1200 (Vorlesung) Do 8:00
Sortierte Folgen 250
Sortierte Folgen 250 Sortierte Folgen: he 1,...,e n i mit e 1 apple applee n kennzeichnende Funktion: M.locate(k):= addressof min{e 2 M : e k} Navigations Datenstruktur 2 3 5 7 11 13 17 19 00 Annahme:
Probeklausur zur Linearen Algebra II (B2)
Prof. Dr. Salma Kuhlmann Gabriel Lehéricy 12. Juli 2016 Lothar Sebastian Krapp Sommersemester 2016 Probeklausur zur Linearen Algebra II (B2) Klausurnummer: 1 Matrikelnummer: Pseudonym: Aufgabe 1 2 3 erreichte
Klausur. Einführung in die Wirtschaftspolitik (AVWL III)
Nachname Vorname Matrikelnummer Studiengang Ich schreibe diese Klausur als Ich bin damit einverstanden, dass meine Note im Internet veröffentlicht wird. Klausur Einführung in die Wirtschaftspolitik (AVWL
