Vorlesung 4 BETWEENNESS CENTRALITY
|
|
|
- Robert Kerner
- vor 9 Jahren
- Abrufe
Transkript
1 Vorlesung 4 BETWEENNESS CENTRALITY 101
2 Aufgabe! Szenario: Sie arbeiten bei einem sozialen Online-Netzwerk. Aus der Netzwerk-Struktur Ihrer Benutzer sollen Sie wichtige Eigenschaften extrahieren. [ images/social_network.jpg]! Aufgabe 2: Finden Sie wichtige Personen im Netzwerk! Wie modellieren Sie wichtig? 102
3 Zentralität durch kürzeste Wege! Grundlegende Idee: Ein Knoten ist wichtig, wenn er auf einem hohen Anteil kürzester Wege liegt.! Sei ¾ st die Zahl der kürzesten Wege zwischen s und t.! Sei ¾ st (v) die Zahl der kürzesten Wege zwischen s und t, auf denen der Knoten v (als Zwischenknoten) liegt.! Beispiel: Knoten 5 liegt auf allen kürzesten Wegen von 1 nach 8, insgesamt
4 Betweenness Centrality! Intermediationszentralität (Betweenness Centrality) BC: C B (v) = Σ s v t 2 V ¾ st (v) / ¾ st! Folglich: Ein hoher BC-Wert gibt an, dass ein Knoten auf einem hohen Anteil von kürzesten Pfaden liegt! Beispiel: C B (7) = 2,5! 1-2: 0 2-4: 0 3-8: 0,5! 1-3: 0 2-5: 0 4-5: 0! 1-4: 0 2-6: 0 4-6: 0! 1-5: 0 2-8: 0,5 4-8: 0,5! 1-6: 0 3-4: 0 5-6: ! 1-8: 0,5 3-5: 0 5-8: 0,5! 2-3: 0 3-6: 0 6-8:
5 Weitere Anwendungen! Fehlertoleranz: Knoten mit hoher BC fällt aus => große Auswirkungen! Informationsfluss: Knoten mit hoher BC sind wichtige Informationsvermittler! Weitere? 105
6 Paar-Abhängigkeit! Lemma: Ein Knoten v liegt genau dann auf dem kürzesten Weg zwischen s und t, wenn d(s,v)+d(v,t)=d(s,t) gilt.! Paar-Abhängigkeit: ± st (v) = ¾ st (v) / ¾ st! C B ist Summe über die Paar-Abhängigkeiten von v: C B (v) = Σ s v t 2 V ¾ st (v) / ¾ st = Σ s v t 2 V ± st (v) 106
7 Beispiel C B (5) = Paar-Abhängigkeiten für Knoten 5: 1-6, 1-7, 1-8, 2-6, 2-7, 2-8, 3-6, 3-7, 3-8, 4-6, 4-7,
8 Berechnung und Komplexität! Einfache Herangehensweise zur BC-Berechnung:! Berechne Länge und Zahl der kürzesten Wege zwischen allen zulässigen Knotenpaaren! Berechne Summe aller Paar-Abhängigkeiten! Aber: Quadratisch viele Paar-Abhängigkeiten Ø Summierung hat kubischen Aufwand! 108
9 Zwischenfazit! Knoten-Zentralitäten sind ein Maß für die Wichtigkeit eines Knotens in einem Netzwerk! Betweenness Centrality (BC) nutzt dafür den Anteil der kürzesten Wege, auf dem ein Knoten liegt! Triviale Berechnung von BC hat kubischen Aufwand! Schnelleres Verfahren bereits für recht kleine Graphen notwendig! Frage (MG): Sehen Sie Ansätze für eine schnellere Berechnung? 109
10 Ansatz zur Beschleunigung Kombinatorisches Zählen von Wegen! Def. (Vorgänger): P s (v) = {u 2 V: {u, v} 2 E, d G (s, v) = d G (s, u) +!(u, v)} In Worten: Die Vorgängermenge von v bzgl. einer Quelle s besteht aus den Nachbarn u von v, die auf einem kürzesten Weg von s nach v liegen.! Beispiel: 2! s = 1! v = 8! P 1 (8) = {6, 7}
11 Vorgänger für schnelle Berechnung! Lemma: Für s v 2 V gilt: ¾ sv = Σ u 2 Ps (v) ¾ su! Folgerung: Ist ein Startknoten s 2 V gegeben, lässt sich die Zahl und Länge der kürzesten Wege zu allen anderen Knoten in Zeit O(m + n log n) für gewichtete Graphen und O(m) für ungewichtete berechnen. BFS und Dijkstra (mit Fibonacci- Heap)! Idee: Zwischenergebnisse mehrfach verwenden! 111
12 Abhängigkeit eines Knotens! Ziel: Nicht alle Paar-Abhängigkeiten summieren müssen! Def. (Abhängigkeit eines Knotens s von v s): ± s± (v) = Σ t 2 V ± st (v) = Σ t 2 V ¾ st (v) / ¾ st ± st (v) = ¾ st (v) / ¾ st C B (v) = Σ s v 2 V ± s± (v)! Wichtig: Diese Summen haben eine rekursive Beziehung!! Theorem: Für die Abhängigkeit ± s± (v) eines Startknotens s 2 V zu einem anderen Knoten v 2 V gilt: ± s± (v) = Σ w: v 2 Ps (w) (¾ sv / ¾ sw )(1 + ± s± (w)) 112
13 Abbildung zum Beweis [Brandes 2001] ± s± (v) = Σ w: v 2 Ps (w) (¾ sv / ¾ sw )(1 + ± s± (w)) C B (v) = Σ s v t 2 V ± st (v) 113
14 Akkumulation der Abhängigkeiten (1)! Beobachtung: Ähnlich wie bei Tiefensuche: Bei Berechnung der kürzesten Wege von einem Startknoten s 2 V in G entsteht ein Baum aus den Kanten der ersten Entdeckung.! Folgerung: Sei der Baum der kürzesten Wege von einem Startknoten s 2 V in G gegeben. Dann lassen sich die Abhängigkeiten von s zu allen anderen Knoten! in Zeit O(m) (ungewichtet) bzw. O(m + n log n) (gewichtet)! und Platz (n+m) berechnen. 114
15 Akkumulation der Abhängigkeiten (2) Beweis:! Berechnung für jeden Startknoten s:! Führe SSSP bzw. BFS von s durch! Traversiere die Knoten in nicht-aufsteigender Reihenfolge hinsichtlich ihrer Distanz zu s und! akkumuliere die Abhängigkeiten gemäß des Theorems! Aufwand:! Wir müssen pro Knoten eine Abhängigkeit und die Liste der Vorgänger speichern.! Platzbedarf:! Pro Kante gibt es höchstens ein Element in allen diesen Listen. 115
16 Der Algorithmus von Brandes! Berechne n Kürzeste-Wege-Bäume, einen pro s 2 V! Währenddessen auch die Mengen P s (v) berechnen! Berechne für! jedes jeweilige s 2 V und alle anderen v 2 V! die Abhängigkeiten ± s± (v) mit Hilfe des Baumes, der Vorgängermengen und des Theorems.! Vorgehensweise:! Starte an den Blättern des Baumes, arbeite dich wie auf der vorigen Folie beschrieben schrittweise zur Wurzel voran! Akkumuliere den Abhängigkeitswert des Startknotens s zu jedem einzelnen Knoten v im Zentralitätswert von v ± s± (v) = Σ {w: v 2 Ps (w)} (¾ sv / ¾ sw )(1 + ± s± (w)) C B (v) = Σ s v t 2 V ± st (v) 116
17 Beispiel! Siehe Tafel 117
18 Resultat! BC kann in Zeit O(nm + n 2 log n) und Platz O(n + m) auf gewichteten Graphen berechnet werden.! Für ungewichtete Graphen reduziert sich die Laufzeit auf O(nm). Ø Für dünn besetzte Graphen mit einer linearen Anzahl von Kanten (linear in ) verbessert dies den naiven Algorithmus mit kubischer Laufzeit um den Faktor O(n / log n) bzw. O(n). 118
19 Pseudocode! Graphenbasiert: Siehe Kopie 119
20 Algebraische Formulierung! BFS mit Matrix-Vektor-Multiplikation! Vollständige Aktualisierung der Eltern- und Pfadinformationen! Vollständige BC-Aktualisierung! Pseudocode: Siehe Tafel 120
21 Parallelisierung! Grobgranular: Jede einzelne BFS/SSSP-Operation ist unabhängig von den anderen, wenn die Zentralitätssummen atomar aktualisiert werden! Feingranular: Die einzelnen Teile jeder BFS/SSSP-Operation können parallelisiert werden! Im Detail: Feingranularer Ansatz! Vorteil: Datenstrukturen müssen nicht repliziert werden 121
22 Feingranulare Parallelisierung! Beim Startknoten k starten! Sukzessive die Grenze der besuchten Knoten expandieren! Dabei die Zahl der kürzesten Wege zählen! Multimenge P(w) für die Vorgänger jedes Knotens w! Knoten in S(i) gleichzeitig bearbeiten! Pseudocode: Siehe Kopie 122
23 Zusammenfassung! (Knoten-)Zentralitätsmaße: Wichtigkeit von Knoten im Netzwerk! Betweenness Centrality: Summe der Anteile an kürzesten Wegen zwischen Knotenpaaren! Naiver Algorithmus erfordert kubische Laufzeit! Beschleunigung durch rekursive Akkumulation! Algebraisch: Für ungewichtete Graphen recht einfach! Parallel: Feingranular versus grobgranular 123
24 Übung! In der Übung eine Einheit zur Zusammenfassung und Wiederholung der bisherigen Ergebnisse! Was wurde behandelt?! Gemeinsamkeiten! Unterschiede! Was fällt Ihnen auf, positiv oder negativ? 124
23. November Betweenness Centrality Closeness Centrality. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108
23. November 2011 Betweenness Centrality Closeness Centrality H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108 Betweenness Centrality Grundlegende Idee: Ein Knoten ist wichtig, wenn er auf
Algorithmische Methoden zur Netzwerkanalyse
Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische
16. November 2011 Zentralitätsmaße. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 87
16. November 2011 Zentralitätsmaße H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 87 Darstellung in spektraler Form Zentralität genügt Ax = κ 1 x (Herleitung s. Tafel), daher ist x der Eigenvektor
Vorlesung 2 KÜRZESTE WEGE
Vorlesung 2 KÜRZESTE WEGE 34 Kürzeste Wege im Graphen Motivation! Heute:! Kürzeste Wege von einem Knoten (SSSP)! Kürzeste Wege zwischen allen Knotenpaaren (APSP)! Viele Anwendungen:! Navigationssysteme!
Vorlesung 2 KÜRZESTE WEGE
Vorlesung 2 KÜRZESTE WEGE 45 Kürzeste Wege im Graphen Motivation! Heute:! Kürzeste Wege von einem Knoten (SSSP)! Distanzen zwischen allen Knotenpaaren (APD)! Viele Anwendungen:! Navis! Netzwerkrouting!...
Algorithmen & Komplexität
Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik [email protected] Kürzeste Pfade Problem Gegeben Netzwerk: Graph G = (V, E), Gewichtsfunktion w: E N Zwei Knoten: s, t Kantenzug/Weg
8.4 Digraphen mit negativen Kantengewichten Grundsätzliches Betrachte Startknoten s und einen Kreis C mit Gesamtlänge < 0.
8.4 Digraphen mit negativen Kantengewichten 8.4.1 Grundsätzliches Betrachte Startknoten s und einen Kreis C mit Gesamtlänge < 0. k 4 5 1 s 1 3 2 C k 0 k 3 1 1 1 k 1 k 2 v Sollte ein Pfad von s nach C und
Algorithmische Methoden zur Netzwerkanalyse
Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Die Forschungsuniversität Meyerhenke, in der Institut für Theoretische Informatik
Wie wird ein Graph dargestellt?
Wie wird ein Graph dargestellt? Für einen Graphen G = (V, E), ob gerichtet oder ungerichtet, verwende eine Adjazenzliste A G : A G [i] zeigt auf eine Liste aller Nachbarn von Knoten i, wenn G ungerichtet
Lernmodul 7 Algorithmus von Dijkstra
Folie 1 von 30 Lernmodul 7 Algorithmus von Dijkstra Quelle: http://www.map24.de Folie 2 von 30 Algorithmus von Dijkstra Übersicht Kürzester Weg von A nach B in einem Graphen Problemstellung: Suche einer
Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen
Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung
10 Kürzeste Pfade SSSP-Problem
In diesem Kapitel setzen wir uns mit der Berechnung von kürzesten Pfaden in einem Graphen auseinander. Definition 10.1 (Pfadgewichte). i) Das Gewicht eines Pfades p = (v 0, v 1,..., v k ) ist die Summe
Algo&Komp. - Wichtige Begriffe Mattia Bergomi Woche 6 7
1 Kürzeste Pfade Woche 6 7 Hier arbeiten wir mit gewichteten Graphen, d.h. Graphen, deren Kanten mit einer Zahl gewichtet werden. Wir bezeichnen die Gewichtsfunktion mit l : E R. Wir wollen einen kürzesten
Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung
Gliederung der Vorlesung. Fallstudie Bipartite Graphen. Grundbegriffe 3. Elementare Graphalgorithmen und Anwendungen 4. Minimal spannende Bäume 5. Kürzeste Pfade 6. Traveling Salesman Problem 7. Flüsse
Kombinatorische Optimierung
Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 16 Programm: Einführung
Fortgeschrittene Netzwerk- und Graph-Algorithmen
Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester
9. November ZHK in dynamischen Graphen Zentralitäten. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 67
9. November 2011 ZHK in dynamischen Graphen Zentralitäten H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 67 ZHK in dynamischen Graphen Ungerichteter schlichter dynamischer Graph Dynamisch:
Algorithmen II Vorlesung am
Algorithmen II Vorlesung am 07..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum
Graphalgorithmen 2. Dominik Paulus Dominik Paulus Graphalgorithmen / 47
Graphalgorithmen Dominik Paulus.0.01 Dominik Paulus Graphalgorithmen.0.01 1 / 7 1 Spannbäume Kruskal Prim Edmonds/Chu-Liu Datenstrukturen Fibonacci-Heap Union/Find Kürzeste Pfade Dijkstra Bellman-Ford
Algorithmische Methoden zur Netzwerkanalyse
Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische
Datenstrukturen und Algorithmen (SS 2013)
Datenstrukturen und Algorithmen (SS 2013) Übungsblatt 10 Abgabe: Montag, 08.07.2013, 14:00 Uhr Die Übungen sollen in Gruppen von zwei bis drei Personen bearbeitet werden. Schreiben Sie die Namen jedes
Kap. 6.6: Kürzeste Wege
Kap. 6.6: Kürzeste Wege Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 1./. VO DAP SS 009./9. Juli 009 1 Nachtest für Ausnahmefälle Di 1. Juli 009, 16:00 Uhr,
Graphenalgorithmen und lineare Algebra Hand in Hand Prof. Dr. Henning Meyerhenke
Graphenalgorithmen und lineare Algebra Hand in Hand Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische
Vorlesung Datenstrukturen
Vorlesung Datenstrukturen Minimale Spannbäume Maike Buchin 18.7., 20.7.2017 Einführung Motivation: Verbinde Inseln mit Fähren oder Städte mit Schienen und verbrauche dabei möglichst wenig Länge. Problem:
Kap. 6.6: Kürzeste Wege
0.0.00 Nachtest für Ausnahmefälle Kap..: Kürzeste Wege Professor Dr. Lehrstuhl für Algorithm Engineering, LS Fakultät für Informatik, TU Dortmund./. VO DAP SS 00./. Juli 00 Di. Juli 00, :00 Uhr, OH, R.
Richtig oder falsch? Richtig oder falsch? Richtig oder falsch? Mit dynamischer Programmierung ist das Knapsack- Problem in Polynomialzeit lösbar.
Gegeben sei ein Netzwerk N = (V, A, c, s, t) wie in der Vorlesung. Ein maximaler s-t-fluss kann immer mit Hilfe einer Folge von höchstens A Augmentationsschritten gefunden werden. Wendet man den Dijkstra-Algorithmus
15. Elementare Graphalgorithmen
Graphen sind eine der wichtigste Modellierungskonzepte der Informatik Graphalgorithmen bilden die Grundlage vieler Algorithmen in der Praxis Zunächst kurze Wiederholung von Graphen. Dann Darstellungen
Übung 5 Algorithmen II
Michael Axtmann [email protected] http://algo.iti.kit.edu/algorithmenii_ws6.php - 0 Axtmann: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft
Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung
Gliederung der Vorlesung. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen 3. Kürzeste Wege 4. Minimale spannende Bäume 5. Färbungen und Cliquen 6. Traveling Salesman Problem 7. Flüsse in Netzwerken
Algorithmen und Datenstrukturen 2
Algorithmen und Datenstrukturen Lerneinheit : Kürzeste Pfade in Graphen Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 016.6.01 Einleitung Diese Lerneinheit beschäftigt
Algorithmische Methoden zur Netzwerkanalyse
Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische
Algorithmische Methoden für schwere Optimierungsprobleme
Algorithmische Methoden für schwere Optimierungsprobleme Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund
Überblick. Kap. 1.4: Minimum Weight Perfect Matching. 1.3 Blüten-Schrumpf Algorithmus für Maximum Matching
Kap. 1.4: Minimum Weight Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 4. VO 6. November 2006 Überblick kurze Wiederholung: 1.2 Blüten-Schrumpf-Algorithmus für Perfektes Matching
2. November Gradfolgen Zusammenhang Kürzeste Wege. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37
2. November 2011 Gradfolgen Zusammenhang Kürzeste Wege H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37 Satz von Erdős und Gallai Eine Partition einer natürlichen Zahl ist genau dann die Gradfolge
Algorithmen und Datenstrukturen 2-1. Seminar -
Algorithmen und Datenstrukturen 2-1. Seminar - Dominic Rose Bioinformatics Group, University of Leipzig Sommersemster 2010 Outline 1. Übungsserie: 3 Aufgaben, insgesamt 30 28 Punkte A1 Spannbäume (10 8
Algorithmen & Datenstrukturen 2 Praktikum 3
Algorithmen & Datenstrukturen 2 Praktikum 3 Thema: Graphalgorithmen Sommersemester 2016 Prof. Dr. Christoph Karg Hochschule Aalen Dieses Praktikum widmet sich dem Thema Graphalgorithmen. Ziel ist die Implementierung
1 Kürzeste Pfade in Graphen
Praktikum Algorithmen-Entwurf (Teil 3) 03.11.2011 1 1 Kürzeste Pfade in Graphen Es sei ein gerichteter Graph G = (V, E) mit V = n Knoten, E = m Kanten und Kantengewichten c : E R gegeben. Ein Pfad in G
Übungsblatt 7 - Voronoi Diagramme
Karlsruher Institut für Technologie Algorithmische Geometrie Fakultät für Informatik Sommersemester 2012 ITI Wagner Martin Nöllenburg/Andreas Gemsa Übungsblatt 7 - Voronoi Diagramme 1 Voronoi-Zellen Sei
12. Graphen Programmieren / Algorithmen und Datenstrukturen 2 Prof. Dr. Bernhard Humm FB Informatik, Hochschule Darmstadt Wintersemester 2012 / 2013
12. Graphen Programmieren / Algorithmen und Datenstrukturen 2 Prof. Dr. Bernhard Humm FB Informatik, Hochschule Darmstadt Wintersemester 2012 / 2013 1 Agenda Kontrollfragen Graphen Graphenalgorithmen 2
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Prof. Martin Lercher Institut für Informatik Heinrich-Heine-Universität Düsseldorf Teil 10 Suche in Graphen Version vom 13. Dezember 2016 1 / 2 Vorlesung 2016 / 2017 2 /
Kürzeste und Schnellste Wege
Kürzeste und Schnellste Wege Wie funktionieren Navis? André Nusser (Folien inspiriert von Kurt Mehlhorn) Struktur Straßennetzwerke Naiver Algorithmus Dijkstras Algorithmus Transitknoten Nachbemerkungen
Algorithmische Graphentheorie
Algorithmische Graphentheorie Vorlesung 13: Flüsse und Zuordnungen Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca [email protected] 9. Juni 2017 DURCHSATZ D(e) ist die maximale Flussmenge,
Fortgeschrittene Netzwerk- und Graph-Algorithmen
Fortgeschrittene Netzwerk- und Graph-Algorithmen Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester 2010/11
Aufgaben zur Klausurvorbereitung
Vorlesung Graphen und Optimierung Sommersemester 2013/14 Prof. S. Lange Aufgaben zur Klausurvorbereitung Hier finden Sie eine Reihe von Übungsaufgaben, die wir an den beiden Vorlesungsterminen am 29.01.2014
SCHNITTERHALTUNG (SPEKTRALE APPROXIMATION)
Vorlesung 12 AUSDÜNNUNG VON GRAPHEN SCHNITTERHALTUNG (SPEKTRALE APPROXIMATION) 387 Wiederholung: Approximative Schnitterhaltung Ziel: Approximationsalgorithmus: A(S(G)) Ziele bei Eingabe eines dichten
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Graphen 9/1 Begriffsdefinitionen Ein Graph besteht aus Knoten und Kanten. Ein Knoten(Ecke) ist ein benanntes Objekt. Eine Kante verbindet zwei Knoten. Kanten haben ein Gewicht
10. Übungsblatt zu Algorithmen I im SS 2010
Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter Sanders G.V. Batz, C. Schulz, J. Speck 0. Übungsblatt zu Algorithmen I im SS 00 http//algo.iti.kit.edu/algorithmeni.php
Kapitel 4: Netzplantechnik Gliederung der Vorlesung
Gliederung der Vorlesung 1. Grundbegriffe 2. Elementare Graphalgorithmen und Anwendungen 3. Kürzeste Wege 4. Netzplantechnik 5. Minimal spannende Bäume 6. Traveling Salesman Problem 7. Flüsse in Netzwerken
Graphalgorithmen II. Werner Sembach Werner Sembach Graphalgorithmen II / 22
Graphalgorithmen II Werner Sembach 14.04.2014 Werner Sembach Graphalgorithmen II 14.04.2014 1 / 22 Übersicht Datenstrukturen Union-Find Fibonacci-Heap Werner Sembach Graphalgorithmen II 14.04.2014 2 /
Algorithmen und Komplexität Lösungsvorschlag zu Übungsblatt 8
ETH Zürich Institut für Theoretische Informatik Prof. Dr. Angelika Steger Florian Meier, Ralph Keusch HS 2017 Algorithmen und Komplexität Lösungsvorschlag zu Übungsblatt 8 Lösungsvorschlag zu Aufgabe 1
Teil 2: Graphenalgorithmen
Teil : Graphenalgorithmen Anwendungen Definitionen Datenstrukturen für Graphen Elementare Algorithmen Topologisches Sortieren Kürzeste Wege Problemstellung Ungewichtete Graphen Distanzgraphen Gewichtete
Fortgeschrittene Netzwerk- und Graph-Algorithmen
Fortgeschrittene Netzwerk- und Graph-Algorithmen Dr. Hanjo Täubig Lehrstuhl für Eziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester 2007/08
Voronoi-Diagramme. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK
Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 29.05.2011 Das Postamt-Problem b(p, q) = {x R 2 : xp = xq } p q h(p, q) h(q, p) = {x :
Algorithmen und Datenstrukturen 1 VU 6.0 Nachtragstest SS Oktober 2014
Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.813 Algorithmen und Datenstrukturen 1 VU 6.0 Nachtragstest SS 2014 22. Oktober
Algorithmen und Datenstrukturen Klausur WS 2006/07 Software-Engineering und Technische Informatik Bachelor
Klausur WS 2006/07 Software-Engineering und Technische Informatik Bachelor Die Klausur besteht aus 6 Aufgaben und umfasst 60 Punkte. Bitte schreiben Sie die Lösungen auf die Aufgabenblätter. Vergessen
Vorlesung Datenstrukturen
Vorlesung Datenstrukturen Graphen (1) Darstellung Traversierung Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 441 Generalisierung von Bäumen Verallgemeinerung (von Listen zu Graphen)
Routing A lgorithmen Algorithmen Begriffe, Definitionen Wegewahl Verkehrslenkung
Begriffe, Definitionen Routing (aus der Informatik) Wegewahl oder Verkehrslenkung bezeichnet in der Telekommunikation das Festlegen von Wegen für Nachrichtenströme bei der Nachrichtenübermittlung über
Prüfung Datenstrukturen und Algorithmen, D-INFK. Datenstrukturen & Algorithmen
Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik Peter Widmayer
Lösungsvorschlag Hausübung 8
Lösungsvorschlag Hausübung 8 Peter Kling 16. Juli 2007 Aufgabe 27 Betrachten Sie den Algorithmus Heapsort (vgl. Alg. 1) aus der Vorlesung. Illustrieren Sie die Arbeitsweise von Heapsort am Beispiel des
Algorithmen und Datenstrukturen Tafelübung 14. Jens Wetzl 8. Februar 2012
Algorithmen und Datenstrukturen Tafelübung 14 Jens Wetzl 8. Februar 2012 Folien Keine Garantie für Vollständigkeit und/oder Richtigkeit Keine offizielle Informationsquelle LS2-Webseite Abrufbar unter:
Datenstrukturen & Algorithmen
Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen
Kombinatorische Optimierung
Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 3 Programm des
Fortgeschrittene Netzwerk- und Graph-Algorithmen
Fortgeschrittene Netzwerk- und Graph-Algorithmen Dr. Hanjo Täubig Lehrstuhl für Eziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester 2007/08
Relationen und DAGs, starker Zusammenhang
Relationen und DAGs, starker Zusammenhang Anmerkung: Sei D = (V, E). Dann ist A V V eine Relation auf V. Sei andererseits R S S eine Relation auf S. Dann definiert D = (S, R) einen DAG. D.h. DAGs sind
Algorithmen für schwierige Probleme
Algorithmen für schwierige Probleme Britta Dorn Wintersemester 2011/12 24. November 2011 Farbkodierung Beispiel Longest Path Longest Path gegeben: G = (V, E) und k N. Frage: Gibt es einen einfachen Pfad
Grundlagen: Algorithmen und Datenstrukturen
Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 00
11. GRAPHEN 3 FLÜSSE UND SPANNBÄUME
Algorithmen und Datenstrukturen 11. GRAPHEN 3 FLÜSSE UND SPANNBÄUME Algorithmen und Datenstrukturen - Ma5hias Thimm ([email protected]) 1 Algorithmen und Datenstrukturen 11.1. BERECHNUNG MAXIMALER FLÜSSE
Algorithmen auf Sequenzen
Algorithmen auf Sequenzen Fehlertolerante Mustersuche: Distanz- und Ähnlichkeitsmaße Sven Rahmann Genominformatik Universitätsklinikum Essen Universität Duisburg-Essen Universitätsallianz Ruhr Einführung
Vorlesung 3 MINIMALE SPANNBÄUME
Vorlesung 3 MINIMALE SPANNBÄUME 72 Aufgabe! Szenario: Sie arbeiten für eine Firma, die ein Neubaugebiet ans Netz (Wasser, Strom oder Kabel oder...) anschließt! Ziel: Alle Haushalte ans Netz bringen, dabei
Geradenarrangements und Dualität von Punkten und Geraden
Vorlesung Algorithmische Geometrie von Punkten und Geraden INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 12.06.2012 Dualitätsabbildung Bisher haben wir Dualität für planare
Breitensuche BFS (Breadth First Search)
Breitensuche BFS (Breadth First Search) Algorithmus BREITENSUCHE EINGABE: G = (V, E) als Adjazenzliste, Startknoten s V 1 Für alle v V 1 If (v = s) then d[v] 0 else d[v] ; 2 pred[v] nil; 2 Q new Queue;
Es sei P ein einfaches Polygon in der Ebene; P habe n Ecken. Hilfssatz: Zu jedem einfachen Polygon mit mehr als 3 Ecken existiert eine Diagonale.
6. Polygontriangulierung: Wie bewacht man eine Kunstgalerie? 6.1. Grundlegendes zu Polygonen Es sei P ein einfaches Polygon in der Ebene; P habe n Ecken. Definition: Hilfssatz: Zu jedem einfachen Polygon
Matching. Organisatorisches. VL-18: Matching. (Datenstrukturen und Algorithmen, SS 2017) Gerhard Woeginger. Tanzabend
Organisatorisches VL-18: Matching (Datenstrukturen und Algorithmen, SS 2017) Gerhard Woeginger Vorlesung: Gerhard Woeginger (Zimmer 4024 im E1) Sprechstunde: Mittwoch 11:15 12:00 Übungen: Tim Hartmann,
