Algorithmische Methoden zur Netzwerkanalyse
|
|
|
- Moritz Kaufer
- vor 7 Jahren
- Abrufe
Transkript
1 Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische Informatik nationales Algorithmische Forschungszentrum Methoden in der Helmholtz-Gemeinschaft zur Netzwerkanalyse
2 Vorlesung 2, Wiederholung und heutiges Thema Knotengradverteilung: Wie viele Leute kenne ich? k-kerne: Wie gut bin ich vernetzt? 2 Henning Meyerhenke, Institut für Theoretische Informatik
3 Vorlesung 2, Wiederholung und heutiges Thema Knotengradverteilung: Wie viele Leute kenne ich? k-kerne: Wie gut bin ich vernetzt? Heute: Clusterkoeffizienten: Der Freund meines Freundes ist mein Freund 2 Henning Meyerhenke, Institut für Theoretische Informatik
4 Inhalt k-kern-zerlegung Struktur der k-kern-zerlegung Berechnung der k-kern-zerlegung Grundlagen Lokaler CK Berechnung der Koeffizienten 3 Henning Meyerhenke, Institut für Theoretische Informatik k-kern-zerlegung
5 Struktur der Kernzerlegung Obere und untere Schranken Lemma Sei G = (V, E) ein Graph, (V 0,..., V k ) seine Kern-Zerlegung und G i := (V i, E i ) := G[V i ] sein i-kern. Sei n i := V i \V i+1 die Anzahl der Knoten in der i-schale. Sei m i := E i \E i+1 die Anzahl der Kanten, die zu einem Knoten mit Kernzahl i und zu einem Knoten mit Kernzahl j i inzident sind. Per Definition: V k+1 :=, E k+1 :=. 4 Henning Meyerhenke, Institut für Theoretische Informatik k-kern-zerlegung
6 Struktur der Kernzerlegung Obere und untere Schranken Lemma Sei n i := V i \V i+1 die Anzahl der Knoten in der i-schale. Sei m i := E i \E i+1 die Anzahl der Kanten, die zu einem Knoten mit Kernzahl i und zu einem Knoten mit Kernzahl j i inzident sind. Per Definition: V k+1 :=, E k+1 :=. Dann lässt sich die Größe der i-schale beschränken durch: 0 n i V (1) i n i 2 } {, if n i > i i ni, if i < k ( n i 2 ) + n m i i (i n i + 1), if n i i i n i i(i+1) (2) 2, if i = k Beweis: Siehe Tafel! 4 Henning Meyerhenke, Institut für Theoretische Informatik k-kern-zerlegung
7 Algorithmus zur Berechnung der k-kern-zerlegung Algorithm 1 Berechnung der Kernzerlegung eines Graphen 1: function COREDECOMPOSITION(G = (V, E)) 2: Output: Kernzahl k des Kerns von G und Feld core mit Kernzahl jedes Knotens 3: Speichere die Knotengrade für alle Knoten in degree 4: i 1 5: while V = do 6: for each v V mit degree[v] < i do 7: core[v] i 1 8: for each u N(v) do 9: degree[u] degree[u] 1 10: end for 11: Entferne v aus G 12: end for 13: i i : end while 15: return (i 1, core) 5 Henning Meyerhenke, Institut für Theoretische Informatik k-kern-zerlegung
8 Beispiel [Baur et al., 2008] 6 Henning Meyerhenke, Institut für Theoretische Informatik k-kern-zerlegung
9 Laufzeit Theorem Sei G = (V, E) mit E = m zusammenhängend und ungewichtet. Der Algorithmus COREDECOMPOSITION kann in Laufzeit O(m) implementiert werden. Beweis: Siehe Tafel und Skript! 7 Henning Meyerhenke, Institut für Theoretische Informatik k-kern-zerlegung
10 Fazit k-kern-zerlegung Die k-kernstruktur gibt ein Maß an, das robuster ist als der Knotengrad zur Bestimmung der Verbindung eines Knotens zum Rest des Graphen Lemmas beleuchten Größe der i-schalen Algorithmische Definition führt zu Algorithmus, der die Struktur berechnet 8 Henning Meyerhenke, Institut für Theoretische Informatik k-kern-zerlegung
11 Inhalt k-kern-zerlegung Struktur der k-kern-zerlegung Berechnung der k-kern-zerlegung Grundlagen Lokaler CK Berechnung der Koeffizienten 9 Henning Meyerhenke, Institut für Theoretische Informatik
12 Cluster-Koeffizient Einführung Fragestellung Ihnen gibt jemand einen Graphen und behauptet, es sei ein soziales Netzwerk. Sie möchten die Behauptung überprüfen. Welche Analyse-Möglichkeiten fallen Ihnen dazu bereits ein? 10 Henning Meyerhenke, Institut für Theoretische Informatik
13 Cluster-Koeffizient Einführung Fragestellung Ihnen gibt jemand einen Graphen und behauptet, es sei ein soziales Netzwerk. Sie möchten die Behauptung überprüfen. Welche Analyse-Möglichkeiten fallen Ihnen dazu bereits ein? Hinweis: Erwarten Sie relativ viele oder relativ wenige Dreiecke im Netzwerk? 10 Henning Meyerhenke, Institut für Theoretische Informatik
14 Cluster-Koeffizient Einführung Fragestellung Ihnen gibt jemand einen Graphen und behauptet, es sei ein soziales Netzwerk. Sie möchten die Behauptung überprüfen. Welche Analyse-Möglichkeiten fallen Ihnen dazu bereits ein? Hinweis: Erwarten Sie relativ viele oder relativ wenige Dreiecke im Netzwerk? Aufgabe: Formalisierung dieses Konzeptes 10 Henning Meyerhenke, Institut für Theoretische Informatik
15 Cluster-Koeffizient Beschreibung Der Cluster-Koeffizient misst die durchschnittliche Wahrscheinlichkeit, dass zwei Nachbarn desselben Knotens zueinander benachbart sind. Maß für die Dichte von Dreiecken im Netzwerk 11 Henning Meyerhenke, Institut für Theoretische Informatik
16 Cluster-Koeffizient Beschreibung Der Cluster-Koeffizient misst die durchschnittliche Wahrscheinlichkeit, dass zwei Nachbarn desselben Knotens zueinander benachbart sind. Maß für die Dichte von Dreiecken im Netzwerk Gleiche Netzwerktypen haben häufig ähnliche Koeffizienten Unterschiedliche Netzwerktypen haben häufig unterschiedliche Koeffizienten Aber: Ausnahmen nicht so selten 11 Henning Meyerhenke, Institut für Theoretische Informatik
17 Cluster-Koeffizient Beschreibung Der Cluster-Koeffizient misst die durchschnittliche Wahrscheinlichkeit, dass zwei Nachbarn desselben Knotens zueinander benachbart sind. Maß für die Dichte von Dreiecken im Netzwerk Gleiche Netzwerktypen haben häufig ähnliche Koeffizienten Unterschiedliche Netzwerktypen haben häufig unterschiedliche Koeffizienten Aber: Ausnahmen nicht so selten Beispiel in [Newman, S. 237]: Werte oft zwischen 0.1 und 0.6 Typische Wkt. dafür, dass gemeinsame Nachbarn zueinander benachbart sind, liegt zwischen 10% und 60%. 11 Henning Meyerhenke, Institut für Theoretische Informatik
18 Cluster-Koeffizient Definition Definition Der globale Cluster-Koeffizient C ist definiert als C := 3 Zahl der (geschlossenen) Dreiecke Zahl der zusammenhängenden Dreiergruppen 12 Henning Meyerhenke, Institut für Theoretische Informatik
19 Cluster-Koeffizient Definition Definition Der globale Cluster-Koeffizient C ist definiert als C := 3 Zahl der (geschlossenen) Dreiecke Zahl der zusammenhängenden Dreiergruppen Alternative Definition: Definition Der globale Cluster-Koeffizient C ist definiert als C := 6 Zahl der (geschlossenen) Dreiecke Zahl der kantendisjunkten Wege der Länge 2 12 Henning Meyerhenke, Institut für Theoretische Informatik
20 Beispiel Siehe Tafel 13 Henning Meyerhenke, Institut für Theoretische Informatik
21 Beispiel Siehe Tafel (1, 2, 3) (4, 2, 1) (1, 2, 4) (4, 2, 3) (1, 2, 5) (4, 2, 5) (2, 3, 4) (4, 3, 2) (2, 3, 5) (4, 3, 5) (2, 3, 6) (4, 3, 6) (2, 4, 3) (4, 6, 3) (2, 4, 6) (5, 2, 1) (2, 5, 3) (5, 2, 3) (3, 2, 1) (5, 2, 4) (3, 2, 4) (5, 3, 2) (3, 2, 5) (5, 3, 4) (3, 4, 2) (5, 3, 6) (3, 4, 6) (6, 3, 2) (3, 5, 2) (6, 3, 4) (3, 6, 4) (6, 3, 5) (6, 4, 2) (6, 4, 3) 34 Wege der Länge 2 (ohne Zyklen) 13 Henning Meyerhenke, Institut für Theoretische Informatik
22 Bedeutung Durchschnittliche Wahrscheinlichkeit, dass zwei Personen mit einem gemeinsamen Freund auch befreundet sind. C liegt im Intervall [0, 1]. Ist der Freund meines Freundes mein Freund? Nicht unbedingt, aber viel wahrscheinlicher als jemand Zufälliges! Bei C = 1: Alle zusammenhängenden Dreiergruppen bilden eine Clique. Frage: Wie hoch ist C in einem Baum? 14 Henning Meyerhenke, Institut für Theoretische Informatik
23 Diskussion Soziale Netzwerke: C oft im zweistelligen Prozent-Bereich. Bei technischen Netzwerken ist C häufig niedriger. Bsp.: AS-Netzwerk hat nur ca. C = Henning Meyerhenke, Institut für Theoretische Informatik
24 Diskussion Soziale Netzwerke: C oft im zweistelligen Prozent-Bereich. Bei technischen Netzwerken ist C häufig niedriger. Bsp.: AS-Netzwerk hat nur ca. C = Intuitive Signifikanz der Werte: Annahme: Alle Knoten haben etwa Grad c Annahme: Meine Freunde wählen ihre Freunde zufällig Wkt., dass ein solcher Freund auch mein Freund ist, ist etwa c/n 15 Henning Meyerhenke, Institut für Theoretische Informatik
25 Lokaler Cluster-Koeffizient Definition Der lokale Cluster-Koeffizient eines Knotens v ist definiert als C(v) := Zahl der Nachbarpaare von v, die benachbart sind Zahl der Nachbarpaare von v Durchschnittliche Wkt., dass ein Paar von Nachbarn von v auch benachbart ist. Bei deg(v) = 0 oder deg(v) = 1 : C(v) = 0 per def. 16 Henning Meyerhenke, Institut für Theoretische Informatik
26 Lokaler Cluster-Koeffizient Definition Der lokale Cluster-Koeffizient eines Knotens v ist definiert als C(v) := Zahl der Nachbarpaare von v, die benachbart sind Zahl der Nachbarpaare von v Durchschnittliche Wkt., dass ein Paar von Nachbarn von v auch benachbart ist. Bei deg(v) = 0 oder deg(v) = 1 : C(v) = 0 per def. Achtung, nicht verwechseln: Manchmal wird der globale Cluster-Koeffizient anders definiert. Oder er wird Transitivität genannt. 16 Henning Meyerhenke, Institut für Theoretische Informatik
27 Lokaler Cluster-Koeffizient Anwendung Interessant: Korreliert oft negativ mit Knotengrad. Beurteilung der Häufigkeit struktureller Löcher Bsp.: Bei vielen strukturellen Löchern hat man weniger Routing-Alternativen. Lokaler CK kann auch eine Art von Wichtigkeit des Knotens ausdrücken. Interessant: Niedrige Werte bedeuten dabei hohen Einfluss auf Nachbarn! In der Praxis häufig hohe Korrelation zwischen lokalem CK und anderen Maßen zur Wichtigkeit eines Knotens! 17 Henning Meyerhenke, Institut für Theoretische Informatik
28 Berechnung des globalen CK Definition (Wdh.: Globaler CK) Der globale Cluster-Koeffizient C ist definiert als C := 3 Zahl der (geschlossenen) Dreiecke Zahl der zusammenhängenden Dreiergruppen Zähler: Iteriere für jeden Knoten über Paare von Nachbarn und zähle die verbundenen Nenner: Iteriere über jeden Knoten v, akkumuliere ( deg(v) 2 ) Pseudocode: Übung! Interessant: Laufzeit hängt von der Gradverteilung ab! 18 Henning Meyerhenke, Institut für Theoretische Informatik
29 Approximation des CK Siehe dazu: Literaturhinweis Thomas Schank, Dorothea Wagner: Approximating Clustering Coefficient and Transitivity. Journal of Graph Algorithms and Applications, 9(2): , Henning Meyerhenke, Institut für Theoretische Informatik
30 Fazit Cluster-Koeffizient gibt durchschnittliche Dichte von Dreiecken an (global bzw. lokal) Maß zur Bestimmung von Netzwerktypen mit bestimmten Eigenschaften Auch für gerichtete Graphen möglich bei geeigneter Abwandlung der Definition 20 Henning Meyerhenke, Institut für Theoretische Informatik
31 Fazit Cluster-Koeffizient gibt durchschnittliche Dichte von Dreiecken an (global bzw. lokal) Maß zur Bestimmung von Netzwerktypen mit bestimmten Eigenschaften Auch für gerichtete Graphen möglich bei geeigneter Abwandlung der Definition Laufzeit der exakten Berechnung des globalen CK mit naivem Algorithmus abhängig von Knotengradverteilung: O(nd 2 max ) Bester bekannter exakter Algorithmus: O(MM(n)) mit MM(N) n 2,376 Approximationsalgorithmus: Deutlich bessere Laufzeit 20 Henning Meyerhenke, Institut für Theoretische Informatik
Algorithmische Methoden zur Netzwerkanalyse
Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Die Forschungsuniversität Meyerhenke, in der Institut für Theoretische Informatik
Algorithmische Methoden zur Netzwerkanalyse Vorlesung 7, 30.11.2011 Henning Meyerhenke
Algorithmische Methoden zur Netzwerkanalyse Vorlesung 7, 30.11.2011 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum
Algorithmische Methoden zur Netzwerkanalyse Vorlesung 12, Henning Meyerhenke
Algorithmische Methoden zur Netzwerkanalyse Vorlesung 12, 25.01.2012 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum
Algorithmische Methoden zur Netzwerkanalyse
Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische
Algorithmische Methoden zur Netzwerkanalyse
Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische
Algorithmische Methoden für schwere Optimierungsprobleme
Algorithmische Methoden für schwere Optimierungsprobleme Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund
Algorithmische Methoden zur Netzwerkanalyse
Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische
2. November Gradfolgen Zusammenhang Kürzeste Wege. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37
2. November 2011 Gradfolgen Zusammenhang Kürzeste Wege H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37 Satz von Erdős und Gallai Eine Partition einer natürlichen Zahl ist genau dann die Gradfolge
Algorithmen II Vorlesung am
Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum
10. Übung Algorithmen I
INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Bäume
Algorithmische Methoden zur Netzwerkanalyse
Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Die Forschungsuniversität Meyerhenke, in der Institut für Theoretische Informatik
Algorithmische Methoden zur Netzwerkanalyse
Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische
Algorithmische Methoden zur Netzwerkanalyse
Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische
Algorithmische Methoden zur Netzwerkanalyse Vorlesung 11, Henning Meyerhenke
Algorithmische Methoden zur Netzwerkanalyse Vorlesung 11, 18.01.2012 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum
Vorlesung 2 KÜRZESTE WEGE
Vorlesung 2 KÜRZESTE WEGE 34 Kürzeste Wege im Graphen Motivation! Heute:! Kürzeste Wege von einem Knoten (SSSP)! Kürzeste Wege zwischen allen Knotenpaaren (APSP)! Viele Anwendungen:! Navigationssysteme!
Algorithmische Methoden zur Netzwerkanalyse
Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische
8. Übung Algorithmen I
INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Grundlagen
Algorithmische Methoden zur Netzwerkanalyse Vorlesung 13, Henning Meyerhenke
Algorithmische Methoden zur Netzwerkanalyse Vorlesung 13, 01.02.2012 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum
Kombinatorische Optimierung
Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 3 Programm des
Kombinatorische Optimierung
Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 4 Programm des
9. Übung Algorithmen I
Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der
16. November 2011 Zentralitätsmaße. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 87
16. November 2011 Zentralitätsmaße H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 87 Darstellung in spektraler Form Zentralität genügt Ax = κ 1 x (Herleitung s. Tafel), daher ist x der Eigenvektor
Kombinatorische Optimierung
Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesungen 5 und 6 Programm
Algorithmische Methoden zur Netzwerkanalyse
Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische
Maximale s t-flüsse in Planaren Graphen
Maximale s t-flüsse in Planaren Graphen Vorlesung Algorithmen für planare Graphen 6. Juni 2017 Guido Brückner INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg
Vorlesung 2 KÜRZESTE WEGE
Vorlesung 2 KÜRZESTE WEGE 45 Kürzeste Wege im Graphen Motivation! Heute:! Kürzeste Wege von einem Knoten (SSSP)! Distanzen zwischen allen Knotenpaaren (APD)! Viele Anwendungen:! Navis! Netzwerkrouting!...
23. November Betweenness Centrality Closeness Centrality. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108
23. November 2011 Betweenness Centrality Closeness Centrality H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108 Betweenness Centrality Grundlegende Idee: Ein Knoten ist wichtig, wenn er auf
Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung.
Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 14. November 2007 1 / 22 2 / 22 Gliederung eulersche und semi-eulersche Graphen Charakterisierung eulerscher Graphen Berechnung eines
Vorlesung Algorithmische Geometrie Konvexe Hülle im R 3
Vorlesung Algorithmische Geometrie Konvexe Hülle im R 3 LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Andreas Gemsa 26.06.2012 Prüfung! Termine: 20. Juli 27.
Theoretische Informatik. Exkurs: Komplexität von Optimierungsproblemen. Optimierungsprobleme. Optimierungsprobleme. Exkurs Optimierungsprobleme
Theoretische Informatik Exkurs Rainer Schrader Exkurs: Komplexität von n Institut für Informatik 13. Mai 2009 1 / 34 2 / 34 Gliederung Entscheidungs- und Approximationen und Gütegarantien zwei Greedy-Strategien
Kombinatorische Optimierung
Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 1 Programm des
Breitensuche BFS (Breadth First Search)
Breitensuche BFS (Breadth First Search) Algorithmus BREITENSUCHE EINGABE: G = (V, E) als Adjazenzliste, Startknoten s V 1 Für alle v V 1 If (v = s) then d[v] 0 else d[v] ; 2 pred[v] nil; 2 Q new Queue;
durch Einfügen von Knoten konstruiert werden kann.
Satz von Kuratowski Definition Unterteilung eines Graphen Sei G = (V, E) und e = {u, v} E. 1 Das Einfügen eines neuen Knoten w in die Kante e führt zum Graphen G = (V {w}, E \ e {{u, w}, {w, v}}). 2 Der
Algorithmische Methoden für schwere Optimierungsprobleme
Algorithmische Methoden für schwere Optimierungsprobleme Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund
Berechnung minimaler Spannbäume. Beispiel
Minimale Spannbäume Definition Sei G pv, Eq ein ungerichteter Graph und sei w : E Ñ R eine Funktion, die jeder Kante ein Gewicht zuordnet. Ein Teilgraph T pv 1, E 1 q von G heißt Spannbaum von G genau
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik Vorlesung am 01. Dezember 2011 INSTITUT FÜR THEORETISCHE 0 KIT 01.12.2011 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der
Vorlesung 4 BETWEENNESS CENTRALITY
Vorlesung 4 BETWEENNESS CENTRALITY 101 Aufgabe! Szenario: Sie arbeiten bei einem sozialen Online-Netzwerk. Aus der Netzwerk-Struktur Ihrer Benutzer sollen Sie wichtige Eigenschaften extrahieren. [http://www.fahrschule-vatterodt.de/
Geradenarrangements und Dualität von Punkten und Geraden
Vorlesung Algorithmische Geometrie von Punkten und Geraden INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 12.06.2012 Dualitätsabbildung Bisher haben wir Dualität für planare
9. Übung Algorithmen I
INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Musterlösung
Geradenarrangements und Dualität von Punkten und Geraden
Vorlesung Algorithmische Geometrie von Punkten und Geraden INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 12.06.2012 Dualitätsabbildung Bisher haben wir Dualität für planare
Polygontriangulierung
Vorlesung Algorithmische Geometrie Polygone triangulieren LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 26.04.2011 Das Kunstgalerie-Problem
Fortgeschrittene Netzwerk- und Graph-Algorithmen
Fortgeschrittene Netzwerk- und Graph-Algorithmen Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester 2010/11
Theoretische Überlegungen zur Ausbreitung von Infektionserregern auf Kontaktnetzen. Hartmut Lentz, Maria Kasper, Ansgar Aschfalk und Thomas Selhorst
Theoretische Überlegungen zur Ausbreitung von Infektionserregern auf Kontaktnetzen Hartmut Lentz, Maria Kasper, Ansgar Aschfalk und Thomas Selhorst Netzwerke / Graphen verschiedene Typen von Graphen: einfache
Fortgeschrittene Netzwerk- und Graph-Algorithmen
Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Prof. Martin Lercher Institut für Informatik Heinrich-Heine-Universität Düsseldorf Teil 10 Suche in Graphen Version vom 13. Dezember 2016 1 / 2 Vorlesung 2016 / 2017 2 /
Knotenfärbung. Def.: Eine Knotenfärbung eines Graphen G=(V,E) mit k Farben ist eine Abbildung c:v {1,...,k}, so dass c(u) c(v) für alle {u,v} E.
Knotenfärbung Def.: Eine Knotenfärbung eines Graphen G=(V,E) mit k Farben ist eine Abbildung c:v {1,...,k}, so dass c(u) c(v) für alle {u,v} E. Die chromatische Zahl χ(g) eines Graphen G ist die minimale
Voronoi-Diagramme. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK
Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 29.05.2011 Das Postamt-Problem b(p, q) = {x R 2 : xp = xq } p q h(p, q) h(q, p) = {x :
Lokalisierung von inneren und äußeren Grenzen in Sensornetzwerken
Lokalisierung von inneren und äußeren Grenzen in Sensornetzwerken Seminararbeit: Algorithmen für Sensornetzwerke Thomas Gramer 1 Thomas Gramer: KIT Universität des Landes Baden-Württemberg und nationales
Polygontriangulierung
Vorlesung Algorithmische Geometrie Polygone triangulieren INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 03.05.2012 Das Kunstgalerie-Problem Aufgabe: Installiere ein Kamerasystem
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik Vorlesung am 17. Januar 2012 INSTITUT FÜR THEORETISCHE 0 KIT 18.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der
Algorithmische Graphentheorie
Algorithmische Graphentheorie Vorlesung 13: Flüsse und Zuordnungen Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca [email protected] 9. Juni 2017 DURCHSATZ D(e) ist die maximale Flussmenge,
8. Übung zu Algorithmen I 15. Juni 2016
8. Übung zu Algorithmen I 15. Juni 2016 Lisa Kohl [email protected] (mit Folien von Julian Arz, Timo Bingmann, Sebastian Schlag, Christian Staudt und Christoph Striecks) Nachtrag: Quicksort, alternative
Einführung in Approximative Algorithmen und Parametrisierte Komplexität
Einführung in Approximative Algorithmen und Parametrisierte Komplexität Tobias Lieber 10. Dezember 2010 1 / 16 Grundlegendes Approximationsalgorithmen Parametrisierte Komplexität 2 / 16 Grundlegendes Definition
Algorithmen zum Lösen von Vertex und Set Cover Instanzen zur Planung von Angriffen auf Netzwerke
Algorithmen zum Lösen von Vertex und Set Cover Instanzen zur Planung von Angriffen auf Netzwerke Steve Göring 13.07.2012 1/18 Gliederung Einleitung Grundlagen Vertex-Cover-Problem Set-Cover-Problem Lösungsalgorithmen
Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008
Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 2007/08 Lösungsblatt 9
Algorithmen II Vorlesung am
Algorithmen II Vorlesung am 24.01.2013 Online Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum
Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung
Gliederung der Vorlesung. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen 3. Kürzeste Wege 4. Minimale spannende Bäume 5. Färbungen und Cliquen 6. Traveling Salesman Problem 7. Flüsse in Netzwerken
Wiederholung zu Flüssen
Universität Konstanz Methoden der Netzwerkanalyse Fachbereich Informatik & Informationswissenschaft SS 2008 Prof. Dr. Ulrik Brandes / Melanie Badent Wiederholung zu Flüssen Wir untersuchen Flüsse in Netzwerken:
Voronoi-Diagramme INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie
Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 03.06.2014 1 Das Postamt-Problem b(p, q) = {x 2 R 2 : xp = xq } p q h(p, q) h(q, p) = {x
Networks, Dynamics, and the Small-World Phenomenon
Seminar aus Data und Web Mining Mining Social and Other Networks Sommersemester 2007 Networks, Dynamics, and the Small-World Phenomenon, Eine kleine Welt? Ein Erlebnis das wahrscheinlich fast jedem schon
Algorithmen II Vorlesung am 15.11.2012
Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales
Fortgeschrittene Netzwerk- und Graph-Algorithmen
Fortgeschrittene Netzwerk- und Graph-Algorithmen Dr. Hanjo Täubig Lehrstuhl für Eziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester 2007/08
Algorithmische Graphentheorie
Algorithmische Graphentheorie Vorlesung 4: Suchstrategien Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca [email protected] 14. April 2017 HALBORDNUNG TOPOLOGISCHE ORDNUNG TOPOLOGISCHES
Algorithmische Geometrie: Schnittpunkte von Strecken
Algorithmische Geometrie: Schnittpunkte von Strecken Nico Düvelmeyer WS 2009/2010, 3.11.2009 3 Phasen im Algorithmenentwurf 1. Konzentration auf das Hauptproblem 2. Verallgemeinerung auf entartete Eingaben
15. Elementare Graphalgorithmen
Graphen sind eine der wichtigste Modellierungskonzepte der Informatik Graphalgorithmen bilden die Grundlage vieler Algorithmen in der Praxis Zunächst kurze Wiederholung von Graphen. Dann Darstellungen
Algorithmen für Ad-hoc- und Sensornetze
Algorithmen für Ad-hoc- und Sensornetze VL 11 Kommunikation und Färbungen im SINR Modell Fabian Fuchs 17. Dez. 2015 (Version 1) INSTITUT FÜR THEORETISCHE INFORMATIK - LEHRSTUHL FÜR ALGORITHMIK (PROF. WAGNER)
Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)
Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,
Algorithmen und Datenstrukturen SS09. Foliensatz 16. Michael Brinkmeier. Technische Universität Ilmenau Institut für Theoretische Informatik
Foliensatz 16 Michael Brinkmeier Technische Universität Ilmenau Institut für Theoretische Informatik Sommersemester 2009 TU Ilmenau Seite 1 / 45 Graphen TU Ilmenau Seite 2 / 45 Graphen 1 2 3 4 5 6 7 8
Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza)
WS 2013/14 Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2013ws/ds/uebung/ 22. Januar 2014 ZÜ DS ZÜ XIII
Freie Bäume und Wälder
(Martin Dietzfelbinger, Stand 4.6.2011) Freie Bäume und Wälder In dieser Notiz geht es um eine besondere Sorte von (ungerichteten) Graphen, nämlich Bäume. Im Gegensatz zu gerichteten Bäumen nennt man diese
Kombinatorische Optimierung
Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik Vorlesung am 20. November 2014 INSTITUT FÜR THEORETISCHE 0 KIT 20.11.2014 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der
Nachbarschaft, Grad, regulär, Inzidenz
Nachbarschaft, Grad, regulär, Inzidenz Definition Eigenschaften von Graphen Sei G = (V, E) ein ungerichteter Graph. 1 Die Nachbarschaftschaft Γ(u) eines Knoten u V ist Γ(u) := {v V {u, v} E}. 2 Der Grad
Algorithmen und Datenstrukturen
Universität Innsbruck Institut für Informatik Zweite Prüfung 16. Oktober 2008 Algorithmen und Datenstrukturen Name: Matrikelnr: Die Prüfung besteht aus 8 Aufgaben. Die verfügbaren Punkte für jede Aufgabe
Graphenalgorithmen und lineare Algebra Hand in Hand Vorlesung für den Bereich Master Informatik
Vorlesung für den Bereich Master Informatik Dozent: Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg
Vorlesung Datenstrukturen
Vorlesung Datenstrukturen Minimale Spannbäume Maike Buchin 18.7., 20.7.2017 Einführung Motivation: Verbinde Inseln mit Fähren oder Städte mit Schienen und verbrauche dabei möglichst wenig Länge. Problem:
Felix Brandt, Jan Johannsen. Vorlesung im Wintersemester 2008/09
Felix Brandt, Jan Johannsen Vorlesung im Wintersemester 2008/09 Übersicht Übersicht Definition Ein Matching in G = (V, E) ist eine Menge M E mit e 1 e 2 = für e 1, e 2 M, e 1 e 2 Ein Matching M ist perfekt,
Algorithmische Methoden zur Netzwerkanalyse
Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische
Fortgeschrittene Netzwerk- und Graph-Algorithmen
Fortgeschrittene Netzwerk- und Graph-Algorithmen Dr. Hanjo Täubig Lehrstuhl für Eziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester 2007/08
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik Vorlesung am 7. Dezember 2017 INSTITUT FÜR THEORETISCHE 0 07.12.2017 Dorothea Wagner - Theoretische Grundlagen der Informatik INSTITUT FÜR THEORETISCHE KIT Die Forschungsuniversität
Quadtrees und Meshing
Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 19.06.2012 Motivation: Meshing von Platinenlayouts Zur Simulation der Hitzeentwicklung
1. Übung Algorithmen I
Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der
Maximale s t-flüsse in Planaren Graphen
Maximale s t-flüsse in Planaren Graphen Vorlesung Algorithmen für planare Graphen June 1, 2015 Ignaz Rutter INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg
Fortgeschrittene Netzwerk- und Graph-Algorithmen
Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester
4. Kreis- und Wegeprobleme
4. Kreis- und Wegeprobleme Kapitelübersicht 4. Kreis- und Wegeprobleme Charakterisierung von eulerschen Graphen Bestimmung von eulerschen Wegen und Kreisen Hamiltonsche Graphen Abstände in Graphen Berechnung
8 Diskrete Optimierung
8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von
Theoretische Informatik 1
Theoretische Informatik 1 Approximierbarkeit David Kappel Institut für Grundlagen der Informationsverarbeitung Technische Universität Graz 10.06.2016 Übersicht Das Problem des Handelsreisenden TSP EUCLIDEAN-TSP
4 Greedy-Algorithmen (gierige Algorithmen)
Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine
Berechnung von Abständen
3. Kreis- und Wegeprobleme Abstände in Graphen Abstände in Graphen Definition 3.4. Es sei G = (V, E) ein Graph. Der Abstand d(v, w) zweier Knoten v, w V ist die minimale Länge eines Weges von v nach w.
Eulerweg, Eulerkreis. Das Königsberger Brückenproblem. Definition 3.1. Ein Weg, der jede Kante von G genau einmal
3. Kreis- und Wegeprobleme Kapitelübersicht 3. Kreis- und Wegeprobleme Eulerweg, Eulerkreis Charakterisierung von eulerschen Graphen Bestimmung von eulerschen Wegen und Kreisen Hamiltonsche Graphen Definition
