8. Übung Algorithmen I

Größe: px
Ab Seite anzeigen:

Download "8. Übung Algorithmen I"

Transkript

1 INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische Informatik

2 Grundlagen der Graphentheorie 2

3 Graphen und Relationen Relation Ist eine Menge M gegeben, dann heißt R M M eine Relation und man schreibt auch x R y, falls (x, y) R. Spezielle Relationen: symmetrisch, transitiv, antisymmetrisch, Äquivalenz-Relationen, etc. Beispiele: x = y, x y oder x y (teilt). gerichteter Graph Ein gerichteter Graph G = (V, E) besteht aus Knoten V und Kanten E, wobei V nicht leer ist und E V V ist. ungerichteter Graph Ein ungerichteter Graph G = (V, E) besteht aus Knoten V und Kanten E, wobei V nicht leer ist und E {{x, y} x, y V } ist. 3

4 Teilbarkeitsgraph Ein gerichteter Graph G = (V, E) mit V = {1,..., 9} und E = {(x, y) x, y V, x y und x y}, wobei x y genau dann, wenn x teilt y, also n N : xn = y gilt

5 Der Hyperwürfel Q 3 Ein ungerichteter Graph G = (V, E) mit V = {{0, 1} 3 } und E = {{x, y} x, y V und x y {100, 010, 001}} Zwei Knoten x, y V sind also adjazent, wenn x und y sich in genau einer Ziffer unterscheiden. 5

6 Adjazenz und Knotengrad Sei G = (V, E) ein ungerichteter Graph. Bereits bekannt: Ein Knoten x V und eine Kante e E heißen inzident, wenn x e. Zwei Knoten x, y V mit x y heißen adjazent, wenn es eine Kante e E mit x e und y e gibt. Für ein Knoten x V ist die Adjazenzmenge oder Nachbarn-Menge also Adj(x) = {y V x y und {x, y} E}. Der Grad eines Knoten x V ist deg(x) := Adj(x). (auch deg G (x) oder d G (x) oder γ G (x) oder...) 6

7 Knoten mit speziellem Knotengrad Ein Knoten v V mit deg(v) = 0 heißt isoliert. Ein Knoten v V mit deg(v) = 1 heißt Randknoten. Ein Graph G = (V, E) heißt knotenregulär vom Grad r, wenn deg(v) = r für alle v V gilt. Beispiel: der Hyperwürfel Q 3 ist 3-knotenregulär. Ein ( V 1)-knotenregulärer Graph heißt vollständig. K 6 K 4 K 5 7

8 Handshake-Lemma Lemma: Ist G = (V, E) ein ungerichteter Graph, dann gilt deg(v) = 2 E. v V 8

9 Handshake-Lemma Lemma: Ist G = (V, E) ein ungerichteter Graph, dann gilt deg(v) = 2 E. v V Beweis: Betrachte die Menge M := {(v, e) v V, e E mit v e}. 8

10 Handshake-Lemma Lemma: Ist G = (V, E) ein ungerichteter Graph, dann gilt deg(v) = 2 E. v V Beweis: Betrachte die Menge M := {(v, e) v V, e E mit v e}. Für jede Kante e E sind genau zwei Paare in M, also M = 2 E. 8

11 Handshake-Lemma Lemma: Ist G = (V, E) ein ungerichteter Graph, dann gilt deg(v) = 2 E. v V Beweis: Betrachte die Menge M := {(v, e) v V, e E mit v e}. Für jede Kante e E sind genau zwei Paare in M, also M = 2 E. Für jeden Knoten v V sind genau alle ausgehenden Kanten in M, also M = v V deg(v). 8

12 Handshake-Lemma Lemma: Ist G = (V, E) ein ungerichteter Graph, dann gilt deg(v) = 2 E. v V Beweis: Betrachte die Menge M := {(v, e) v V, e E mit v e}. Für jede Kante e E sind genau zwei Paare in M, also M = 2 E. Für jeden Knoten v V sind genau alle ausgehenden Kanten in M, also M = v V deg(v). Korollar: In jedem Graph gibt es eine gerade Anzahl von Knoten mit ungeradem Knotengrad. 8

13 Adjazenz- und Inzidenzmatrix v 1 e 1 e 2 e 3 v 2 v 3 e 4 e 5 e 6 e 7 v 4 v A = H =

14 Adjazenzfelder V E 10

15 Adjazenzfelder V E

16 Graphen als Matrizen Symmetrie Ungerichteter Graph symmetrische Adjazenzmatrix A = A T

17 Graphen als Matrizen DAG DAGs lassen sich als obere Dreiecksmatrix repräsentieren

18 Graphen als Matrizen DAG DAGs lassen sich als obere Dreiecksmatrix repräsentieren

19 Graphen als Matrizen Zusammenhangskomponenten Pro Zusammenhangskomponente ein Block in der Matrix

20 Graphen als Matrizen Zusammenhangskomponenten Pro Zusammenhangskomponente ein Block in der Matrix

21 Unter- oder Teilgraphen Definition: Ein Graph G = (V, E ) ist ein Untergraph oder Teilgraph von G = (V, E), geschrieben G G, wenn V V, E E und für alle {v 1, v 2 } E sowohl v 1 V als auch v 2 V. Definition: Ist G = (V, E) ein Graph und V V eine Knotenmenge, dann heißt der Graph G[V ] := (V, E ) mit E = {{v 1, v 2 } E v 1, v 2 V } der durch V knoten-induzierte Teilgraph von G. Definition: Ist G = (V, E) ein Graph und E E eine Kantenmenge, dann heißt der Graph G[E ] := (V, E ) mit V = {v 1, v 2 } der durch E kanten-induzierte Teilgraph von G. {v 1,v 2 } E 14

22 Wege, Kreise und Zusammenhang Ist G = (V, E) ein ungerichteter Graph, dann heißt eine Folge (v 0, e 1, v 1, e 2,..., v n 1, e n, v n ) mit v i V und e i E eine Kantenfolge, ein Kantenweg oder nur Weg (path), wenn e i = {v i 1, v i } für i = 1,..., n. Alternativ, kann man in Graphen ohne Mehrfachkanten eine Kantenfolge auch durch die Knotenspur (v 0,..., v n ) beschreiben. heißt eine Kantenfolge ein Kantenpfad oder nur Pfad (simple path), wenn alle besuchten Knoten verschieden sind. heißen zwei Knoten x, y V verbindbar (connected), wenn es einen Weg mit x = v 0 und y = v n gibt. heißt der Graph G zusammenhängend (connected), wenn jedes Paar (x, y) V V verbindbar ist. 15

23 Wege, Kreise und Zusammenhang Ist G = (V, E) ein ungerichteter Graph, dann heißt ein Kantenfolge (v 0, e 1, v 1, e 2,..., v n 1, e n, v n ) ein Kantenkreis oder Kantenzyklus (cycle), wenn v 0 = v n, ein Kantenkreis einfach (simple), wenn alle besuchten Knoten außer v 0 und v n verschieden sind, und der Graph G kreisfrei, kreislos oder zykelfrei (cycle free), wenn G keinen Kantenkreis enthält. 16

24 Eulersche und Hamiltonsche Kreise Ein Kantenkreis heißt Eulersch, wenn er alle Kanten des Graphen genau einmal enthält. Ein Kantenkreis heißt Hamiltonsch, wenn er alle Knoten des Graphen genau einmal enthält (Beginn und Ende einmal gezählt). Ein Graph heißt Eulersch/Hamiltonsch, wenn er einen Eulerschen/Hamiltonschen Kreis enthält. 17

25 Eulersche und Hamiltonsche Kreise Ein Kantenkreis heißt Eulersch, wenn er alle Kanten des Graphen genau einmal enthält. Ein Kantenkreis heißt Hamiltonsch, wenn er alle Knoten des Graphen genau einmal enthält (Beginn und Ende einmal gezählt). Ein Graph heißt Eulersch/Hamiltonsch, wenn er einen Eulerschen/Hamiltonschen Kreis enthält. 17

26 Satz von Euler (Graphen) Satz: Ein Graph G = (V, E) mit E ist genau dann Eulersch, wenn G zusammenhängend ist und alle Knoten geraden Knotengrad haben. 18

27 Satz von Euler (Graphen) Satz: Ein Graph G = (V, E) mit E ist genau dann Eulersch, wenn G zusammenhängend ist und alle Knoten geraden Knotengrad haben. Beweis: = Klar, denn G muss zusammenhängend sein und beim Passieren eines Knoten wird dieser durch eine Kante betreten und durch eine andere verlassen. Da jede Kante genau einmal verwendet wird, muss der Knotengrad aller Knoten gerade sein. 18

28 Satz von Euler (Graphen) Satz: Ein Graph G = (V, E) mit E ist genau dann Eulersch, wenn G zusammenhängend ist und alle Knoten geraden Knotengrad haben. Beweis: = Angenommen der Graph hat diese Eigenschaften, so betrachtet man eine Kantenpfad P = (v 0, e 1, v 1, e 2,..., v r 1, e r, v r ) maximaler Länge, in dem also keine Kante zweimal vorkommt. Behauptung 1: v 0 = v r. 18

29 Satz von Euler (Graphen) Satz: Ein Graph G = (V, E) mit E ist genau dann Eulersch, wenn G zusammenhängend ist und alle Knoten geraden Knotengrad haben. Beweis: = Angenommen der Graph hat diese Eigenschaften, so betrachtet man eine Kantenpfad P = (v 0, e 1, v 1, e 2,..., v r 1, e r, v r ) maximaler Länge, in dem also keine Kante zweimal vorkommt. Behauptung 1: v 0 = v r. Wäre v 0 v r, dann ist v 0 zu einer ungeraden Anzahl Kanten in P inzident. Da v 0 aber geraden Knotengrad hat, gibt es eine inzidente Kante e / P. Der Pfad P kann mit e verlängert werden, ist also nicht maximal! Widerspruch = v 0 = v r, also ist P ein Kreis. 18

30 Satz von Euler (Graphen) Satz: Ein Graph G = (V, E) mit E ist genau dann Eulersch, wenn G zusammenhängend ist und alle Knoten geraden Knotengrad haben. Beweis: = Angenommen der Graph hat diese Eigenschaften, so betrachtet man eine Kantenkreis C = (v 0, e 1, v 1, e 2,..., v r 1, e r, v 0 ) maximaler Länge, in dem also keine Kante zweimal vorkommt. Behauptung 2: E(C) := {e i i = 1,..., r} = E. 18

31 Satz von Euler (Graphen) Satz: Ein Graph G = (V, E) mit E ist genau dann Eulersch, wenn G zusammenhängend ist und alle Knoten geraden Knotengrad haben. Beweis: = Angenommen der Graph hat diese Eigenschaften, so betrachtet man eine Kantenkreis C = (v 0, e 1, v 1, e 2,..., v r 1, e r, v 0 ) maximaler Länge, in dem also keine Kante zweimal vorkommt. Behauptung 2: E(C) := {e i i = 1,..., r} = E. Angenommen E(C) E, so betrachten wir G := (V, E \ E(C)). Da G zusammenhängt, muss G und C einen gemeinsamen Knoten w mit deg G (w) > 0 haben. 18

32 Satz von Euler (Graphen) Satz: Ein Graph G = (V, E) mit E ist genau dann Eulersch, wenn G zusammenhängend ist und alle Knoten geraden Knotengrad haben. Beweis: = Angenommen der Graph hat diese Eigenschaften, so betrachtet man eine Kantenkreis C = (v 0, e 1, v 1, e 2,..., v r 1, e r, v 0 ) maximaler Länge, in dem also keine Kante zweimal vorkommt. Behauptung 2: E(C) := {e i i = 1,..., r} = E. Angenommen E(C) E, so betrachten wir G := (V, E \ E(C)). Da G zusammenhängt, muss G und C einen gemeinsamen Knoten w mit deg G (w) > 0 haben. Alle Knoten in G haben geraden Knotengrad, also kann man in G einen Kreis C finden, der durch w geht. 18

33 Satz von Euler (Graphen) Satz: Ein Graph G = (V, E) mit E ist genau dann Eulersch, wenn G zusammenhängend ist und alle Knoten geraden Knotengrad haben. Beweis: = Angenommen der Graph hat diese Eigenschaften, so betrachtet man eine Kantenkreis C = (v 0, e 1, v 1, e 2,..., v r 1, e r, v 0 ) maximaler Länge, in dem also keine Kante zweimal vorkommt. Behauptung 2: E(C) := {e i i = 1,..., r} = E. Angenommen E(C) E, so betrachten wir G := (V, E \ E(C)). Da G zusammenhängt, muss G und C einen gemeinsamen Knoten w mit deg G (w) > 0 haben. Alle Knoten in G haben geraden Knotengrad, also kann man in G einen Kreis C finden, der durch w geht. C kann an Knoten w mit C verlängert werden. Widerspruch zur Maximalität = E(C) = E. 18

9. Übung Algorithmen I

9. Übung Algorithmen I Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der

Mehr

8. Übung zu Algorithmen I 15. Juni 2016

8. Übung zu Algorithmen I 15. Juni 2016 8. Übung zu Algorithmen I 15. Juni 2016 Lisa Kohl Lisa.Kohl@kit.edu (mit Folien von Julian Arz, Timo Bingmann, Sebastian Schlag, Christian Staudt und Christoph Striecks) Nachtrag: Quicksort, alternative

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen)

Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen) WS 2015/16 Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

Nachbarschaft, Grad, regulär, Inzidenz

Nachbarschaft, Grad, regulär, Inzidenz Nachbarschaft, Grad, regulär, Inzidenz Definition Eigenschaften von Graphen Sei G = (V, E) ein ungerichteter Graph. 1 Die Nachbarschaftschaft Γ(u) eines Knoten u V ist Γ(u) := {v V {u, v} E}. 2 Der Grad

Mehr

Für die Anzahl der Kanten in einem vollständigen Graphen (und damit für die maximale Anzahl von Kanten in einem einfachen Graphen) gilt:

Für die Anzahl der Kanten in einem vollständigen Graphen (und damit für die maximale Anzahl von Kanten in einem einfachen Graphen) gilt: Der K 4 lässt sich auch kreuzungsfrei zeichnen: Für die Anzahl der Kanten in einem vollständigen Graphen (und damit für die maximale Anzahl von Kanten in einem einfachen Graphen) gilt: ( ) n n (n 1) E

Mehr

= n (n 1) 2 dies beruht auf der Auswahl einer zweielementigen Teilmenge aus V = n. Als Folge ergibt sich, dass ein einfacher Graph maximal ( n E = 2

= n (n 1) 2 dies beruht auf der Auswahl einer zweielementigen Teilmenge aus V = n. Als Folge ergibt sich, dass ein einfacher Graph maximal ( n E = 2 1 Graphen Definition: Ein Graph G = (V,E) setzt sich aus einer Knotenmenge V und einer (Multi)Menge E V V, die als Kantenmenge bezeichnet wird, zusammen. Falls E symmetrisch ist, d.h.( u,v V)[(u,v) E (v,u)

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Vollständiger Graph. Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete).

Vollständiger Graph. Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete). Vollständiger Graph Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete). Mit K n wird der vollständige Graph mit n Knoten bezeichnet. Bemerkung

Mehr

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung.

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung. Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 14. November 2007 1 / 22 2 / 22 Gliederung eulersche und semi-eulersche Graphen Charakterisierung eulerscher Graphen Berechnung eines

Mehr

Einheit 11 - Graphen

Einheit 11 - Graphen Einheit - Graphen Bevor wir in medias res (eigentlich heißt es medias in res) gehen, eine Zusammenfassung der wichtigsten Definitionen und Notationen für Graphen. Graphen bestehen aus Knoten (vertex, vertices)

Mehr

Bemerkung: Der vollständige Graph K n hat n(n 1)

Bemerkung: Der vollständige Graph K n hat n(n 1) Bemerkung: Der vollständige Graph K n hat n(n 1) 2 Kanten. Bew: Abzählen! Definition 111. Graphen mit n paarweise zyklisch verbundenen Kanten heißen Kreise (vom Grad n) und werden mit C n bezeichnet. Beispiel

Mehr

10. Übung Algorithmen I

10. Übung Algorithmen I INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Bäume

Mehr

Algorithmen und Datenstrukturen 2-1. Seminar -

Algorithmen und Datenstrukturen 2-1. Seminar - Algorithmen und Datenstrukturen 2-1. Seminar - Dominic Rose Bioinformatics Group, University of Leipzig Sommersemster 2010 Outline 1. Übungsserie: 3 Aufgaben, insgesamt 30 28 Punkte A1 Spannbäume (10 8

Mehr

Graphentheorie Graphentheorie. Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke

Graphentheorie Graphentheorie. Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke Graphen Graphentheorie Graphentheorie Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke 2 Was ist ein Graph? Ein Graph ist in der Graphentheorie eine abstrakte Struktur,

Mehr

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008 Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 2007/08 Lösungsblatt 9

Mehr

Algorithmen und Datenstrukturen SS09. Foliensatz 16. Michael Brinkmeier. Technische Universität Ilmenau Institut für Theoretische Informatik

Algorithmen und Datenstrukturen SS09. Foliensatz 16. Michael Brinkmeier. Technische Universität Ilmenau Institut für Theoretische Informatik Foliensatz 16 Michael Brinkmeier Technische Universität Ilmenau Institut für Theoretische Informatik Sommersemester 2009 TU Ilmenau Seite 1 / 45 Graphen TU Ilmenau Seite 2 / 45 Graphen 1 2 3 4 5 6 7 8

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 15: Graphen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik

Mehr

Bäume und Wälder. Definition 1

Bäume und Wälder. Definition 1 Bäume und Wälder Definition 1 Ein Baum ist ein zusammenhängender, kreisfreier Graph. Ein Wald ist ein Graph, dessen Zusammenhangskomponenten Bäume sind. Ein Knoten v eines Baums mit Grad deg(v) = 1 heißt

Mehr

Graphen. Graphen und ihre Darstellungen

Graphen. Graphen und ihre Darstellungen Graphen Graphen und ihre Darstellungen Ein Graph beschreibt Beziehungen zwischen den Elementen einer Menge von Objekten. Die Objekte werden als Knoten des Graphen bezeichnet; besteht zwischen zwei Knoten

Mehr

1. Einführung. Grundbegriffe und Bezeichnungen. Beispiele. gerichtete Graphen. 1. Einführung Kapitelübersicht

1. Einführung. Grundbegriffe und Bezeichnungen. Beispiele. gerichtete Graphen. 1. Einführung Kapitelübersicht 1. Einführung Kapitelübersicht 1. Einführung Grundbegriffe und Bezeichnungen Beispiele Bäume gerichtete Graphen Graphentheorie HS Bonn-Rhein-Sieg, WS 2014/15 15 Das Königsberger Brückenproblem Beispiel

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Bäume & Graphen Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr, o.n.v. Sommersemester

Mehr

Freie Bäume und Wälder

Freie Bäume und Wälder (Martin Dietzfelbinger, Stand 4.6.2011) Freie Bäume und Wälder In dieser Notiz geht es um eine besondere Sorte von (ungerichteten) Graphen, nämlich Bäume. Im Gegensatz zu gerichteten Bäumen nennt man diese

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza)

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza) WS 2013/14 Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2013ws/ds/uebung/ 22. Januar 2014 ZÜ DS ZÜ XIII

Mehr

3 Klassifikation wichtiger Optimierungsprobleme

3 Klassifikation wichtiger Optimierungsprobleme 3 Klassifikation wichtiger Optimierungsprobleme 3.1 Das MIN- -TSP Wir kehren nochmal zurück zum Handlungsreisendenproblem für Inputs (w {i,j} ) 1 i

Mehr

Graphen und Bäume. A.1 Graphen

Graphen und Bäume. A.1 Graphen Algorithmen und Datenstrukturen 96 A Graphen und Bäume A.1 Graphen Ein gerichteter Graph (auch Digraph) G ist ein Paar (V, E), wobei V eine endliche Menge und E eine Relation auf V ist, d.h. E V V. V heißt

Mehr

1. Einige Begriffe aus der Graphentheorie

1. Einige Begriffe aus der Graphentheorie . Einige Begriffe aus der Graphentheorie Notation. Sei M eine Menge, n N 0. Dann bezeichnet P n (M) die Menge aller n- elementigen Teilmengen von M, und P(M) die Menge aller Teilmengen von M, d.h. die

Mehr

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS Julian Arz, Timo Bingmann, Sebastian Schlag INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Julian Universität Arz, des Timo LandesBingmann, Baden-Württemberg Sebastian und Schlag nationales

Mehr

2. Repräsentationen von Graphen in Computern

2. Repräsentationen von Graphen in Computern 2. Repräsentationen von Graphen in Computern Kapitelinhalt 2. Repräsentationen von Graphen in Computern Matrizen- und Listendarstellung von Graphen Berechnung der Anzahl der verschiedenen Kantenzüge zwischen

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr)

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) WS 2011/12 Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2011ws/ds/uebung/ 25. Januar 2012 ZÜ DS ZÜ XIII

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume)

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) WS 2016/17 Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Graph Paar (V,E) V: nichtleere Menge von Knoten (vertex) E: Menge von Kanten (edges): Relation (Verbindung) zwischen den Knoten

Graph Paar (V,E) V: nichtleere Menge von Knoten (vertex) E: Menge von Kanten (edges): Relation (Verbindung) zwischen den Knoten Graphentheorie Graph Paar (V,E) V: nichtleere Menge von Knoten (vertex) E: Menge von Kanten (edges): Relation (Verbindung) zwischen den Knoten gerichteter Graph (DiGraph (directed graph) E: Teilmenge E

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 11: Graphen Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2010/2011 1/59 Graphische Darstellung von Zusammenhängen schon

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 1 Programm des

Mehr

Tutoraufgabe 1 (Suchen in Graphen):

Tutoraufgabe 1 (Suchen in Graphen): Prof. aa Dr. E. Ábrahám Datenstrukturen und Algorithmen SS14 F. Corzilius, S. Schupp, T. Ströder Tutoraufgabe 1 (Suchen in Graphen): a) Geben Sie die Reihenfolge an, in der die Knoten besucht werden, wenn

Mehr

Ferienkurs Propädeutikum Diskrete Mathematik

Ferienkurs Propädeutikum Diskrete Mathematik Ferienkurs Propädeutikum Diskrete Mathematik Teil 3: Grundlagen Graphentheorie Tina Janne Schmidt Technische Universität München April 2012 Tina Janne Schmidt (TU München) Ferienkurs Propädeutikum Diskrete

Mehr

Programmiertechnik II

Programmiertechnik II Graph-Algorithmen Anwendungsgebiete "Verbundene Dinge" oft Teilproblem/Abstraktion einer Aufgabenstellung Karten: Wie ist der kürzeste Weg von Sanssouci nach Kunnersdorf? Hypertext: Welche Seiten sind

Mehr

Programmiertechnik II

Programmiertechnik II Graph-Algorithmen Anwendungsgebiete "Verbundene Dinge" oft Teilproblem/Abstraktion einer Aufgabenstellung Karten: Wie ist der kürzeste Weg von Sanssouci nach Kunnersdorf? Hypertext: Welche Seiten sind

Mehr

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V.

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V. Kapitel 4 Graphenalgorithmen 4.1 Definitionen Definition 4.1.1. Der Graph G = (V, E) ist über die beiden Mengen V und E definiert, wobei V die Menge der Knoten und E die Menge der Kanten in dem Graph ist.

Mehr

Programmierkurs Python

Programmierkurs Python Programmierkurs Python Stefan Thater Michaela Regneri 2010-0-29 Heute Ein wenig Graph-Theorie (in aller Kürze) Datenstrukturen für Graphen Tiefen- und Breitensuche Nächste Woche: mehr Algorithmen 2 Was

Mehr

Programmierkurs Python II

Programmierkurs Python II Programmierkurs Python II Stefan Thater & Michaela Regneri FR.7 Allgemeine Linguistik (Computerlinguistik) Universität des Saarlandes Sommersemester 011 Heute Ein wenig Graph-Theorie (in aller Kürze) Datenstrukturen

Mehr

Einführung in die Graphentheorie. Monika König

Einführung in die Graphentheorie. Monika König Einführung in die Graphentheorie Monika König 8. 11. 2011 1 Vorwort Diese Seminararbeit basiert auf den Unterkapiteln 1.1-1.3 des Buches Algebraic Graph Theory von Chris Godsil und Gordon Royle (siehe

Mehr

André Krischke Helge Röpcke. Graphen und Netzwerktheorie Grundlagen Methoden Anwendungen

André Krischke Helge Röpcke. Graphen und Netzwerktheorie Grundlagen Methoden Anwendungen André Krischke Helge Röpcke Graphen und Netzwerktheorie Grundlagen Methoden Anwendungen 8 Grundbegriffe der Graphentheorie für die Kante, die die beiden Knoten und verbindet. Der linke Graph in Bild. kann

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen

Zentralübung zur Vorlesung Diskrete Strukturen WS 2010/11 Zentralübung zur Vorlesung Diskrete Strukturen Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2010ws/ds/uebung/ 2. Februar 2011 ZÜ DS ZÜ XIII 1. Übungsbetrieb:

Mehr

4. Kreis- und Wegeprobleme

4. Kreis- und Wegeprobleme 4. Kreis- und Wegeprobleme Kapitelübersicht 4. Kreis- und Wegeprobleme Charakterisierung von eulerschen Graphen Bestimmung von eulerschen Wegen und Kreisen Hamiltonsche Graphen Abstände in Graphen Berechnung

Mehr

Lösungen zu Kapitel 5

Lösungen zu Kapitel 5 Lösungen zu Kapitel 5 Lösung zu Aufgabe : (a) Es gibt derartige Graphen: (b) Offensichtlich besitzen 0 der Graphen einen solchen Teilgraphen. Lösung zu Aufgabe : Es sei G = (V, E) zusammenhängend und V

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 3. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Algorithmen für Graphen Fragestellungen: Suche

Mehr

Algorithmen und Datenstrukturen (WS 2007/08) 63

Algorithmen und Datenstrukturen (WS 2007/08) 63 Kapitel 6 Graphen Beziehungen zwischen Objekten werden sehr oft durch binäre Relationen modelliert. Wir beschäftigen uns in diesem Kapitel mit speziellen binären Relationen, die nicht nur nur besonders

Mehr

Tutorium 23 Grundbegriffe der Informatik (7. Sitzung)

Tutorium 23 Grundbegriffe der Informatik (7. Sitzung) Tutorium 3 Grundbegriffe der Informatik (7. Sitzung) Tutor: Felix Stahlberg SOFTWARE DESIGN AND QUALITY GROUP Source: pixelio.de KIT The cooperation of Forschungszentrum Karlsruhe GmbH and Universität

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Graphen und Bäume Prof. Dr. Nikolaus Wulff Weitere Datentypen Als wichtige abstrakte Datentypen (ADT) kennen wir bis lang die Liste, den Stapel und die Warteschlange. Diese

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 11: Graphen Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/42 Graphische Darstellung von Zusammenhängen schon an vielen Stellen

Mehr

Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen

Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Bernhard Ganter WS 2013/14 1 Eulersche Graphen Kantenzug Ein Kantenzug in einem Graphen (V, E) ist eine Folge (a 0, a 1,..., a n ) von Knoten

Mehr

Motivation Kap. 6: Graphen

Motivation Kap. 6: Graphen Motivation Kap. 6: Graphen Warum soll ich heute hier bleiben? Graphen sind wichtig und machen Spaß! Professor Dr. Lehrstuhl für Algorithm Engineering, LS Fakultät für Informatik, TU Dortmund Was gibt es

Mehr

Eulerweg, Eulerkreis. Das Königsberger Brückenproblem. Definition 3.1. Ein Weg, der jede Kante von G genau einmal

Eulerweg, Eulerkreis. Das Königsberger Brückenproblem. Definition 3.1. Ein Weg, der jede Kante von G genau einmal 3. Kreis- und Wegeprobleme Kapitelübersicht 3. Kreis- und Wegeprobleme Eulerweg, Eulerkreis Charakterisierung von eulerschen Graphen Bestimmung von eulerschen Wegen und Kreisen Hamiltonsche Graphen Definition

Mehr

Grundlagen: Begriffe zu Graphen

Grundlagen: Begriffe zu Graphen l o a UNIVERSITÄT KONSTANZ September 18 LEHRSTUHL FÜR PRAKTISCHE INFORMATIK Prof Dr D Wagner / Annegret Liebers Grundlagen: Begriffe zu Graphen Das erste Lehrbuch zur Graphentheorie war [K ön6 (Der Nachdruck

Mehr

8 Diskrete Optimierung

8 Diskrete Optimierung 8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von

Mehr

Diskrete Mathematik 1

Diskrete Mathematik 1 Ruhr-Universität Bochum Lehrstuhl für Kryptologie und IT-Sicherheit Prof. Dr. Alexander May M. Ritzenhofen, M. Mansour Al Sawadi, A. Meurer Lösungsblatt zur Vorlesung Diskrete Mathematik 1 WS 2008/09 Blatt

Mehr

Graphentheorie. Organisatorisches. Organisatorisches. Organisatorisches. Rainer Schrader. 23. Oktober 2007

Graphentheorie. Organisatorisches. Organisatorisches. Organisatorisches. Rainer Schrader. 23. Oktober 2007 Graphentheorie Rainer Schrader Organisatorisches Zentrum für Angewandte Informatik Köln 23. Oktober 2007 1 / 79 2 / 79 Organisatorisches Organisatorisches Dozent: Prof. Dr. Rainer Schrader Weyertal 80

Mehr

Anwendungen von Graphen

Anwendungen von Graphen Anwendungen von Graphen Strassen- und Verkehrsnetze Computernetzwerke elektrische Schaltpläne Entity-Relationship Diagramme Beweisbäume endliche Automaten Syntaxbäume für Programmiersprachen Entscheidungsbäume

Mehr

15. Elementare Graphalgorithmen

15. Elementare Graphalgorithmen Graphen sind eine der wichtigste Modellierungskonzepte der Informatik Graphalgorithmen bilden die Grundlage vieler Algorithmen in der Praxis Zunächst kurze Wiederholung von Graphen. Dann Darstellungen

Mehr

Exkurs: Graphtraversierung

Exkurs: Graphtraversierung Sanders: Informatik III November 28, 2006 1 Exkurs: Graphtraversierung Begriffe Graphrepräsentation Erreichbarkeit mittels Tiefensuche Kreise Suchen Sanders: Informatik III November 28, 2006 2 Gerichtete

Mehr

Fünf-Farben-Satz. Seminar aus reiner Mathematik, WS 13/14. Schweighofer Lukas, November Seite 1

Fünf-Farben-Satz. Seminar aus reiner Mathematik, WS 13/14. Schweighofer Lukas, November Seite 1 Der Fünf- Farben-Satz Seminar aus reiner Mathematik, WS 13/14 Schweighofer Lukas, November 2013 Seite 1 Inhaltsverzeichnis Vorwort...3 Graphentheoretische Grundlagen...4 Satz 2 (Eulerscher Polyedersatz)...7

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2009/10 1 Bernhard Ganter, TU Dresden Modul Einführung

Mehr

Graphentheorie. Formale Grundlagen (WIN) 2008S, F. Binder. Vorlesung im 2008S

Graphentheorie. Formale Grundlagen (WIN) 2008S, F. Binder. Vorlesung im 2008S Minimale Graphentheorie Formale Grundlagen (WIN) Franz Binder Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Minimale Inhalt

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie WS 2008/2009 Vorlesung: Dr. Felix Brandt, Dr. Jan Johannsen Übung: Markus Brill, Felix Fischer Institut für Informatik LMU München Organisatorisches Vorlesung Donnerstag,

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 6: Graphentheorie

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 6: Graphentheorie Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kap. 6: Graphentheorie Lang 6 Beutelspacher 8.1-8.5 Meinel 11 zur Vertiefung: Aigner 6, 7 (7.4: Algorithmus von Dijkstra) Matousek

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

KAPITEL 3 MATCHINGS IN BIPARTITEN GRAPHEN

KAPITEL 3 MATCHINGS IN BIPARTITEN GRAPHEN KAPITEL 3 MATCHINGS IN BIPARTITEN GRAPHEN F. VALLENTIN, A. GUNDERT 1. Definitionen Notation 1.1. Ähnlich wie im vorangegangenen Kapitel zunächst etwas Notation. Wir beschäftigen uns jetzt mit ungerichteten

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter WS 2009/10 Isomorphie Zwei Graphen (V 1, E 1 ) und (V 2, E 2 ) heißen isomorph, wenn es eine bijektive, Kanten erhaltende und Kanten

Mehr

Graphen. Leonhard Euler ( )

Graphen. Leonhard Euler ( ) Graphen Leonhard Euler (1707-1783) 2 Graph Ein Graph besteht aus Knoten (nodes, vertices) die durch Kanten (edges) miteinander verbunden sind. 3 Nachbarschaftsbeziehungen Zwei Knoten heissen adjazent (adjacent),

Mehr

6. Planare Graphen und Färbungen

6. Planare Graphen und Färbungen 6. Planare Graphen und Färbungen Lernziele: Den Begriff der Planarität verstehen und erläutern können, wichtige Eigenschaften von planaren Graphen kennen und praktisch einsetzen können, die Anzahl von

Mehr

Graphenalgorithmen I

Graphenalgorithmen I enalgorithmen I Tobias Pröger 21. Dezember 2016 Erklärung: Diese Mitschrift ist als Ergänzung zur Vorlesung gedacht. Wir erheben keinen Anspruch auf Vollständigkeit und Korrektheit. Wir sind froh über

Mehr

Studientag zur Algorithmischen Mathematik

Studientag zur Algorithmischen Mathematik Studientag zur Algorithmischen Mathematik Eulertouren, 2-Zusammenhang, Bäume und Baumisomorphismen Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 22. Mai 2011 Outline

Mehr

2. November Gradfolgen Zusammenhang Kürzeste Wege. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37

2. November Gradfolgen Zusammenhang Kürzeste Wege. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37 2. November 2011 Gradfolgen Zusammenhang Kürzeste Wege H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37 Satz von Erdős und Gallai Eine Partition einer natürlichen Zahl ist genau dann die Gradfolge

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Tutorium 24-6. Sitzung Marcus Georgi tutorium@marcusgeorgi.de 04.12.2009 1 Repräsentation von Graphen im Rechner Adjazenzlisten Adjazenzmatrizen Wegematrizen 2 Erreichbarkeitsrelationen

Mehr

Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen

Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2009/10 1 Bernhard Ganter, TU Dresden Modul

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Bäume & Graphen Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz http://www.inf.uni-konstanz.de/algo/lehre/ss08/info2 Sommersemester 2008 Sven Kosub

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2010

Mehr

Ecken des Zuordnungsproblems

Ecken des Zuordnungsproblems Total unimodulare Matrizen Ecken des Zuordnungsproblems Definition.6 Ein Zuordnungsproblem mit den Vorzeichenbedingungen 0 apple x ij apple für i, j =,...,n statt x ij 2{0, } heißt relaxiertes Zuordnungproblem.

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 4: Suchstrategien Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 14. April 2017 HALBORDNUNG TOPOLOGISCHE ORDNUNG TOPOLOGISCHES

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Prof. Martin Lercher Institut für Informatik Heinrich-Heine-Universität Düsseldorf Teil 10 Suche in Graphen Version vom 13. Dezember 2016 1 / 2 Vorlesung 2016 / 2017 2 /

Mehr

Übungen zu Kombinatorik und Graphentheorie

Übungen zu Kombinatorik und Graphentheorie Übungen zu Kombinatorik und Graphentheorie Ilse Fischer, SS 07 (1) (a) In einer Schachtel sind 4 rote, 2 blaue, 5 gelbe und 3 grüne Stifte. Wenn man die Stifte mit geschlossenen Augen zieht, wieviele muss

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Dr. Hanjo Täubig Lehrstuhl für Eziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester 2007/08

Mehr

Graphen und Algorithmen

Graphen und Algorithmen Graphen und Algorithmen Vorlesung #8: Färbungsprobleme Dr. Armin Fügenschuh Technische Universität Darmstadt WS 2007/2008 Übersicht Knotenfärbung (vs. Kanten- & Kartenfärbung) Satz von Brooks Algorithmen

Mehr

Massive Parallelität : Neuronale Netze

Massive Parallelität : Neuronale Netze Massive Parallelität : Neuronale Netze PI2 Sommer-Semester 2005 Hans-Dieter Burkhard Massive Parallelität : Neuronale Netze Knoten: Neuronen Neuronen können erregt ( aktiviert ) sein Kanten: Übertragung

Mehr

Breitensuche BFS (Breadth First Search)

Breitensuche BFS (Breadth First Search) Breitensuche BFS (Breadth First Search) Algorithmus BREITENSUCHE EINGABE: G = (V, E) als Adjazenzliste, Startknoten s V 1 Für alle v V 1 If (v = s) then d[v] 0 else d[v] ; 2 pred[v] nil; 2 Q new Queue;

Mehr

Übung Algorithmen I

Übung Algorithmen I Übung Algorithmen I 15.7.15 Christoph Striecks Christoph.Striecks@kit.edu (Mit Folien von Julian Arz, Timo Bingmann und Sebastian Schlag.) Roadmap Wiederholung bzw. Zusammenfassung der Übung Effizienz

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester 2010/11

Mehr

Der Fünf-Farben-Satz. Lukas Schweighofer. Feb.2014

Der Fünf-Farben-Satz. Lukas Schweighofer. Feb.2014 Der Fünf-Farben-Satz Lukas Schweighofer Feb.2014 1 Contents 1 Vorwort 3 2 Graphentheoretische Grundlagen 4 3 Satz 2 (Eulerscher Polyedersatz) 8 4 Satz 3 9 5 Der Fnf-Farben-Satz 10 5.1 Beweis 1..............................

Mehr

Minimal spannende Bäume

Minimal spannende Bäume http://www.uni-magdeburg.de/harbich/ Minimal spannende Fakultät für Informatik Otto-von-Guericke-Universität 2 Inhalt Definition Wege Untergraphen Kantengewichtete Graphen Minimal spannende Algorithmen

Mehr

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER. Über 7 Brücken... wissen leben WWU Münster. Dietmar Lammers Hochschultag 201

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER. Über 7 Brücken... wissen leben WWU Münster. Dietmar Lammers Hochschultag 201 MÜNSTER Über 7 Brücken... Dietmar Lammers Hochschultag 201 MÜNSTER Über 7 Brücken... 2/29 > Dauerwerbeveranstaltung für ein Studium der Informatik- aber mit mathematischem Inhalt! Hier: Ein Auszug aus

Mehr

Quicksort ist ein Divide-and-Conquer-Verfahren.

Quicksort ist ein Divide-and-Conquer-Verfahren. . Quicksort Wie bei vielen anderen Sortierverfahren (Bubblesort, Mergesort, usw.) ist auch bei Quicksort die Aufgabe, die Elemente eines Array a[..n] zu sortieren. Quicksort ist ein Divide-and-Conquer-Verfahren.

Mehr

Graphentheorie 1. Diskrete Strukturen. Sommersemester Uta Priss ZeLL, Ostfalia. Hausaufgaben Graph-Äquivalenz SetlX

Graphentheorie 1. Diskrete Strukturen. Sommersemester Uta Priss ZeLL, Ostfalia. Hausaufgaben Graph-Äquivalenz SetlX Graphentheorie 1 Diskrete Strukturen Uta Priss ZeLL, Ostfalia Sommersemester 2016 Diskrete Strukturen Graphentheorie 1 Slide 1/19 Agenda Hausaufgaben Graph-Äquivalenz SetlX Diskrete Strukturen Graphentheorie

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Graphdurchmusterung, Breiten- und Tiefensuche

Graphdurchmusterung, Breiten- und Tiefensuche Prof. Thomas Richter 18. Mai 2017 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg thomas.richter@ovgu.de Material zur Vorlesung Algorithmische Mathematik II am 18.05.2017 Graphdurchmusterung,

Mehr

Kapitel 1. Einführung

Kapitel 1. Einführung Kapitel Einführung Zunächst einige Definitionen zu zentralen Begriffen dieser Vorlesung. Diese dienen vor allem der Erinnerung sowie der Auflösung von Mehrdeutigkeiten durch abweichende Verwendung in anderen

Mehr