Massive Parallelität : Neuronale Netze
|
|
|
- Mareke Maier
- vor 9 Jahren
- Abrufe
Transkript
1 Massive Parallelität : Neuronale Netze PI2 Sommer-Semester 2005 Hans-Dieter Burkhard Massive Parallelität : Neuronale Netze Knoten: Neuronen Neuronen können erregt ( aktiviert ) sein Kanten: Übertragung von Aktivierungen an Nachbar-Neuronen PI2 Sommer-Semester 2005 Hans-Dieter Burkhard 2
2 Massive Parallelität : Neuronale Netze e e 3 w 3 w 35 w 4 w 23 w 45 w24 Kanten sind gewichtet Übertragene Aktivierung abhängig von Gewicht w ij PI2 Sommer-Semester 2005 Hans-Dieter Burkhard 3 Massive Parallelität : Neuronale Netze e e 3 w 3 w ij = 0, falls keine Kante zwischen e i und e j w 35 w 4 w 23 w 45 w24 Aktivierung zum Zeitpunkt t : act t : E R Propagierung von Aktivierungen z.b. gemäß: act t+ (e i ) =, falls w i act t (e )+w 2i act t ( ) w 5i act t ( ) > 0 act t+ (e i ) = 0, sonst PI2 Sommer-Semester 2005 Hans-Dieter Burkhard 4
3 e e 3 Massive Parallelität : Neuronale Netze e 3-0 PI2 Sommer-Semester 2005 Hans-Dieter Burkhard e e Statische/dynamische Modelle Beschreibung statischer Zusammenhänge - Semantisches Netz - Klassendiagramm - Zustandsdiagramm (als Struktur) - Neuronales Netz (als Struktur) Modell: Graph e e 3 Beschreibung dynamischer Abläufe Unterscheiden! - Aktueller Zustand im Zustandsdiagramm e e 3 - Aktivierung im Neuronalen Netz Modell: Wechselnde Beschriftungen des Graphen Erfordert Angaben für Übergänge (Transitionen) zwischen Zuständen, Aktivierungen usw. PI2 Sommer-Semester 2005 Hans-Dieter Burkhard 6
4 Darstellungsformen für Graphen Adjazenz-Matrix: - Ausgangs-Knoten v als Zeilen - Eingangs-Knoten v als Spalten Matrix-Elemente: m v,v =, falls [v,v ] E m v,v = 0, falls [v,v ] E bzw. bei Kanten-Beschriftungen auch: m v,v = β([v,v ]) dabei spezieller Wert für [v,v ] E, z.b. β([v,v ])=0 PI2 Sommer-Semester 2005 Hans-Dieter Burkhard 7 Darstellungsformen Inzidenz-Matrix: Knoten v als Zeilen Kanten e als Spalten Matrix-Elemente: m v,e = +, falls e= [v,v ] E m v,e = -, falls e= [v,v] E m v,e = 0, sonst PI2 Sommer-Semester 2005 Hans-Dieter Burkhard 8
5 Weitere Definitionen zu Graphen G = [V,E ] ist Teilgraph von G=[V,E], falls V V und E E mit E V V Einschränkung von G=[V,E] auf V V : G V = Def [V, E V V ] Für e = [v,v ] E : source(e) = Def v, target(e)= Def v Eingangsvalenz (fan-in), Ausgangsvalenz (fan-out) fan-in(v) = Def card ( { e v V: e= [v,v] E }) = card ( { e E target(e) = v } ) fan-out(v) = Def card ( { e v V: e= [v,v ] E }) = card ( { e E source(e) = v } ) PI2 Sommer-Semester 2005 Hans-Dieter Burkhard 9 Weg (Pfad) in einem Graphen Gerichteter Weg Als Folge von Knoten p = v o,..., v n mit i ( i {,...,n} [v i,v i ] E) nist die Länge des Weges (n 0) v o = Anfang(p) v n =Ende(p) Als Folge von Kanten p = e,..., e n mit i( i {,...,n-} target(e i )=source(e i+ ) ) Ungerichteter Weg: p = v o,..., v n mit i(i {,...,n} [v i,v i ] E [v i,v i- ] E ) PI2 Sommer-Semester 2005 Hans-Dieter Burkhard 0
6 Weg (Pfad) in einem Graphen Einfacher Weg: p = v 0,..., v n mit i j { 0,...,n }: v i = v j i = j Masche: Zwei unterschiedliche einfache Wege p und q der Länge >0 mit Anfang(p)=Anfang(q), Ende(p)=Ende(q) ( Einfache Masche: Teilwege bilden keine Masche) Zyklus in gerichteten Graphen: Einfacher Weg p der Länge >0 mit Ausnahmebedingung Anfang(p)=Ende(p) d.h. v 0 = v n und i j {0,...,n-}: v i =v j i=j {i,j} = {0,n} DAG (directed acyclic Graph): gerichteter Graph ohne Zyklen PI2 Sommer-Semester 2005 Hans-Dieter Burkhard Erreichbarkeit, Zusammenhang v ist erreichbar von v, falls ein gerichteter Weg p existiert mit Anfang(p)=v, Ende(p)=v. G heißt zusammenhängend, wenn zu je zwei Knoten v,v V ein ungerichteter (!) Weg p existiert mit Anfang(p)=v, Ende(p)=v Die Relation Erreichbarkeit ist die reflexive, transitive Hülle der Relation E. G heißt stark zusammenhängend, wenn zu je zwei Knoten v,v V ein gerichteter (!) Weg p existiert mit Anfang(p)=v, Ende(p)=v wenn jeder Knoten v V von jedem Knoten v V erreichbar ist. PI2 Sommer-Semester 2005 Hans-Dieter Burkhard 2
7 Probleme für Graphen Ist ein Knoten v von einem Knoten v 0 erreichbar? Ist G (stark) zusammenhängend? Ist G azyklisch? Existiert ein Hamilton-Kreis? (Hamilton-Kreis: Zyklus, der ganz V umfaßt). Existiert ein Euler-Kreis? (Euler-Kreis: Zyklus, der jede Kante genau einmal enthält). k-färbungsproblem: Existiert eine Knotenbeschriftung α: V {,...,k} mit v v ([v,v ] E α(v) α(v ) ) PI2 Sommer-Semester 2005 Hans-Dieter Burkhard 3 Konstruktion der erreichbaren Knoten Sei G=[V,E] ein Graph, v 0 V. M(v 0 ) = Def { v v erreichbar von v 0 } Konstruktion: Schritt 0: M 0 (v 0 ) := { v 0 } Schritt i: M i (v 0 ) := M i- (v 0 ) { v v M i- (v 0 ) :[v,v ] E } Abbruch, falls M i (v 0 ) = M i- (v 0 ) Satz: M i (v 0 ) sind die mit Wegen der Länge kleiner gleich i erreichbaren v Der Algorithmus bricht nach höchstens card(v) Schritten ab. Beim Abbruch gilt M i- (v 0 )= M(v 0 ). PI2 Sommer-Semester 2005 Hans-Dieter Burkhard 4
8 Konstruktion der erreichbaren Knoten Folgerungen Für endliche Graphen G ist entscheidbar, - ob ein Knoten v von einem Knoten v erreichbar ist. - ob G stark zusammenhängend ist. - ob G zusammenhängend ist. Wenn v von einem Knoten v erreichbar ist, so auch mit einem Weg der Länge l < card(v). Weitere Sätze und Komplexitätsbetrachtungen in Theoretischer Informatik PI2 Sommer-Semester 2005 Hans-Dieter Burkhard 5
Algorithmen und Datenstrukturen SS09. Foliensatz 16. Michael Brinkmeier. Technische Universität Ilmenau Institut für Theoretische Informatik
Foliensatz 16 Michael Brinkmeier Technische Universität Ilmenau Institut für Theoretische Informatik Sommersemester 2009 TU Ilmenau Seite 1 / 45 Graphen TU Ilmenau Seite 2 / 45 Graphen 1 2 3 4 5 6 7 8
Graphentheorie Graphentheorie. Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke
Graphen Graphentheorie Graphentheorie Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke 2 Was ist ein Graph? Ein Graph ist in der Graphentheorie eine abstrakte Struktur,
Grundbegriffe der Informatik
Grundbegriffe der Informatik Kapitel 15: Graphen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik
Grundbegriffe der Informatik
Grundbegriffe der Informatik Einheit 11: Graphen Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2010/2011 1/59 Graphische Darstellung von Zusammenhängen schon
Grundbegriffe der Informatik Tutorium 8
Grundbegriffe der Informatik Tutorium 8 Tutorium Nr. 16 Philipp Oppermann 22. Dezember 2014 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum
Programmiertechnik II
Graph-Algorithmen Anwendungsgebiete "Verbundene Dinge" oft Teilproblem/Abstraktion einer Aufgabenstellung Karten: Wie ist der kürzeste Weg von Sanssouci nach Kunnersdorf? Hypertext: Welche Seiten sind
Anwendungen von Graphen
Anwendungen von Graphen Strassen- und Verkehrsnetze Computernetzwerke elektrische Schaltpläne Entity-Relationship Diagramme Beweisbäume endliche Automaten Syntaxbäume für Programmiersprachen Entscheidungsbäume
Elementare Definitionen. Anwendungen von Graphen. Formalisierung von Graphen. Formalisierung von Digraphen. Strassen- und Verkehrsnetze
Anwendungen von Graphen Strassen- und Verkehrsnetze Computernetzwerke Elementare Definitionen Ein Graph besteht aus Knoten und Kanten, die die Knoten verbinden. elektrische Schaltpläne Entity-Relationship
8. Übung zu Algorithmen I 15. Juni 2016
8. Übung zu Algorithmen I 15. Juni 2016 Lisa Kohl [email protected] (mit Folien von Julian Arz, Timo Bingmann, Sebastian Schlag, Christian Staudt und Christoph Striecks) Nachtrag: Quicksort, alternative
A B = {(a,b) a A, b B}
Binäre Relationen Def: A, B zwei Mengen. Das kartesische Produkt von beiden ist A B = {(a,b) a A, b B} Eine MengeR A B heißt (zweistellige) Relation. Anstatt (a,b) R schreibt man oft auch arb. 1 SindR,S
Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen)
WS 2015/16 Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15
Lernmodul 2 Graphen. Lernmodul 2: Geoobjekte und ihre Modellierung - Graphen
Folie 1 von 20 Lernmodul 2 Graphen Folie 2 von 20 Graphen Übersicht Motivation Ungerichteter Graph Gerichteter Graph Inzidenz, Adjazenz, Grad Pfad, Zyklus Zusammenhang, Trennende Kante, Trennender Knoten
Nachbarschaft, Grad, regulär, Inzidenz
Nachbarschaft, Grad, regulär, Inzidenz Definition Eigenschaften von Graphen Sei G = (V, E) ein ungerichteter Graph. 1 Die Nachbarschaftschaft Γ(u) eines Knoten u V ist Γ(u) := {v V {u, v} E}. 2 Der Grad
Einheit 11 - Graphen
Einheit - Graphen Bevor wir in medias res (eigentlich heißt es medias in res) gehen, eine Zusammenfassung der wichtigsten Definitionen und Notationen für Graphen. Graphen bestehen aus Knoten (vertex, vertices)
ADS: Algorithmen und Datenstrukturen 2
ADS: Algorithmen und Datenstrukturen 2 Teil 4 Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität
Grundbegriffe der Informatik
Grundbegriffe der Informatik Tutorium 24-6. Sitzung Marcus Georgi [email protected] 04.12.2009 1 Repräsentation von Graphen im Rechner Adjazenzlisten Adjazenzmatrizen Wegematrizen 2 Erreichbarkeitsrelationen
ADS: Algorithmen und Datenstrukturen 2
ADS: Algorithmen und Datenstrukturen 2 Teil 4 Prof. Dr. Gerhard Heyer Institut für Informatik Abteilung Automatische Sprachverarbeitung Universität Leipzig 02. Mai 2017 [Letzte Aktualisierung: 10/07/2018,
8. Übung Algorithmen I
INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Grundlagen
Graphen und Bäume. A.1 Graphen
Algorithmen und Datenstrukturen 96 A Graphen und Bäume A.1 Graphen Ein gerichteter Graph (auch Digraph) G ist ein Paar (V, E), wobei V eine endliche Menge und E eine Relation auf V ist, d.h. E V V. V heißt
15. Elementare Graphalgorithmen
Graphen sind eine der wichtigste Modellierungskonzepte der Informatik Graphalgorithmen bilden die Grundlage vieler Algorithmen in der Praxis Zunächst kurze Wiederholung von Graphen. Dann Darstellungen
Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Übersicht: Graphen. Definition: Ungerichteter Graph. Definition: Ungerichteter Graph
Programm heute Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 07 Dr. Stefanie Demirci Computer Aided Medical Procedures Technische Universität München 7 Fortgeschrittene Datenstrukturen Graphen
5 Graphen. Repräsentationen endlicher Graphen. 5.1 Gerichtete Graphen. 5.2 Ungerichtete Graphen. Ordnung von Graphen
Grundlagen der Mathematik für Informatiker 1 Grundlagen der Mathematik für Informatiker 5 Graphen 5.1 Gerichtete Graphen Definition 5.1 (V, E) heißt gerichteter Graph (Digraph), wenn V Menge von Knoten
Graphalgorithmen 1. Tillmann Zipperer Tillmann Zipperer Graphalgorithmen / 40
Graphalgorithmen 1 Tillmann Zipperer 03.06.2015 Tillmann Zipperer Graphalgorithmen 1 03.06.2015 1 / 40 1 Grundlagen Definition Graphtypen Implizite Graphdarstellung Tillmann Zipperer Graphalgorithmen 1
Für die Anzahl der Kanten in einem vollständigen Graphen (und damit für die maximale Anzahl von Kanten in einem einfachen Graphen) gilt:
Der K 4 lässt sich auch kreuzungsfrei zeichnen: Für die Anzahl der Kanten in einem vollständigen Graphen (und damit für die maximale Anzahl von Kanten in einem einfachen Graphen) gilt: ( ) n n (n 1) E
Seien u, v V, u v. Da G zusammenhängend ist, muss mindestens ein Pfad zwischen u und v existieren.
Beweis: 1. 2. Seien u, v V, u v. Da G zusammenhängend ist, muss mindestens ein Pfad zwischen u und v existieren. Widerspruchsannahme: Es gibt zwei verschiedene Pfade zwischen u und v. Dann gibt es einen
Minimal spannende Bäume
http://www.uni-magdeburg.de/harbich/ Minimal spannende Fakultät für Informatik Otto-von-Guericke-Universität 2 Inhalt Definition Wege Untergraphen Kantengewichtete Graphen Minimal spannende Algorithmen
ADS: Algorithmen und Datenstrukturen 2
ADS: Algorithmen und Datenstrukturen 2 Teil 3 Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität
Graphen. Definitionen
Graphen Graphen werden häufig als Modell für das Lösen eines Problems aus der Praxis verwendet, wie wir im Kapitel 1 gesehen haben. Der Schweizer Mathematiker Euler hat als erster Graphen verwendet, um
Algorithmische Graphentheorie
Algorithmische Graphentheorie Vorlesung 7 und 8: Euler- und Hamilton-Graphen Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca [email protected] 17. April 2018 1/96 WIEDERHOLUNG Eulersche
Algorithmen und Datenstrukturen 2
Algorithmen und Datenstrukturen 2 Sommersemester 2006 3. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik [email protected] Algorithmen für Graphen Fragestellungen: Suche
Grundlagen der Theoretischen Informatik
1 Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg Wintersemester 2014/15 2 Notation für Wörter w a is die Anzahl der Vorkommen von
WS 2008/09. Diskrete Strukturen
WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
2. November Gradfolgen Zusammenhang Kürzeste Wege. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37
2. November 2011 Gradfolgen Zusammenhang Kürzeste Wege H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37 Satz von Erdős und Gallai Eine Partition einer natürlichen Zahl ist genau dann die Gradfolge
Vorlesung Datenstrukturen
Vorlesung Datenstrukturen Graphen (1) Darstellung Traversierung Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 441 Generalisierung von Bäumen Verallgemeinerung (von Listen zu Graphen)
Das Heiratsproblem. Definition Matching
Das Heiratsproblem Szenario: Gegeben: n Frauen und m > n Männer. Bekanntschaftsbeziehungen zwischen allen Männern und Frauen. Fragestellung: Wann gibt es für jede der Frauen einen Heiratspartner? Modellierung
Graphen. Leonhard Euler ( )
Graphen Leonhard Euler (1707-1783) 2 Graph Ein Graph besteht aus Knoten (nodes, vertices) die durch Kanten (edges) miteinander verbunden sind. 3 Nachbarschaftsbeziehungen Zwei Knoten heissen adjazent (adjacent),
23. Graphen. Königsberg Zyklen. [Multi]Graph
Königsberg 76. Graphen, Repräsentation, Reflexive transitive Hülle, Traversieren (DFS, BFS), Zusammenhangskomponenten, Topologisches Sortieren Ottman/Widmayer, Kap. 9. - 9.,Cormen et al, Kap. 60 60 [Multi]Graph
Zyklen als Matching-Verfahren in FTL-Netzwerken
Zyklen als Matching-Verfahren in FTL-Netzwerken Bernd Nieberding Elgersburg Workshop 2017 19.-23. Februar 2017 Komplettladungsverkehre Definiton: Nicht-kombinierter, Rampe-zu-Rampe- Transport mit Sattelaufliegern
Optimale Lösungen mit Greedy-Strategie erfordern Optimalität der Greedy-Wahl. Beispiele für optimale Greedy-Lösungen
Wiederholung Optimale Lösungen mit Greedy-Strategie erfordern Optimalität der Greedy-Wahl unabhängig von Subproblemen Optimalität der Subprobleme Beispiele für optimale Greedy-Lösungen Scheduling Problem
Programmierkurs Python
Programmierkurs Python Stefan Thater Michaela Regneri 2010-0-29 Heute Ein wenig Graph-Theorie (in aller Kürze) Datenstrukturen für Graphen Tiefen- und Breitensuche Nächste Woche: mehr Algorithmen 2 Was
Einführung in die Informatik I
Einführung in die Informatik I Graphen und Bäume Prof. Dr. Nikolaus Wulff Weitere Datentypen Als wichtige abstrakte Datentypen (ADT) kennen wir bis lang die Liste, den Stapel und die Warteschlange. Diese
Programmierkurs Python II
Programmierkurs Python II Stefan Thater & Michaela Regneri FR.7 Allgemeine Linguistik (Computerlinguistik) Universität des Saarlandes Sommersemester 011 Heute Ein wenig Graph-Theorie (in aller Kürze) Datenstrukturen
Einführung in die Informatik 2
Einführung in die Informatik 2 Bäume & Graphen Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 [email protected] Sprechstunde: Freitag, 12:30-14:00 Uhr, o.n.v. Sommersemester
7. Transitive Hülle. Kante des Graphen. Zusatz-Kante der transitiven Hülle
In Anwendungen ist es oft interessant zu wissen, ob man überhaupt von einem Knoten v zu einem Knoten w gelangen kann, ganz gleich wie lang der Weg auch ist. Gegeben sei dabei ein gerichteter Graph G =
Graphen. Formale Methoden der Informatik WiSe 2010/2011 teil 2, folie 1 (von 60)
Graphen Formale Methoden der Informatik WiSe 2010/2011 teil 2, folie 1 (von 60) Teil II: Graphen 1. Einführung 2. Wege und Kreise in Graphen, Bäume 3. Planare Graphen / Traveling Salesman Problem 4. Transportnetzwerke
Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist.
Graphen Definition: Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist. Begriffe: Gerichteter Graph: Alle Kanten haben eine Richtung vom Anfangsknoten
Graphalgorithmen 2. Dominik Paulus Dominik Paulus Graphalgorithmen / 47
Graphalgorithmen Dominik Paulus.0.01 Dominik Paulus Graphalgorithmen.0.01 1 / 7 1 Spannbäume Kruskal Prim Edmonds/Chu-Liu Datenstrukturen Fibonacci-Heap Union/Find Kürzeste Pfade Dijkstra Bellman-Ford
Graphentheorie 2. Diskrete Strukturen. Sommersemester Uta Priss ZeLL, Ostfalia. Hausaufgaben Kantenzüge Small-World Networks Humor SetlX
Graphentheorie 2 Diskrete Strukturen Uta Priss ZeLL, Ostfalia Sommersemester 26 Diskrete Strukturen Graphentheorie 2 Slide /23 Agenda Hausaufgaben Kantenzüge Small-World Networks Humor SetlX Diskrete Strukturen
= n (n 1) 2 dies beruht auf der Auswahl einer zweielementigen Teilmenge aus V = n. Als Folge ergibt sich, dass ein einfacher Graph maximal ( n E = 2
1 Graphen Definition: Ein Graph G = (V,E) setzt sich aus einer Knotenmenge V und einer (Multi)Menge E V V, die als Kantenmenge bezeichnet wird, zusammen. Falls E symmetrisch ist, d.h.( u,v V)[(u,v) E (v,u)
Dieser Graph hat 3 Zusammenhangskomponenten
Vl 2, Informatik B, 19. 04. 02 1.1.3 Definitionen und wichtige Graphen Sei im folgenden G =(V;E) ein schlichter ungerichteter Graph. Definition: Der Grad eines Knoten v in einem ungerichteten Graphen ist
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik Übung am 16.12.2010 INSTITUT FÜR THEORETISCHE INFORMATIK 0 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft
Einführung in die Graphen-Theorie
www.mathematik-netz.de Copyright, Page 1 of 8 Einführung in die Graphen-Theorie 1.0 Grundlegende Definitionen Die Theorie der Graphen, das in faszinierender Weise Anwendungen und Theorie, Anschaulichkeit
Routing A lgorithmen Algorithmen Begriffe, Definitionen Wegewahl Verkehrslenkung
Begriffe, Definitionen Routing (aus der Informatik) Wegewahl oder Verkehrslenkung bezeichnet in der Telekommunikation das Festlegen von Wegen für Nachrichtenströme bei der Nachrichtenübermittlung über
Definition Gerichteter Pfad. gerichteter Pfad, wenn. Ein gerichteter Pfad heißt einfach, falls alle u i paarweise verschieden sind.
3.5 Gerichteter Pfad Definition 291 Eine Folge (u 0, u 1,..., u n ) mit u i V für i = 0,..., n heißt gerichteter Pfad, wenn ( i {0,..., n 1} ) [ (u i, u i+1 ) A]. Ein gerichteter Pfad heißt einfach, falls
Routing Algorithmen. Begriffe, Definitionen
Begriffe, Definitionen Routing (aus der Informatik) Wegewahl oder Verkehrslenkung bezeichnet in der Telekommunikation das Festlegen von Wegen für Nachrichtenströme bei der Nachrichtenübermittlung über
Vollständiger Graph. Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete).
Vollständiger Graph Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete). Mit K n wird der vollständige Graph mit n Knoten bezeichnet. Bemerkung
Freie Bäume und Wälder
(Martin Dietzfelbinger, Stand 4.6.2011) Freie Bäume und Wälder In dieser Notiz geht es um eine besondere Sorte von (ungerichteten) Graphen, nämlich Bäume. Im Gegensatz zu gerichteten Bäumen nennt man diese
Teil 2: Graphenalgorithmen
Teil : Graphenalgorithmen Anwendungen Definitionen Datenstrukturen für Graphen Elementare Algorithmen Topologisches Sortieren Kürzeste Wege Problemstellung Ungewichtete Graphen Distanzgraphen Gewichtete
Datenstrukturen und Algorithmen (SS 2013)
Datenstrukturen und Algorithmen (SS 2013) Übungsblatt 10 Abgabe: Montag, 08.07.2013, 14:00 Uhr Die Übungen sollen in Gruppen von zwei bis drei Personen bearbeitet werden. Schreiben Sie die Namen jedes
Keller (Stapel, Stack, LIFO)
Keller (Stapel, Stack, LIFO) Liste K=[ K(1), K(2),..., K(n) ] mit beschränktem Zugriff Operationen: pop: liefert oberstes Element K(1) entfernt oberstes Element: K = [ K(2),..., K(n) ] (Fehler bei leerem
Ecken des Zuordnungsproblems
Total unimodulare Matrizen Ecken des Zuordnungsproblems Definition.6 Ein Zuordnungsproblem mit den Vorzeichenbedingungen 0 apple x ij apple für i, j =,...,n statt x ij 2{0, } heißt relaxiertes Zuordnungproblem.
Datenstrukturen Teil 2. Bäume. Definition. Definition. Definition. Bäume sind verallgemeinerte Listen. Sie sind weiter spezielle Graphen
Bäume sind verallgemeinerte Listen Datenstrukturen Teil 2 Bäume Jeder Knoten kann mehrere Nachfolger haben Sie sind weiter spezielle Graphen Graphen bestehen aus Knoten und Kanten Kanten können gerichtet
Grundbegriffe der Informatik
Grundbegriffe der Informatik Kapitel 16: Erste Algorithmen in Graphen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für
Mustererkennung: Graphentheorie
Mustererkennung: Graphentheorie D. Schlesinger TUD/INF/KI/IS D. Schlesinger () ME: Graphentheorie 1 / 9 Definitionen Ein Graph ist ein Paar G = (V, E) mit der Menge der Knoten V und der Menge der Kanten:
Motivation Kap. 6: Graphen
Motivation Kap. 6: Graphen Warum soll ich heute hier bleiben? Graphen sind wichtig und machen Spaß! Professor Dr. Lehrstuhl für Algorithm Engineering, LS Fakultät für Informatik, TU Dortmund Was gibt es
Netzwerkverbindungsspiele
Netzwerkverbindungsspiele Algorithmische Spieltheorie Sommer 2017 Annamaria Kovacs Netzwerkverbindungsspiele 1 / 12 Local Connection Spiel Computer (oder autonome Systeme) sind die Spieler (Knoten). Sie
Graph Paar (V,E) V: nichtleere Menge von Knoten (vertex) E: Menge von Kanten (edges): Relation (Verbindung) zwischen den Knoten
Graphentheorie Graph Paar (V,E) V: nichtleere Menge von Knoten (vertex) E: Menge von Kanten (edges): Relation (Verbindung) zwischen den Knoten gerichteter Graph (DiGraph (directed graph) E: Teilmenge E
