1. Übung Algorithmen I

Größe: px
Ab Seite anzeigen:

Download "1. Übung Algorithmen I"

Transkript

1 Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische Informatik

2 Organistorisches Bonus - Änderung 0% der Übungspunkte < 25% 0 Bonuspunkt 25% der Übungspunkte < 50% 1 Bonuspunkt 50% der Übungspunkte < 75% 2 Bonuspunkte 75% der Übungspunkte 3 Bonuspunkte für die Klausur 2 Timo Bingmann, Christian Schulz

3 Asymptotik 3 Timo Bingmann, Christian Schulz

4 Rechenzeit bei 10 9 Ops pro Sekunde n 1000 log 2 n 500n 100n log 2 n 10n 2 n 3 2 n µs 5 µs 3.3 µs 1 µs 1 µs 1 µs µs 10 µs 8.6 µs 4 µs 8 µs 1.05 ms µs 25 µs 28.2 µs 25 µs 125 µs 13 h µs 50 µs 66.4 µs 100 µs 1 ms a µs 125 µs 199 µs 625 µs 15 ms µs 250 µs 448 µs 2.5 ms 125 ms µs 500 µs 1 ms 10 ms 1 s µs 2.5 ms 6.1 ms 250 ms 125 s µs 5 ms 13.3 ms 1 s 16 min µs 50 ms 166 ms 100 s 11.6 d µs 500 ms 2 s 2.7 h 31.7 a µs 5 s 23 s 11.6 d a µs 50 s 4.4 min 3.2 a a µs 8.3 min 50 min 317 a µs 1.4 h 9.2 h a µs 13.9 h 4.2 d 4 Timo Bingmann, Christian Schulz

5 O-Kalkül 5 Timo Bingmann, Christian Schulz

6 O-Kalkül O(g(n)) = {f : N R c > 0 n 0 N n n 0 : f (n) c g(n)} Ω(g(n)) = {f : N R c > 0 n 0 N n n 0 : f (n) c g(n)} 5 Timo Bingmann, Christian Schulz

7 O-Kalkül O(g(n)) = {f : N R c > 0 n 0 N n n 0 : f (n) c g(n)} Ω(g(n)) = {f : N R c > 0 n 0 N n n 0 : f (n) c g(n)} o(g(n)) = {f : N R c > 0 n 0 N n n 0 : f (n) c g(n)} ω(g(n)) = {f : N R c > 0 n 0 N n n 0 : f (n) c g(n)} 5 Timo Bingmann, Christian Schulz

8 O-Kalkül O(g(n)) = {f : N R c > 0 n 0 N n n 0 : f (n) c g(n)} Ω(g(n)) = {f : N R c > 0 n 0 N n n 0 : f (n) c g(n)} Θ(g(n)) = {f : N R c 1 > 0, c 2 > 0 n 0 N n n 0 : c 1 g(n) f (n) c 2 g(n)} o(g(n)) = {f : N R c > 0 n 0 N n n 0 : f (n) c g(n)} ω(g(n)) = {f : N R c > 0 n 0 N n n 0 : f (n) c g(n)} 5 Timo Bingmann, Christian Schulz

9 Intuition zum O-Kalkül O(g(n)) = {f : N R c > 0 n 0 N n n 0 : f (n) c g(n)} f 1 (n) Timo Bingmann, Christian Schulz

10 Intuition zum O-Kalkül O(g(n)) = {f : N R c > 0 n 0 N n n 0 : f (n) c g(n)} 80 c 1 n 60 f 1 (n) Timo Bingmann, Christian Schulz

11 Intuition zum O-Kalkül O(g(n)) = {f : N R c > 0 n 0 N n n 0 : f (n) c g(n)} f 1 (n) c 1 n Timo Bingmann, Christian Schulz

12 Intuition zum O-Kalkül O(g(n)) = {f : N R c > 0 n 0 N n n 0 : f (n) c g(n)} f 1 (n) = O(n) c 1 n 20 n Timo Bingmann, Christian Schulz

13 Intuition zum O-Kalkül O(g(n)) = {f : N R c > 0 n 0 N n n 0 : f (n) c g(n)} 80 f 2 (n) f 1 (n) c 1 n 20 n Timo Bingmann, Christian Schulz

14 Intuition zum O-Kalkül Ω(g(n)) = {f : N R c > 0 n 0 N n n 0 : f (n) c g(n)} f 2 (n) = Ω(n) f 1 (n) c 1 n 20 n Timo Bingmann, Christian Schulz

15 Intuition zum O-Kalkül ω(g(n)) = {f : N R c > 0 n 0 N n n 0 : f (n) c g(n)} 80 f 2 (n) = ω(n) c 1 n 60 f 1 (n) n Timo Bingmann, Christian Schulz

16 Intuition zum O-Kalkül ω(g(n)) = {f : N R c > 0 n 0 N n n 0 : f (n) c g(n)} f 2 (n) ω(n) c 1 n n Timo Bingmann, Christian Schulz

17 Intuition zum O-Kalkül ω(g(n)) = {f : N R c > 0 n 0 N n n 0 : f (n) c g(n)} f 2 (n) ω(n) Nur Intuition! c 1 n 50 n Timo Bingmann, Christian Schulz

18 O-Kalkül Für nicht-negative f, g : N R gelten folgende Äquivalenzen: 1 f (n) = O(g(n)) 0 lim sup n f (n) g(n) <, 8 Timo Bingmann, Christian Schulz

19 O-Kalkül Für nicht-negative f, g : N R gelten folgende Äquivalenzen: 1 f (n) = O(g(n)) 0 lim sup n 2 f (n) = Ω (g(n)) 0 < lim inf n f (n) g(n) <, f (n) g(n), 3 f (n) = o(g(n)) lim n f (n) g(n) = 0, 4 f (n) = ω(g(n)) lim n f (n) g(n) =, 5 f (n) = Θ(g(n)) = lim n f (n) g(n) = c > 0. 8 Timo Bingmann, Christian Schulz

20 Basis des Logarithmus O(log n) FAQ: Zu welcher Basis ist der Logarithmus? 9 Timo Bingmann, Christian Schulz

21 Basis des Logarithmus O(log n) FAQ: Zu welcher Basis ist der Logarithmus? Im Zweifelsfall zur Basis 2 (in der Informatik). Im O( )-Kalkül meistens egal: ( ) z. B. O... log k n für fixes k denn log a x = log b x/ log b a = c log b x für eine Konstante c kein Unterschied im O-Kalkül 9 Timo Bingmann, Christian Schulz

22 Invarianten in der Informatik 10 Timo Bingmann, Christian Schulz

23 Invarianten in der Informatik Idee der Anwendung finde Schleifeninvariante zeige Schleifeninvariante Schleifeninvariante und sonstiges Wissen Korrektheit des Algorithmus Function max(a : Array [0..n] of R) : assert A.size() > 0 i=0 : N 0 for j := 1 to n do if A[j] > A[i] then i := j assert i = argmax l n A[l] return i // Vorbedingung // Nachbedingung 11 Timo Bingmann, Christian Schulz

24 Invarianten in der Informatik Beispiel I for j := 0 to n do if A[j] > A[i] then i := j assert i = argmax l j A[l] // Invariante Beweis: j = 0: klar j 1 j: es gilt i = argmax l<j A[l], also A[i] = max l<j A[l] 1 Fall 1: A[j] > A[i] = max l<j A[l] update i Beh. 2 Fall 2: A[j] A[i] = max l<j A[l] kein update Beh. 12 Timo Bingmann, Christian Schulz

25 Invarianten in der Informatik Beispiel I Function max(a : Array [0..n] of R) : assert A.size() > 0 i=0 : N 0 for j := 1 to n do if A[j] > A[i] then i := j assert i = argmax l j A[l] assert i = argmax l n A[l] return i // Vorbedingung // Invariante // Nachbedingung Nach Beenden der Schleife gilt j = n und i = argmax l j A[l] Also die Nachbedingung: i = argmax l n A[l] und damit die Korrektheit unseres Algorithmus 13 Timo Bingmann, Christian Schulz

26 Invarianten in der Informatik Beispiel II Function funwithalgorithms(n : N) : assert n odd Z := {1,..., 2n} S := z Z z = 2n i=1 i while Z > 1 do pick a, b with a b from Z Z Z \{a, b} Z { a b } assert Z = 1 // Vorbedingung // enferne zwei zufällige Zahlen aus Z // füge a b hinzu // Nachbedingung I 14 Timo Bingmann, Christian Schulz

27 Invarianten in der Informatik Beispiel II Ziel: Zeige die Zahl die übrig bleibt ist ungerade Function funwithalgorithms(n : N) : assert n odd Z := {1,..., 2n} S := z Z z = 2n i=1 i while Z > 1 do pick a, b with a b from Z Z Z \{a, b} Z { a b } assert Z = 1 assert Z [0] odd // Vorbedingung // enferne zwei zufällige Zahlen aus Z // füge a b hinzu // Nachbedingung I // Nachbedingung II 15 Timo Bingmann, Christian Schulz

28 Invarianten in der Informatik Beispiel II Ziel: Zeige die Zahl die übrig bleibt ist ungerade Function funwithalgorithms(n : N) : assert n odd Z := {1,..., 2n} S := z Z z = 2n i=1 i assert S odd while Z > 1 do pick a, b with a b from Z Z Z \{a, b} Z Z { a b } assert z Z z odd assert Z [0] odd // Vorbedingung // Vorbedingung // enferne zwei zufällige Zahlen aus Z // füge a b hinzu // Invariante // Nachbedingung I 16 Timo Bingmann, Christian Schulz

29 Invarianten Beispiel II IA: S = 2n i=1 i = 1 2 (2n(2n + 1)) = n(2n + 1) ungerade IS: Annahme S = z Z z ungerade zu zeigen: S := z Z \{a,b} { a b } z ungerade Beweis: S = S a b + a b = S 2 min a, b Also z Z z bleibt ungerade! 17 Timo Bingmann, Christian Schulz

30 Invarianten in der Informatik Beispiel III Ziel: Nach Terminierung enthält b die binäre Repräsentation von n Function converttobinary(n : N) : b := Array < 0,..., 0 > t := n k := 1 while t > 0 do k := k + 1 b[k] := t mod 2 t := t div 2 // binary representation of n 18 Timo Bingmann, Christian Schulz

31 Invarianten in der Informatik Beispiel III Wieder drei Schritte zu tun: 1 Hypothese vor Beginn der Schleife wahr 2 Invar. gilt im k ten Invar. gilt im k + 1 ten Schritt 3 Nach Terminierung, Invariante Korrektheit des Algorithmus Invariante: n = t 2 k+1 + m mit m die Zahl, die durch b[0,..., k] repräsentiert wird 19 Timo Bingmann, Christian Schulz

32 Invarianten in der Informatik Beispiel III - Anfang m die Zahl, die durch b[0,..., k] repräsentiert wird Function converttobinary(n : N) : b := Array < 0,..., 0 > t := n k := 1 assert n = t 2 k+1 + m while t > 0 do k := k + 1 b[k] := t mod 2 t := t div 2 // binary representation of n 20 Timo Bingmann, Christian Schulz

33 Invarianten in der Informatik Beispiel III - Schluss m die Zahl, die durch b[0,..., k] repräsentiert wird k := k + 1 b[k] := t mod 2 t := t div 2 Beweis (k k + 1): es gelte vor der Iteration n = t 2 k+1 + m Fall 1: t gerade 1 b[k + 1] = t mod 2 = 0 2 t := t/2 3 k := k + 1, m unverändert nach der Iteration: t/2 2 k+2 + m = t 2 k+1 + m = n 21 Timo Bingmann, Christian Schulz

34 Invarianten in der Informatik Beispiel III - IS m die Zahl, die durch b[0,..., k] repräsentiert wird Beweis (k k + 1): es gelte vor der Iteration n = t 2 k+1 + m Fall 2: t ungerade 1 b[k + 1] = t mod 2 = 1 m := m + 2 k+1 2 t := (t 1)/2 3 k := k + 1 nach der Iteration: (t 1)/2 2 k+2 + m + 2 k+1 = (t 1) 2 k+1 + m + 2 k+1 = t 2 k+1 + m = n 22 Timo Bingmann, Christian Schulz

35 Invarianten in der Informatik Beispiel III - Schluss m die Zahl, die durch b[0,..., k] repräsentiert wird while t > 0 do k := k + 1 b[k] := t mod 2 t := t div 2 assert n = t 2 k+1 + m nach der Ausführung der Schleife t = 0 damit folgt die Korrektheit des Algorithmus 23 Timo Bingmann, Christian Schulz

36 Modellierungen mit Graphen 24 Timo Bingmann, Christian Schulz

37 Modellierungen Tasks mit Abhängigkeiten Problem: Frage: Menge von Aufgaben/Task und Abhängigkeiten Aufgaben ausführbar? Reihenfolge? Welche der dargestellten Pläne sind ausführbar? 25 Timo Bingmann, Christian Schulz

38 Modellierungen Tasks mit Abhängigkeiten Problem: Frage: Menge von Aufgaben/Task und Abhängigkeiten Aufgaben ausführbar? Reihenfolge? s t z v w x y u Wie findet man einen Schedule? w, y, u, t, Timo Bingmann, Christian Schulz

39 Modellierungen Tasks mit Abhängigkeiten Problem: Frage: Menge von Aufgaben/Task und Abhängigkeiten Aufgaben ausführbar? Reihenfolge? Wie findet man einen Schedule? w, y, u, t,... Algorithmus aus der VL (DAG)! Iteratives entfernen von Knoten mit Ausgangsgrad 0! 27 Timo Bingmann, Christian Schulz

40 Modellierungen Tasks mit Abhängigkeiten Iteratives entfernen von Knoten mit Ausgangsgrad 0! w 28 Timo Bingmann, Christian Schulz

41 Modellierungen Tasks mit Abhängigkeiten Iteratives entfernen von Knoten mit Ausgangsgrad 0! y,w 29 Timo Bingmann, Christian Schulz

42 Modellierungen Tasks mit Abhängigkeiten Iteratives entfernen von Knoten mit Ausgangsgrad 0! u,y,w 30 Timo Bingmann, Christian Schulz

43 Modellierungen Tasks mit Abhängigkeiten Iteratives entfernen von Knoten mit Ausgangsgrad 0! t,u,y,w 31 Timo Bingmann, Christian Schulz

44 Modellierungen Tasks mit Abhängigkeiten Iteratives entfernen von Knoten mit Ausgangsgrad 0!...,s,t,u,y,w 32 Timo Bingmann, Christian Schulz

45 Modellierungen Topologische Sortieren Topologische Sortierung t: (u, v) E : t(u) < t(v) x v z s t u y w Merke: isdag (aus VL) kann topologischen Sortieren nur falls G kreisfrei 33 Timo Bingmann, Christian Schulz

Algorithmen I - Tutorium 28 Nr. 2

Algorithmen I - Tutorium 28 Nr. 2 Algorithmen I - Tutorium 28 Nr. 2 11.05.2017: Spaß mit Invarianten (die Zweite), Rekurrenzen / Mastertheorem und Merging Marc Leinweber marc.leinweber@student.kit.edu INSTITUT FÜR THEORETISCHE INFORMATIK

Mehr

Algorithmen I - Tutorium 28 Nr. 1

Algorithmen I - Tutorium 28 Nr. 1 Algorithmen I - Tutorium 28 Nr. 1 04.05.2017: Spaß mit O-Kalkül, Schleifeninvarianten, Laufzeit Marc Leinweber marc.leinweber@student.kit.edu INSTITUT FÜR THEORETISCHE INFORMATIK (ITI), PROF. DR. JÖRN

Mehr

Algorithmen I - Tutorium 28 Nr. 3

Algorithmen I - Tutorium 28 Nr. 3 Algorithmen I - Tutorium 28 Nr. 3 18.05.2016: Spaß mit Listen, Arrays und amortisierter Analyse Marc Leinweber marc.leinweber@student.kit.edu INSTITUT FÜR THEORETISCHE INFORMATIK (ITI), PROF. DR. JÖRN

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Universität Innsbruck Institut für Informatik Zweite Prüfung 16. Oktober 2008 Algorithmen und Datenstrukturen Name: Matrikelnr: Die Prüfung besteht aus 8 Aufgaben. Die verfügbaren Punkte für jede Aufgabe

Mehr

Algorithmen I - Tutorium 28 Nr. 6

Algorithmen I - Tutorium 28 Nr. 6 Algorithmen I - Tutorium 28 Nr. 6 08.06.2017: Spaß mit Sortieren, Aufgaben und Wiederholung Marc Leinweber marc.leinweber@student.kit.edu INSTITUT FÜR THEORETISCHE INFORMATIK (ITI), PROF. DR. JÖRN MÜLLER-QUADE

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 07..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS Julian Arz, Timo Bingmann, Sebastian Schlag INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Julian Universität Arz, des Timo LandesBingmann, Baden-Württemberg Sebastian und Schlag nationales

Mehr

9. Übung Algorithmen I

9. Übung Algorithmen I Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der

Mehr

Algorithmen und Datenstrukturen Kapitel 2: Korrektheit von Algorithmen und Laufzeitanalyse rekursiver Algorithmen (mittels Rekurrenzgleichungen)

Algorithmen und Datenstrukturen Kapitel 2: Korrektheit von Algorithmen und Laufzeitanalyse rekursiver Algorithmen (mittels Rekurrenzgleichungen) Algorithmen und Datenstrukturen Kapitel 2: und Laufzeitanalyse rekursiver Algorithmen (mittels ) Frank Heitmann heitmann@informatik.uni-hamburg.de 21. Oktober 2015 Frank Heitmann heitmann@informatik.uni-hamburg.de

Mehr

Algorithmen und Datenstrukturen Kapitel 2: Korrektheit von Algorithmen und Laufzeitanalyse rekursiver Algorithmen (mittels Rekurrenzgleichungen)

Algorithmen und Datenstrukturen Kapitel 2: Korrektheit von Algorithmen und Laufzeitanalyse rekursiver Algorithmen (mittels Rekurrenzgleichungen) Algorithmen und Datenstrukturen Kapitel 2: und Laufzeitanalyse rekursiver Algorithmen (mittels Rekurrenzgleichungen) Frank Heitmann heitmann@informatik.uni-hamburg.de 21. Oktober 2015 Frank Heitmann heitmann@informatik.uni-hamburg.de

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Dr. Hanjo Täubig Jeremias Weihmann Sommersemester 2014 Übungsblatt 2 28. April 2014 Grundlagen: Algorithmen und

Mehr

11. Übung Algorithmen I

11. Übung Algorithmen I Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2013/14 1. Vorlesung Kapitel 1: Sortieren Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Das Problem Eingabe Gegeben: eine Folge A = a 1, a 2,..., a

Mehr

9. Rekursion. 1 falls n 1 n (n 1)!, andernfalls. Experiment: Die Türme von Hanoi. Links Mitte Rechts. Mathematische Rekursion

9. Rekursion. 1 falls n 1 n (n 1)!, andernfalls. Experiment: Die Türme von Hanoi. Links Mitte Rechts. Mathematische Rekursion Experiment: Die Türme von Hanoi. Rekursion Mathematische Rekursion, Terminierung, der Aufrufstapel, Beispiele, Rekursion vs. Iteration Links Mitte Rechts Mathematische Rekursion Viele mathematische Funktionen

Mehr

Der Sprung ins Wasser... Algorithmen und Datenstrukturen Kapitel 1 Algorithmen & Algorithmenanalyse. Und warum brauch ich das?! Organisatorisches 1

Der Sprung ins Wasser... Algorithmen und Datenstrukturen Kapitel 1 Algorithmen & Algorithmenanalyse. Und warum brauch ich das?! Organisatorisches 1 Der Sprung ins Wasser... Algorithmen und Datenstrukturen Kapitel 1 Algorithmen & Frank Heitmann heitmann@informatik.uni-hamburg.de Worum geht es bei Algorithmen und Datenstrukturen? 14. Oktober 2015 Frank

Mehr

Algorithmen und Datenstrukturen Kapitel 1 Algorithmen & Algorithmenanalyse

Algorithmen und Datenstrukturen Kapitel 1 Algorithmen & Algorithmenanalyse Algorithmen und Datenstrukturen Kapitel 1 Algorithmen & Frank Heitmann heitmann@informatik.uni-hamburg.de 14. Oktober 2015 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/48 Der Sprung ins Wasser...

Mehr

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web:

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: Algorithmen I Prof. Jörn Müller-Quade 24.05.2017 Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?id=799 (Folien von Peter Sanders) KIT Institut für Theoretische Informatik

Mehr

2. Grundlagen. Beschreibung von Algorithmen durch Pseudocode. Korrektheit von Algorithmen durch Invarianten.

2. Grundlagen. Beschreibung von Algorithmen durch Pseudocode. Korrektheit von Algorithmen durch Invarianten. 2. Grundlagen Beschreibung von Algorithmen durch Pseudocode. Korrektheit von Algorithmen durch Invarianten. Laufzeitverhalten beschreiben durch O-Notation. 1 Beispiel Minimum-Suche Eingabe bei Minimum

Mehr

f 1 (n) = log(n) + n 2 n 5 f 2 (n) = n 3 + n 2 f 3 (n) = log(n 2 ) f 4 (n) = n n f 5 (n) = (log(n)) 2

f 1 (n) = log(n) + n 2 n 5 f 2 (n) = n 3 + n 2 f 3 (n) = log(n 2 ) f 4 (n) = n n f 5 (n) = (log(n)) 2 Prof. aa Dr. E. Ábrahám Datenstrukturen und Algorithmen SS Lösung - Präsenzübung.05.0 F. Corzilius, S. Schupp, T. Ströder Aufgabe (Asymptotische Komplexität): (6 + 0 + 6 = Punkte) a) Geben Sie eine formale

Mehr

Das Suchproblem 4. Suchen Das Auswahlproblem Suche in Array

Das Suchproblem 4. Suchen Das Auswahlproblem Suche in Array Das Suchproblem Gegeben. Suchen Lineare Suche, Binäre Suche, Interpolationssuche, Untere Schranken [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.-3,2.2-3,2.3-] Menge von Datensätzen. Beispiele

Mehr

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php? Algorithmen I Prof. Jörn Müller-Quade 19.6.1 Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?id=99 (Folien von Peter Sanders) KIT Institut für Theoretische Informatik 1 Organisatorisches

Mehr

2. Übung Algorithmen I

2. Übung Algorithmen I Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der

Mehr

3. Suchen. Das Suchproblem. Suche in Array. Lineare Suche. 1 n. i = n Gegeben Menge von Datensätzen.

3. Suchen. Das Suchproblem. Suche in Array. Lineare Suche. 1 n. i = n Gegeben Menge von Datensätzen. Das Suchproblem Gegeben Menge von Datensätzen. 3. Suchen Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle Jeder Datensatz hat einen Schlüssel k. Schlüssel sind vergleichbar: eindeutige Antwort auf

Mehr

Das Suchproblem. Gegeben Menge von Datensätzen. Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle

Das Suchproblem. Gegeben Menge von Datensätzen. Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle 122 4. Suchen Lineare Suche, Binäre Suche, Interpolationssuche, Untere Schranken [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.1-3,2.2-3,2.3-5] 123 Das Suchproblem Gegeben Menge von Datensätzen.

Mehr

Ordnen Sie die folgenden Funktionen nach ihrer asymptotischer Komplexität in aufsteigender Reihenfolge: i=1 4i + n = 4 n. i=1 i + 3n = 4 ( n(n+1)

Ordnen Sie die folgenden Funktionen nach ihrer asymptotischer Komplexität in aufsteigender Reihenfolge: i=1 4i + n = 4 n. i=1 i + 3n = 4 ( n(n+1) für Informatik Prof. aa Dr. Ir. Joost-Pieter Katoen Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder Tutoraufgabe (Asymptotische Komplexität): Ordnen Sie die folgenden Funktionen nach

Mehr

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS Julian Arz, Timo Bingmann, Sebastian Schlag INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Julian Universität Arz, des Timo LandesBingmann, Baden-Württemberg Sebastian und Schlag nationales

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

2. Grundlagen. Beschreibung von Algorithmen durch Pseudocode. Korrektheit von Algorithmen durch Invarianten.

2. Grundlagen. Beschreibung von Algorithmen durch Pseudocode. Korrektheit von Algorithmen durch Invarianten. 2. Grundlagen Beschreibung von Algorithmen durch Pseudocode. Korrektheit von Algorithmen durch Invarianten. Laufzeitverhalten beschreiben durch O-Notation. 1 Pseudocode Schleifen (for, while, repeat) Bedingtes

Mehr

Das Suchproblem. Gegeben Menge von Datensätzen. Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle

Das Suchproblem. Gegeben Menge von Datensätzen. Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle 119 4. Suchen Lineare Suche, Binäre Suche, Interpolationssuche, Exponentielle Suche, Untere Schranken [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.1-3,2.2-3,2.3-5] 120 Das Suchproblem Gegeben

Mehr

Das Suchproblem 4. Suchen Das Auswahlproblem Suche in Array

Das Suchproblem 4. Suchen Das Auswahlproblem Suche in Array Das Suchproblem Gegeben. Suchen Lineare Suche, Binäre Suche, Interpolationssuche, Exponentielle Suche, Untere Schranken [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.-3,2.2-3,2.3-] Menge

Mehr

sort hash uncompress merge & mark hash collisions

sort hash uncompress merge & mark hash collisions Julian Arz, Timo Bingmann, Sebastian Schlag INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS hash sort... compress uncompress merge & mark hash collisions 1 KIT Julian Universität Arz, des Timo LandesBingmann,

Mehr

Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5

Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5 Robert Elsässer Paderborn, den 15. Mai 2008 u.v.a. Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5 AUFGABE 1 (6 Punkte): Nehmen wir an, Anfang bezeichne in einer normalen

Mehr

Algorithmen und Datenstrukturen Kapitel 1 Algorithmen & Algorithmenanalyse

Algorithmen und Datenstrukturen Kapitel 1 Algorithmen & Algorithmenanalyse Algorithmen und Datenstrukturen Kapitel 1 Algorithmen & Frank Heitmann heitmann@informatik.uni-hamburg.de 14. Oktober 2015 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/48 Der Sprung ins Wasser...

Mehr

9. Übung Algorithmen I

9. Übung Algorithmen I INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Musterlösung

Mehr

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS Julian Arz, Timo Bingmann, Sebastian Schlag INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Julian Universität Arz, des Timo LandesBingmann, Baden-Württemberg Sebastian und Schlag nationales

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 16 Programm: Einführung

Mehr

Erinnerung VL

Erinnerung VL Erinnerung VL.6.16 Graphtraversierung (DFS, topologische Sortierung und mehr) Kürzeste Wege: Problemstellung, Algorithmen Analoger Algorithmus Dijkstras Algorithmus: Idee, Korrektheit Heute: mehr zu Dijkstra,

Mehr

8. Übung zu Algorithmen I 15. Juni 2016

8. Übung zu Algorithmen I 15. Juni 2016 8. Übung zu Algorithmen I 15. Juni 2016 Lisa Kohl Lisa.Kohl@kit.edu (mit Folien von Julian Arz, Timo Bingmann, Sebastian Schlag, Christian Staudt und Christoph Striecks) Nachtrag: Quicksort, alternative

Mehr

Kap. 3 Sortieren. 7. VO DAP2 SS Mai Vorlesung am Do 7.5. entfällt wegen FVV um 14 Uhr HeapSort ff 3.1.

Kap. 3 Sortieren. 7. VO DAP2 SS Mai Vorlesung am Do 7.5. entfällt wegen FVV um 14 Uhr HeapSort ff 3.1. Kap. 3 Sortieren 3.1.5 HeapSort ff 3.1.6 Priority Queues Vorlesung am Do 7.5. entfällt wegen FVV um 14 Uhr Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 7.

Mehr

2. Übung Algorithmen I

2. Übung Algorithmen I 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Amortisierte Analyse Beispiel Binärzähler

Mehr

10. Übung Algorithmen I

10. Übung Algorithmen I INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Bäume

Mehr

14. Sortieren II Heapsort. Heapsort. [Max-]Heap 7. Heapsort, Quicksort, Mergesort. Binärer Baum mit folgenden Eigenschaften

14. Sortieren II Heapsort. Heapsort. [Max-]Heap 7. Heapsort, Quicksort, Mergesort. Binärer Baum mit folgenden Eigenschaften Heapsort, Quicksort, Mergesort 14. Sortieren II 14.1 Heapsort [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6] 397 398 Heapsort [Max-]Heap 7 Inspiration von Selectsort: Schnelles Einfügen Binärer Baum

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2014/15 3. Vorlesung Laufzeitanalyse Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Recap: Diskutieren Sie mit Ihrer NachbarIn! 1. 2. 3. Was sind

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2012/13 1. Vorlesung Kapitel 1: Sortieren Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Das Problem Eingabe Gegeben: eine Folge A = a 1, a 2,..., a

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Einleitung und Grundlagen Maike Buchin 18.4.2017 Verantwortliche Dozentin Organisation der Übungen Übungsleiter Korrekteure Maike Buchin Maike.Buchin@rub.de Raum NA 1/70 Sprechzeiten:

Mehr

Informatik II. 1. Einführung. Ziele der Vorlesung. Inhalte der Vorlesung. Vorlesung am D-BAUG der ETH Zürich

Informatik II. 1. Einführung. Ziele der Vorlesung. Inhalte der Vorlesung. Vorlesung am D-BAUG der ETH Zürich Informatik II Vorlesung am D-BAUG der ETH Zürich 1. Einführung Felix Friedrich & Hermann Lehner Algorithmen und Datenstrukturen, erstes Beispiel FS 2018 1 23 Ziele der Vorlesung Inhalte der Vorlesung Verständnis

Mehr

Das Heiratsproblem. Definition Matching

Das Heiratsproblem. Definition Matching Das Heiratsproblem Szenario: Gegeben: n Frauen und m > n Männer. Bekanntschaftsbeziehungen zwischen allen Männern und Frauen. Fragestellung: Wann gibt es für jede der Frauen einen Heiratspartner? Modellierung

Mehr

8. Sortieren II. 8.1 Heapsort. Heapsort. [Max-]Heap 6. Heapsort, Quicksort, Mergesort. Binärer Baum mit folgenden Eigenschaften

8. Sortieren II. 8.1 Heapsort. Heapsort. [Max-]Heap 6. Heapsort, Quicksort, Mergesort. Binärer Baum mit folgenden Eigenschaften Heapsort, Quicksort, Mergesort 8. Sortieren II 8.1 Heapsort [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6] 9 210 Heapsort [Max-]Heap 6 Inspiration von Selectsort: Schnelles Einfügen Binärer Baum mit

Mehr

Heapsort, Quicksort, Mergesort. 8. Sortieren II

Heapsort, Quicksort, Mergesort. 8. Sortieren II 209 Heapsort, Quicksort, Mergesort 8. Sortieren II 210 8.1 Heapsort [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6] 211 Heapsort Inspiration von Selectsort: Schnelles Einfügen Inspiration von Insertionsort:

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2010

Mehr

Algorithmen I. Prof. Jörn Müller-Quade Institut für theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?

Algorithmen I. Prof. Jörn Müller-Quade Institut für theoretische Informatik Web: https://crypto.iti.kit.edu/index.php? Algorithmen I Prof. Jörn Müller-Quade 26.04.2017 Institut für theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?id=799 (Folien von Peter Sanders) KIT Institut für Theoretische Informatik

Mehr

Problem: Gegeben Spezifikation (P,Q) und Implementierung S Gesucht formaler (automatisierbarer?) Beweis, dass S (P,Q) erfüllt.

Problem: Gegeben Spezifikation (P,Q) und Implementierung S Gesucht formaler (automatisierbarer?) Beweis, dass S (P,Q) erfüllt. Formale Verifikation von Algorithmen 1.3 Verifikation Problem: Gegeben Spezifikation (P,Q) und Implementierung S Gesucht formaler (automatisierbarer?) Beweis, dass S (P,Q) erfüllt. Bisher nicht möglich

Mehr

Datenstrukturen und Algorithmen Beispiellösung zu Heimübungsblatt 7. Abbildung 1: Das Array A als Baum (vgl. Foliensatz 16, Folie 3)

Datenstrukturen und Algorithmen Beispiellösung zu Heimübungsblatt 7. Abbildung 1: Das Array A als Baum (vgl. Foliensatz 16, Folie 3) Aufgabe 3 a) Wir verwenden zur Lösung den Algorithmus Build-Heap 1, dieser verwendet die Funktion Heapify. Unser Array A ist gegeben durch [7, 10,, 5, 5,, 3, 3, 17]. 10 5 5 3 17 7 Abbildung 1: Das Array

Mehr

12. Übung Algorithmen I

12. Übung Algorithmen I 12. Übung Algorithmen I Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und 12. Übung Algorithmen

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 1 für die Übung

Mehr

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php? Algorithmen I Prof. Jörn Müller-Quade 29.05.2017 Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?id=799 (Folien von Peter Sanders) KIT Institut für Theoretische Informatik

Mehr

Aufgabe 8. 1 Arbeitsweise illustrieren. 2 Korrektheitsbeweis führen. 3 Laufzeitanalyse durchführen.

Aufgabe 8. 1 Arbeitsweise illustrieren. 2 Korrektheitsbeweis führen. 3 Laufzeitanalyse durchführen. Aufgabe 8 Betrachten Sie den folgenden Algorithmus namens Bubble-Sort. Bubble-Sort(A[1..n]): 1 for i 1 to length(a) 1 2 do for j length(a) downto i + 1 3 do if A[j 1] > A[j] 4 then A[j 1] A[j] 1 Arbeitsweise

Mehr

Induktionsbeweis. Satz Primfaktorzerlegung. Jede natürliche Zahl n 2 lässt sich als Produkt von Primzahlen darstellen.

Induktionsbeweis. Satz Primfaktorzerlegung. Jede natürliche Zahl n 2 lässt sich als Produkt von Primzahlen darstellen. Induktionsbeweis Satz Primfaktorzerlegung Jede natürliche Zahl n 2 lässt sich als Produkt von Primzahlen darstellen. Beweis: Induktion über n (IV) Induktionsverankerung: n=2 prim. (IA) Induktionsannahme:

Mehr

Heapsort, Quicksort, Mergesort. 8. Sortieren II

Heapsort, Quicksort, Mergesort. 8. Sortieren II 209 Heapsort, Quicksort, Mergesort 8. Sortieren II 210 8.1 Heapsort [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6] Heapsort 211 Inspiration von Selectsort: Schnelles Einfügen Inspiration von Insertionsort:

Mehr

8.1.3 Operation Build-Max-Heap Operation zur Konstruktion eines Heaps Eingabe: Feld A[1..n], n = länge(a) BUILD-MAX-HEAP (A)

8.1.3 Operation Build-Max-Heap Operation zur Konstruktion eines Heaps Eingabe: Feld A[1..n], n = länge(a) BUILD-MAX-HEAP (A) Stand der Vorlesung: Datenstruktur Heap: fast vollständiger Binärbaum MaxHeap: sortierter Heap, größtes Element an Wurzel Sortierverfahren: HeapSort: Sortieren eines Feldes A[1.. n] Idee: in place: Feld

Mehr

Denition: Rang eines Elements e einer Folge s = Position von e in sort(s) (angefangen bei 1). Frage: warum ist r nicht notwendig eindeutig?

Denition: Rang eines Elements e einer Folge s = Position von e in sort(s) (angefangen bei 1). Frage: warum ist r nicht notwendig eindeutig? 207 Auswahl (Selection) Denition: Rang eines Elements e einer Folge s = Position von e in sort(s) (angefangen bei 1). Frage: warum ist r nicht notwendig eindeutig? // return an element of s with rank k

Mehr

Technische Universität München

Technische Universität München Stand der Vorlesung: Datenstruktur Heap: fast vollständiger Binärbaum MaxHeap: sortierter Heap, größtes Element an Wurzel Sortierverfahren: HeapSort: Sortieren eines Feldes A[1.. n] Idee: in place: Feld

Mehr

Informatik II. Vorlesung am D-BAUG der ETH Zürich. Felix Friedrich & Hermann Lehner FS 2018

Informatik II. Vorlesung am D-BAUG der ETH Zürich. Felix Friedrich & Hermann Lehner FS 2018 1 Informatik II Vorlesung am D-BAUG der ETH Zürich Felix Friedrich & Hermann Lehner FS 2018 23 1. Einführung Algorithmen und Datenstrukturen, erstes Beispiel 24 Ziele der Vorlesung Verständnis des Entwurfs

Mehr

Übung Algorithmen I

Übung Algorithmen I Übung Algorithmen I 15.7.15 Christoph Striecks Christoph.Striecks@kit.edu (Mit Folien von Julian Arz, Timo Bingmann und Sebastian Schlag.) Roadmap Wiederholung bzw. Zusammenfassung der Übung Effizienz

Mehr

Algorithm Engineering was hat das mit der Praxis zu tun?

Algorithm Engineering was hat das mit der Praxis zu tun? Algorithm Engineering was hat das mit der Praxis zu tun? design analyze Algorithmics implement experiment 33 Algorithmentheorie (Karikatur) models design Theory Practice analysis perf. guarantees deduction

Mehr

FAKULTÄT FÜR INFORMATIK

FAKULTÄT FÜR INFORMATIK TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Effiziente Algorithmen SS 2008 Grundlagen: Algorithmen und Datenstrukturen Midterm-Klausur Prof. Dr. Christian Scheideler, Dr. Stefan

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 7 (21.5.2014) Binäre Suche, Hashtabellen I Algorithmen und Komplexität Abstrakte Datentypen : Dictionary Dictionary: (auch: Maps, assoziative

Mehr

3. Übung Algorithmen I

3. Übung Algorithmen I INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Hashtabellen:

Mehr

12. Graphen. Königsberg Zyklen. [Multi]Graph

12. Graphen. Königsberg Zyklen. [Multi]Graph Königsberg 76. Graphen, Repräsentation, Traversieren (DFS, BFS), Topologisches Sortieren, Ottman/Widmayer, Kap. 9. - 9.,Cormen et al, Kap. [Multi]Graph Zyklen C Kante Gibt es einen Rundweg durch die Stadt

Mehr

Präsenzübung Datenstrukturen und Algorithmen SS 2014

Präsenzübung Datenstrukturen und Algorithmen SS 2014 Prof. aa Dr. E. Ábrahám F. Corzilius, S. Schupp, T. Ströder Präsenzübung Datenstrukturen und Algorithmen SS 2014 Vorname: Nachname: Studiengang (bitte genau einen markieren): Informatik Bachelor Informatik

Mehr

12. Graphen. Notation, Repräsentation, Traversieren (DFS, BFS), Topologisches Sortieren, Ottman/Widmayer, Kap ,Cormen et al, Kap.

12. Graphen. Notation, Repräsentation, Traversieren (DFS, BFS), Topologisches Sortieren, Ottman/Widmayer, Kap ,Cormen et al, Kap. 254 12. Graphen Notation, Repräsentation, Traversieren (DFS, BFS), Topologisches Sortieren, Ottman/Widmayer, Kap. 9.1-9.4,Cormen et al, Kap. 22 Königsberg 1736 255 Königsberg 1736 255 Königsberg 1736 255

Mehr

Graphenalgorithmen und lineare Algebra Hand in Hand Prof. Dr. Henning Meyerhenke

Graphenalgorithmen und lineare Algebra Hand in Hand Prof. Dr. Henning Meyerhenke Graphenalgorithmen und lineare Algebra Hand in Hand Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Algorithmische Methoden für schwere Optimierungsprobleme

Algorithmische Methoden für schwere Optimierungsprobleme Algorithmische Methoden für schwere Optimierungsprobleme Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Sortieren fortgesetzt Maike Buchin 16.5.2017 5.6 Brechen der Unteren Schranke nur Vergleichen erlauben keine Algorithmen mit Laufzeit schneller als O(n log n) stattdessen: Struktur

Mehr

Customization (Zuschneiden)

Customization (Zuschneiden) Customization (Zuschneiden) Anpassen der (Graph)Datenstruktur an die Anwendung. I Ziel: schnell, kompakt. I benutze Entwurfsprinzip: make the common case fast I Listen vermeiden Mögliches Problem: Software-Engineering-Alptraum

Mehr

{P} S {Q} {P} S {Q} {P} S {Q} Inhalt. Hoare-Kalkül. Hoare-Kalkül. Hoare-Tripel. Hoare-Tripel. Hoare-Tripel

{P} S {Q} {P} S {Q} {P} S {Q} Inhalt. Hoare-Kalkül. Hoare-Kalkül. Hoare-Tripel. Hoare-Tripel. Hoare-Tripel Inhalt Hoare-Kalkül Formale Verifizierung Hoare-Kalkül while-sprache Terminierung Partielle / totale Korrektheit 4.0 Hoare-Kalkül entwickelt von C.A.R. (Tony) Hoare (britischer Informatiker), 1969 formales

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme Stefan Werner (Übungen) sowie viele Tutoren Teilnehmerkreis und Voraussetzungen Studiengänge

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Erinnerung VL

Erinnerung VL Erinnerung VL 7.06.016 Bellman-Ford-Algorithmus (Brute-Force-Suche) Varianten des Kürzeste-Wege-Problems (azyklische Graphen) Ausblick: Routenplanung in Straÿennetzwerken Motivation Minimale Spannbäume

Mehr

2. Effizienz von Algorithmen

2. Effizienz von Algorithmen Effizienz von Algorithmen 2. Effizienz von Algorithmen Effizienz von Algorithmen, Random Access Machine Modell, Funktionenwachstum, Asymptotik [Cormen et al, Kap. 2.2,3,4.2-4.4 Ottman/Widmayer, Kap. 1.1]

Mehr

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS Julian Arz, Timo Bingmann, Sebastian Schlag INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS KIT Julian Universität Arz, des Timo LandesBingmann, Baden-Württemberg Sebastian und Schlag nationales 7.

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Exkurs: Graphtraversierung

Exkurs: Graphtraversierung Sanders: Informatik III November 28, 2006 1 Exkurs: Graphtraversierung Begriffe Graphrepräsentation Erreichbarkeit mittels Tiefensuche Kreise Suchen Sanders: Informatik III November 28, 2006 2 Gerichtete

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Dr. Hanjo Täubig Tobias Lieber Sommersemester 2011 Übungsblatt 1 16. September 2011 Grundlagen: Algorithmen und

Mehr

1. Erste Schritte 2. Einfache Datentypen 3. Anweisungen und Kontrollstrukturen 4. Verifikation 5. Reihungen (Arrays) II.1.4. Verifikation - 1 -

1. Erste Schritte 2. Einfache Datentypen 3. Anweisungen und Kontrollstrukturen 4. Verifikation 5. Reihungen (Arrays) II.1.4. Verifikation - 1 - 1. Erste Schritte 2. Einfache Datentypen 3. Anweisungen und Kontrollstrukturen 4. Verifikation 5. Reihungen (Arrays) II.1.4. Verifikation - 1 - 4. Verifikation Spezifikation: Angabe, was ein Programm tun

Mehr

Algorithmen für Planare Graphen

Algorithmen für Planare Graphen Algorithmen für Planare Graphen 12. Juni 2018, Übung 4 Lars Gottesbüren, Michael Hamann INSTITUT FÜR THEORETISCHE INFORMATIK KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu Prüfungstermine

Mehr

Grundzüge von Algorithmen und Datenstrukturen, WS 15/16: Lösungshinweise zum 13. Übungsblatt

Grundzüge von Algorithmen und Datenstrukturen, WS 15/16: Lösungshinweise zum 13. Übungsblatt U N S A R I V E R S A V I E I T A S N I S S Grundzüge von Algorithmen und Datenstrukturen, WS /6: Lösungshinweise zum 3. Übungsblatt Christian Hoffmann, Fabian Bendun Aufgabe 3. (a) Sei j i + = n die Größe

Mehr

Termine für Übungstests. Kap. 3 Sortieren HeapSort ff Priority Queues. Motivation. Überblick. Analyse SiftDown

Termine für Übungstests. Kap. 3 Sortieren HeapSort ff Priority Queues. Motivation. Überblick. Analyse SiftDown Kap. Sortieren..5 HeapSort ff..6 Priority Queues Professor Dr. Vorlesung am Do 7.5. entfällt wegen FVV um Uhr Lehrstuhl für Algorithm Engineering, LS Fakultät für nformatik, TU Dortmund 7. VO DAP SS 009

Mehr

Sortieren & Co. KIT Institut für Theoretische Informatik

Sortieren & Co. KIT Institut für Theoretische Informatik Sortieren & Co KIT Institut für Theoretische Informatik 1 Formaler Gegeben: Elementfolge s = e 1,...,e n Gesucht: s = e 1,...,e n mit s ist Permutation von s e e 1 n für eine Totalordnung ` ' KIT Institut

Mehr

Informatik II, SS 2018

Informatik II, SS 2018 Informatik II - SS 2018 (Algorithmen & Datenstrukturen) Vorlesung 6 (7.5.2018) Dictionaries, Binäre Suche, Hashtabellen I / Yannic Maus Algorithmen und Komplexität Abstrakte Datentypen : Dictionary Dictionary:

Mehr

Suchen und Sortieren Sortieren. Heaps

Suchen und Sortieren Sortieren. Heaps Suchen und Heaps (Folie 156, Seite 56 im Skript) Definition Ein Heap ist ein Binärbaum, der die Heapeigenschaft hat (Kinder sind größer als der Vater), bis auf die letzte Ebene vollständig besetzt ist,

Mehr

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php? Algorithmen I Prof. Jörn Müller-Quade 07.06.2017 Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?id=799 (Folien von Peter Sanders) KIT Institut für Theoretische Informatik

Mehr

Heute. Algorithmen für Ad-hoc- und Sensornetze. Erinnerung: MAC-Layer. Erinnerung: Färbungen. Definition

Heute. Algorithmen für Ad-hoc- und Sensornetze. Erinnerung: MAC-Layer. Erinnerung: Färbungen. Definition Heute Algorithmen für Ad-hoc- und Sensornetze VL 0 Eine kurze Geschichte vom Färben (Teil ) Medium Access Control / Färbungen, Teil kurze Wiederholung Schöner verteilter Färbungsalgorithmus Markus Völker

Mehr

Kap. 3: Sortieren (3)

Kap. 3: Sortieren (3) Kap. 3: Sortieren (3) Professor Dr. Lehrstuhl für Algorithm Engineering, LS Fakultät für Informatik, TU Dortmund 6. VO DAP2 SS 2009 30. April 2009 Überblick Quick-Sort Analyse von Quick-Sort Quick-Sort

Mehr

Übungsblatt 4. Aufgabe 1. IN8009 Algorithmen und Datenstrukturen Thomas Stibor

Übungsblatt 4. Aufgabe 1. IN8009 Algorithmen und Datenstrukturen Thomas Stibor Aufgabe 1 Zeigen Sie 2n 2 = O(n 3 ), n = Ω(lgn), n 2 /2 2n = Θ(n 2 ). Übungsblatt 4 Zu zeigen: 2n 2 = O(n 3 ). O(g(n)) = {f(n) : es existieren positive Konstanten c und n 0, sodass 0 f(n) cg(n) für alle

Mehr

Technische Universität München SoSe 2018 Fakultät für Informatik, I Mai 2018 Dr. Stefanie Demirci

Technische Universität München SoSe 2018 Fakultät für Informatik, I Mai 2018 Dr. Stefanie Demirci Name: Vorname: Matr. Nr.: Technische Universität München SoSe 2018 Fakultät für Informatik, I-16 9. Mai 2018 Dr. Stefanie Demirci Probeklausur zu Algorithmen und Datenstrukturen Allgemeine Hinweise Die

Mehr

1. Erste Schritte 2. Einfache Datentypen 3. Anweisungen und Kontrollstrukturen 4. Verifikation 5. Reihungen (Arrays) II.1.4. Verifikation - 1 -

1. Erste Schritte 2. Einfache Datentypen 3. Anweisungen und Kontrollstrukturen 4. Verifikation 5. Reihungen (Arrays) II.1.4. Verifikation - 1 - 1. Erste Schritte 2. Einfache Datentypen 3. Anweisungen und Kontrollstrukturen 4. Verifikation 5. Reihungen (Arrays) II.1.4. Verifikation - 1 - 4. Verifikation Spezifikation: Angabe, was ein Programm tun

Mehr

Algorithmen und Datenstrukturen SoSe 2008 in Trier. Henning Fernau Universität Trier

Algorithmen und Datenstrukturen SoSe 2008 in Trier. Henning Fernau Universität Trier Algorithmen und Datenstrukturen SoSe 2008 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Algorithmen und Datenstrukturen Gesamtübersicht Organisatorisches / Einführung Grundlagen: RAM,

Mehr