Algorithmen für Planare Graphen
|
|
|
- Heinrich Brinkerhoff
- vor 7 Jahren
- Abrufe
Transkript
1 Algorithmen für Planare Graphen 12. Juni 2018, Übung 4 Lars Gottesbüren, Michael Hamann INSTITUT FÜR THEORETISCHE INFORMATIK KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft
2 Prüfungstermine 11. Juli - AUSGEBUCHT 31. Juli - AUSGEBUCHT 28. August - AUSGEBUCHT 29. August - nur noch wenige Plätze 27. September 4. Oktober 15. Oktober Lars Gottesbüren, Michael Hamann Übung Juni /17
3 1.1 Schnitte und Kreise Aufgabe 1.1 Sei G = (V, E) planar, zusammenhängend und E E. Zeige (V, E ) enthält Kreis C (V, (E \ E ) ) unzusammenhängend Sei C ein Kreis in E Sei f V im Inneren, g V im Äußeren von C Alle Pfade in G die f und g verbinden, laufen über Kanten dual zu C g e e f C Lars Gottesbüren, Michael Hamann Übung Juni /17
4 1.1 Schnitte und Kreise Aufgabe 1.1 Sei G = (V, E) planar, zusammenhängend und E E. Zeige (V, E ) enthält Kreis C (V, (E \ E ) ) unzusammenhängend Annahme E enhält keinen Kreis. Facetten sind durch Kreise voneinander getrennt Kein Kreis gelöscht kein Schnitt zwischen Facetten Lars Gottesbüren, Michael Hamann Übung Juni /17
5 1.2 Bäume Aufgabe 1.2 Bäume Zeige: Für E E T = (V, E ) ist ein Spannbaum von G T = (V, (E \ E ) ) ist ein Spannbaum von G Nutze Aufgabe 1.1 T Spannbaum T ist zshg [kreisfrei] T ist kreisfrei [zshg] Analog. Lars Gottesbüren, Michael Hamann Übung Juni /17
6 2.1 Perfektes Matching Ein Matching M heißt perfekt, wenn jeder Knoten von G zu einer Kante aus M inzident ist. Für welche n 1 und m 1 besitzen die folgenden Graphen jeweils ein perfektes Matching? P n einfacher Weg mit n Knoten. n gerade Lars Gottesbüren, Michael Hamann Übung Juni /17
7 2.1 Perfektes Matching Ein Matching M heißt perfekt, wenn jeder Knoten von G zu einer Kante aus M inzident ist. Für welche n 1 und m 1 besitzen die folgenden Graphen jeweils ein perfektes Matching? P n einfacher Weg mit n Knoten. n gerade Lars Gottesbüren, Michael Hamann Übung Juni /17
8 2.2 Perfektes Matching C n einfacher Kreis mit n Knoten. Ausnahmsweise C 2 = K 2. n gerade C 8 Lars Gottesbüren, Michael Hamann Übung Juni /17
9 2.3 Perfektes Matching Q n der n-te Hyperwürfel. Q 1 Q 2 Q 3 Kopiere das Matching mit dem Graphen. Lars Gottesbüren, Michael Hamann Übung Juni /17
10 2.4 Perfektes Matching K n n gerade K 2 K 4 K 6 Es muss gelten: M = V 2 n gerade K n enthält Kreis der Länge n. Lars Gottesbüren, Michael Hamann Übung Juni /17
11 K n,m n = m 2.4 Perfektes Matching Für n m ist mindestens ein Knoten auf einer Seite nicht im Matching. K 1,1 K 2,2 K 3,3 Füge die Kante zwischen den beiden neuen Knoten zu M hinzu. Lars Gottesbüren, Michael Hamann Übung Juni /17
12 3 Adjazenztest Adjazenztest in O(1) Gegeben: G ungerichteter, planarer Graph. Wir haben lineare Vorberechnungszeit und können linear viel zusätzlichen Speicher benutzen. Hinweis: Richte Kanten so, dass jeder Knoten höchstens fünf ausgehende Kanten hat. Lars Gottesbüren, Michael Hamann Übung Juni /17
13 3 Adjazenztest Adjazenztest in O(1) Gegeben: G ungerichteter, planarer Graph. Wir haben lineare Vorberechnungszeit und können linear viel zusätzlichen Speicher benutzen. Hinweis: Richte Kanten so, dass jeder Knoten höchstens fünf ausgehende Kanten hat. Lars Gottesbüren, Michael Hamann Übung Juni /17
14 3 Adjazenztest In den folgenden Algorithmen werden wir Kanten richten. Kanten {u, v} sind zunächst ungerichtet und können zu (u, v) oder (v, u) gerichtet werden. N (v): Nachbarschaft von v im Eingabegraphen. Ñ (v): Nachbarschaft von v über Kanten die noch nicht gerichtet wurden. N + (v): Über gerichtete, von v ausgehende Kanten benachbarte Knoten. Lars Gottesbüren, Michael Hamann Übung Juni /17
15 3 Adjazenztest Algorithm VORBERECH- NUNG d v Grad von Knoten v Q {v d v 5} while Q do v Q.pop() for u Ñ (v) do {v, u} (v, u) d u = d u 1 if d u = 5 then Q.push(u) Lars Gottesbüren, Michael Hamann Übung Juni /17
16 3 Adjazenztest Algorithm VORBERECH- NUNG d v Grad von Knoten v Q {v d v 5} while Q do v Q.pop() for u Ñ (v) do {v, u} (v, u) d u = d u 1 if d u = 5 then Q.push(u) Lars Gottesbüren, Michael Hamann Übung Juni /17
17 3 Adjazenztest Algorithm VORBERECH- NUNG d v Grad von Knoten v Q {v d v 5} while Q do v Q.pop() for u Ñ (v) do {v, u} (v, u) d u = d u 1 if d u = 5 then Q.push(u) Lars Gottesbüren, Michael Hamann Übung Juni /17
18 3 Adjazenztest Algorithm VORBERECH- NUNG d v Grad von Knoten v Q {v d v 5} while Q do v Q.pop() for u Ñ (v) do {v, u} (v, u) d u = d u 1 if d u = 5 then Q.push(u) Lars Gottesbüren, Michael Hamann Übung Juni /17
19 3 Adjazenztest Algorithm VORBERECH- NUNG d v Grad von Knoten v Q {v d v 5} while Q do v Q.pop() for u Ñ (v) do {v, u} (v, u) d u = d u 1 if d u = 5 then Q.push(u) Lars Gottesbüren, Michael Hamann Übung Juni /17
20 3 Adjazenztest Algorithm VORBERECH- NUNG d v Grad von Knoten v Q {v d v 5} while Q do v Q.pop() for u Ñ (v) do {v, u} (v, u) d u = d u 1 if d u = 5 then Q.push(u) Lars Gottesbüren, Michael Hamann Übung Juni /17
21 3 Adjazenztest Algorithm VORBERECH- NUNG d v Grad von Knoten v Q {v d v 5} while Q do v Q.pop() for u Ñ (v) do {v, u} (v, u) d u = d u 1 if d u = 5 then Q.push(u) Lars Gottesbüren, Michael Hamann Übung Juni /17
22 3 Adjazenztest Algorithm VORBERECH- NUNG d v Grad von Knoten v Q {v d v 5} while Q do v Q.pop() for u Ñ (v) do {v, u} (v, u) d u = d u 1 if d u = 5 then Q.push(u) Lars Gottesbüren, Michael Hamann Übung Juni /17
23 3 Adjazenztest Algorithm VORBERECH- NUNG d v Grad von Knoten v Q {v d v 5} u v while Q do v Q.pop() for u Ñ (v) do {v, u} (v, u) d u = d u 1 if d u = 5 then Q.push(u) Lars Gottesbüren, Michael Hamann Übung Juni /17
24 3 Adjazenztest Algorithm ADJAZENT(u, v) v? N + (u) oder u? N + (v) u v Für jeden der beiden Knoten müssen höchstens 5 Kanten betrachtet werden. ADJAZENT O(1) Lars Gottesbüren, Michael Hamann Übung Juni /17
25 4 Dreiecke Zählen Für alle v V : bestimme Zahl der Dreiecke in denen v vorkommt. Laufzeit: O(n) Gegeben: G = (V, E) ungerichteter, planarer Graph. Dreiecke in denen v vorkommt: {{x, y} E {v, x}, {v, y} E} x y v Lars Gottesbüren, Michael Hamann Übung Juni /17
26 4 Dreiecke Zählen Algorithm DREIECKE VORBERECHNUNG() for v V do D v = 0 for u N (v) do for w N + (u) do if ADJAZENT(v, w) then D v = D v + 1 Lars Gottesbüren, Michael Hamann Übung Juni /17
27 4 Dreiecke Zählen Algorithm DREIECKE VORBERECHNUNG() for v V do D v = 0 for u N (v) do for w N + (u) do if ADJAZENT(v, w) then D v = D v + 1 Lars Gottesbüren, Michael Hamann Übung Juni /17
28 4 Dreiecke Zählen Algorithm DREIECKE VORBERECHNUNG() for v V do D v = 0 for u N (v) do for w N + (u) do if ADJAZENT(v, w) then D v = D v + 1 Lars Gottesbüren, Michael Hamann Übung Juni /17
29 4 Dreiecke Zählen Algorithm DREIECKE VORBERECHNUNG() for v V do D v = 0 for u N (v) do for w N + (u) do if ADJAZENT(v, w) then D v = D v + 1 Lars Gottesbüren, Michael Hamann Übung Juni /17
30 4 Dreiecke Zählen Algorithm DREIECKE VORBERECHNUNG() for v V do D v = 0 for u N (v) do for w N + (u) do if ADJAZENT(v, w) then D v = D v + 1 Lars Gottesbüren, Michael Hamann Übung Juni /17
31 4 Dreiecke Zählen Algorithm DREIECKE VORBERECHNUNG() for v V do D v = 0 for u N (v) do for w N + (u) do if ADJAZENT(v, w) then D v = D v + 1 Lars Gottesbüren, Michael Hamann Übung Juni /17
32 5 MST MST in erwartet O(n) Gegeben: G ungerichteter, planarer, zusammenhängend Graph. Ohne Beweis zu verwenden: Sei v ein Knoten und e eine Kante minimalen Gewichts inzident zu v. Dann gibt es einen Spannbaum minimalen Gewichts von G, der e enthält. Sei e eine Kante, die einem Spannbaum minimalen Gewichts von G vorkommt. Sei T ein Spannbaum minimalen Gewichts auf dem Graphen, den man durch die Kontraktion von e erhält. Dann ist T e ein Spannbaum minimalen Gewichts auf G. Lars Gottesbüren, Michael Hamann Übung Juni /17
33 5 MST Algorithm MST T while G nicht leer do Wähle v V mit deg(v) 5 e argmin e N (v) w(e ) T T e Kontrahiere e Entferne Multikanten und behalte nur die mit geringstem Gewicht 5 6 u 8 e v vu w Lars Gottesbüren, Michael Hamann Übung Juni /17
34 Erwartete Laufzeit Kontraktion von {u, v} mit deg(v) 5 Pro Knoten eine Hashmap für seine Nachbarschaft Für x N (v) erkenne ob x N (u); in erwartet O(1) Falls ja, behalte die Kante mit kleinerem Gewicht in Hashmap für u Lars Gottesbüren, Michael Hamann Übung Juni /17
Algorithmen II Vorlesung am
Algorithmen II Vorlesung am 07..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum
Algorithmen II Vorlesung am
Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum
3. Übung zur Vorlesung Planare Graphen
3. Übung zur Vorlesung Planare Graphen Übung 20. Mai 14 Andreas Gemsa INSTITUTE OF THEORETICAL INFORMATICS PROF. DR. DOROTHEA WAGNER KIT University of the State of Baden-Wuerttemberg and National Laboratory
Effizienter Planaritätstest Vorlesung am
Effizienter Planaritätstest Vorlesung am 23.04.2014 INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER Satz Gegebenen einen Graphen G = (V, E) mit n Kanten und m Knoten, kann in O(n + m) Zeit
8. Übung Algorithmen I
INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Grundlagen
Maximale s t-flüsse in Planaren Graphen
Maximale s t-flüsse in Planaren Graphen Vorlesung Algorithmen für planare Graphen 6. Juni 2017 Guido Brückner INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg
Kombinatorische Optimierung
Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 16 Programm: Einführung
9. Übung Algorithmen I
Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der
Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist:
Svenja Hüning, Michael Kerber, Hannah Schreiber WS 2016/2017 Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist: Hinweise: Dieses Blatt präsentiert Beispiellösungen zu
Betriebswirtschaftliche Optimierung
Institut für Statistik und OR Uni Graz 1 Approximationsalgorithmen auf metrischen Instanzen Minimum Spanning Tree Definition (Spannbaum) Ein Spannbaum in einem Graphen G = (V,E) ist ein kreisfreier Teilgraph
\ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E.
Das Komplement Ḡ = (V, ( V ) \ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E. Ein Graph H = (V, E )
Betriebliche Optimierung
Betriebliche Optimierung Joachim Schauer Institut für Statistik und OR Uni Graz Joachim Schauer ( Institut für Statistik und OR Uni Graz Betriebliche ) Optimierung 1 / 21 1 Approximationsalgorithmen auf
Bäume und Wälder. Definition 1
Bäume und Wälder Definition 1 Ein Baum ist ein zusammenhängender, kreisfreier Graph. Ein Wald ist ein Graph, dessen Zusammenhangskomponenten Bäume sind. Ein Knoten v eines Baums mit Grad deg(v) = 1 heißt
3. Minimale Spannbäume. Definition 99 T heißt minimaler Spannbaum (MSB, MST) von G, falls T Spannbaum von G ist und gilt:
3. Minimale Spannbäume Sei G = (V, E) ein einfacher ungerichteter Graph, der o.b.d.a. zusammenhängend ist. Sei weiter w : E R eine Gewichtsfunktion auf den Kanten von G. Wir setzen E E: w(e ) = e E w(e),
Bäume und Wälder. Definition 1
Bäume und Wälder Definition 1 Ein Baum ist ein zusammenhängender, kreisfreier Graph. Ein Wald ist ein Graph, dessen Zusammenhangskomponenten Bäume sind. Ein Knoten v eines Baums mit Grad deg(v) = 1 heißt
Freie Bäume und Wälder
(Martin Dietzfelbinger, Stand 4.6.2011) Freie Bäume und Wälder In dieser Notiz geht es um eine besondere Sorte von (ungerichteten) Graphen, nämlich Bäume. Im Gegensatz zu gerichteten Bäumen nennt man diese
Kapitel IV Minimale Spannbäume
Kapitel IV Minimale Spannbäume 1. Grundlagen Ein Graph G = (V, E) besteht aus einer Menge V von Knoten und einer Menge E von Kanten. Wir werden nur endliche Knoten- (und damit auch Kanten-) Mengen betrachten.
Einführung in die Informatik 2
Einführung in die Informatik 2 Bäume & Graphen Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 [email protected] Sprechstunde: Freitag, 12:30-14:00 Uhr, o.n.v. Sommersemester
Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008
Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 2007/08 Lösungsblatt 9
Algorithmische Methoden zur Netzwerkanalyse
Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische
Berechnung minimaler Spannbäume. Beispiel
Minimale Spannbäume Definition Sei G pv, Eq ein ungerichteter Graph und sei w : E Ñ R eine Funktion, die jeder Kante ein Gewicht zuordnet. Ein Teilgraph T pv 1, E 1 q von G heißt Spannbaum von G genau
Vorlesung Datenstrukturen
Vorlesung Datenstrukturen Minimale Spannbäume Maike Buchin 18.7., 20.7.2017 Einführung Motivation: Verbinde Inseln mit Fähren oder Städte mit Schienen und verbrauche dabei möglichst wenig Länge. Problem:
3 Klassifikation wichtiger Optimierungsprobleme
3 Klassifikation wichtiger Optimierungsprobleme 3.1 Das MIN- -TSP Wir kehren nochmal zurück zum Handlungsreisendenproblem für Inputs (w {i,j} ) 1 i
Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume)
WS 2016/17 Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16
Algo&Komp. - Wichtige Begriffe Mattia Bergomi Woche 6 7
1 Kürzeste Pfade Woche 6 7 Hier arbeiten wir mit gewichteten Graphen, d.h. Graphen, deren Kanten mit einer Zahl gewichtet werden. Wir bezeichnen die Gewichtsfunktion mit l : E R. Wir wollen einen kürzesten
Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie
Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie Dipl-Math. Wolfgang Kinzner 2.4.2012 Kapitel 1: Grundlagen der algorithmischen Graphgentheorie
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Prof. Martin Lercher Institut für Informatik Heinrich-Heine-Universität Düsseldorf Teil 10 Suche in Graphen Version vom 13. Dezember 2016 1 / 2 Vorlesung 2016 / 2017 2 /
10. Übung Algorithmen I
INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Bäume
Nachbarschaft, Grad, regulär, Inzidenz
Nachbarschaft, Grad, regulär, Inzidenz Definition Eigenschaften von Graphen Sei G = (V, E) ein ungerichteter Graph. 1 Die Nachbarschaftschaft Γ(u) eines Knoten u V ist Γ(u) := {v V {u, v} E}. 2 Der Grad
Klausur. 18. Juli 2008, 10:15-12:15 Uhr. Name:... Matrikelnummer:... Anzahl beschriebener Blätter (ohne Aufgabenblatt):... D(p) : Y = p x X + p y
GRUNDZÜGE DER ALGORITHMISCHEN GEOMETRIE Klausur 18. Juli 2008, 10:15-12:15 Uhr Name:................................... Matrikelnummer:................................... Anzahl beschriebener Blätter (ohne
Kombinatorische Optimierung
Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 4 Programm des
Datenstrukturen und Algorithmen (SS 2013)
Datenstrukturen und Algorithmen (SS 2013) Übungsblatt 10 Abgabe: Montag, 08.07.2013, 14:00 Uhr Die Übungen sollen in Gruppen von zwei bis drei Personen bearbeitet werden. Schreiben Sie die Namen jedes
Für die Anzahl der Kanten in einem vollständigen Graphen (und damit für die maximale Anzahl von Kanten in einem einfachen Graphen) gilt:
Der K 4 lässt sich auch kreuzungsfrei zeichnen: Für die Anzahl der Kanten in einem vollständigen Graphen (und damit für die maximale Anzahl von Kanten in einem einfachen Graphen) gilt: ( ) n n (n 1) E
3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel
3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36
Fortgeschrittene Netzwerk- und Graph-Algorithmen
Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester
Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza)
WS 2013/14 Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2013ws/ds/uebung/ 22. Januar 2014 ZÜ DS ZÜ XIII
Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 3: Minimal aufspannende Bäume und Matroide
Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 3: Minimal aufspannende Bäume und Matroide Dipl-Math. Wolfgang Kinzner 3.4.2012 Kapitel 3: Minimal aufspannende Bäume und Matroide Minimal aufspannende
15. Elementare Graphalgorithmen
Graphen sind eine der wichtigste Modellierungskonzepte der Informatik Graphalgorithmen bilden die Grundlage vieler Algorithmen in der Praxis Zunächst kurze Wiederholung von Graphen. Dann Darstellungen
= n (n 1) 2 dies beruht auf der Auswahl einer zweielementigen Teilmenge aus V = n. Als Folge ergibt sich, dass ein einfacher Graph maximal ( n E = 2
1 Graphen Definition: Ein Graph G = (V,E) setzt sich aus einer Knotenmenge V und einer (Multi)Menge E V V, die als Kantenmenge bezeichnet wird, zusammen. Falls E symmetrisch ist, d.h.( u,v V)[(u,v) E (v,u)
3.2 Generischer minimaler Spannbaum-Algorithmus
3.2 Generischer minimaler Spannbaum-Algorithmus Initialisiere Wald F von Bäumen, jeder Baum ist ein singulärer Knoten (jedes v V bildet einen Baum) while Wald F mehr als einen Baum enthält do wähle einen
Das Heiratsproblem. Definition Matching
Das Heiratsproblem Szenario: Gegeben: n Frauen und m > n Männer. Bekanntschaftsbeziehungen zwischen allen Männern und Frauen. Fragestellung: Wann gibt es für jede der Frauen einen Heiratspartner? Modellierung
Theoretische Informatik 1
Theoretische Informatik 1 Approximierbarkeit David Kappel Institut für Grundlagen der Informationsverarbeitung Technische Universität Graz 10.06.2016 Übersicht Das Problem des Handelsreisenden TSP EUCLIDEAN-TSP
3. Musterlösung. Problem 1: Boruvka MST
Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner. Musterlösung Problem : Boruvka MST pt (a) Beweis durch Widerspruch. Sei T MST von G, e die lokal minimale Kante eines
Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr)
WS 2011/12 Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2011ws/ds/uebung/ 25. Januar 2012 ZÜ DS ZÜ XIII
Zentralübung zur Vorlesung Diskrete Strukturen
WS 2010/11 Zentralübung zur Vorlesung Diskrete Strukturen Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2010ws/ds/uebung/ 2. Februar 2011 ZÜ DS ZÜ XIII 1. Übungsbetrieb:
2. November Gradfolgen Zusammenhang Kürzeste Wege. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37
2. November 2011 Gradfolgen Zusammenhang Kürzeste Wege H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37 Satz von Erdős und Gallai Eine Partition einer natürlichen Zahl ist genau dann die Gradfolge
Optimale Lösungen mit Greedy-Strategie erfordern Optimalität der Greedy-Wahl. Beispiele für optimale Greedy-Lösungen
Wiederholung Optimale Lösungen mit Greedy-Strategie erfordern Optimalität der Greedy-Wahl unabhängig von Subproblemen Optimalität der Subprobleme Beispiele für optimale Greedy-Lösungen Scheduling Problem
1.Aufgabe: Minimal aufspannender Baum
1.Aufgabe: Minimal aufspannender Baum 11+4+8 Punkte v 1 v 2 1 3 4 9 v 3 v 4 v 5 v 7 7 4 3 5 8 1 4 v 7 v 8 v 9 3 2 7 v 10 Abbildung 1: Der Graph G mit Kantengewichten (a) Bestimme mit Hilfe des Algorithmus
Richtig oder falsch? Richtig oder falsch? Richtig oder falsch? Mit dynamischer Programmierung ist das Knapsack- Problem in Polynomialzeit lösbar.
Gegeben sei ein Netzwerk N = (V, A, c, s, t) wie in der Vorlesung. Ein maximaler s-t-fluss kann immer mit Hilfe einer Folge von höchstens A Augmentationsschritten gefunden werden. Wendet man den Dijkstra-Algorithmus
WS 2013/14. Diskrete Strukturen
WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314
Bemerkung: Der vollständige Graph K n hat n(n 1)
Bemerkung: Der vollständige Graph K n hat n(n 1) 2 Kanten. Bew: Abzählen! Definition 111. Graphen mit n paarweise zyklisch verbundenen Kanten heißen Kreise (vom Grad n) und werden mit C n bezeichnet. Beispiel
Wie wird ein Graph dargestellt?
Wie wird ein Graph dargestellt? Für einen Graphen G = (V, E), ob gerichtet oder ungerichtet, verwende eine Adjazenzliste A G : A G [i] zeigt auf eine Liste aller Nachbarn von Knoten i, wenn G ungerichtet
Datenstrukturen und Algorithmen
Prof. Dr. Erika Ábrahám Datenstrukturen und Algorithmen 1/1 Datenstrukturen und Algorithmen Vorlesung 14: Prof. Dr. Erika Ábrahám Theorie Hybrider Systeme Informatik 2 http://ths.rwth-aachen.de/teaching/ss-14/
Einführung in die Informatik 2
Einführung in die Informatik 2 Bäume & Graphen Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz http://www.inf.uni-konstanz.de/algo/lehre/ss08/info2 Sommersemester 2008 Sven Kosub
Datenstrukturen und Algorithmen SS07
Datenstrukturen und Algorithmen SS0 Datum:.6.200 Michael Belfrage [email protected] belfrage.net/eth Programm von Heute Minimaler Spannbaum (MST) Challenge der Woche Fibonacci Heap Minimaler Spannbaum
Grundlagen: Algorithmen und Datenstrukturen
Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 00
Lösungen zu Kapitel 5
Lösungen zu Kapitel 5 Lösung zu Aufgabe : (a) Es gibt derartige Graphen: (b) Offensichtlich besitzen 0 der Graphen einen solchen Teilgraphen. Lösung zu Aufgabe : Es sei G = (V, E) zusammenhängend und V
Graphalgorithmen Netzwerkalgorithmen. Laufzeit
Netzwerkalgorithmen Laufzeit (Folie 390, Seite 78 im Skript) Finden eines Matchings maximaler Kardinalität dauert nur O( E min{ V, V 2 }) mit der Ford Fulkerson Methode. Der Fluß ist höchstens f = min{
Quicksort ist ein Divide-and-Conquer-Verfahren.
. Quicksort Wie bei vielen anderen Sortierverfahren (Bubblesort, Mergesort, usw.) ist auch bei Quicksort die Aufgabe, die Elemente eines Array a[..n] zu sortieren. Quicksort ist ein Divide-and-Conquer-Verfahren.
Grundzüge von Algorithmen und Datenstrukturen, WS 15/16: Lösungshinweise zum 13. Übungsblatt
U N S A R I V E R S A V I E I T A S N I S S Grundzüge von Algorithmen und Datenstrukturen, WS /6: Lösungshinweise zum 3. Übungsblatt Christian Hoffmann, Fabian Bendun Aufgabe 3. (a) Sei j i + = n die Größe
Datenstrukturen. einfach verkettete Liste
einfach verkettete Liste speichert Daten in einer linearen Liste, in der jedes Element auf das nächste Element zeigt Jeder Knoten der Liste enthält beliebige Daten und einen Zeiger auf den nächsten Knoten
Theoretische Informatik 1
Theoretische Informatik 1 Approximierbarkeit David Kappel Institut für Grundlagen der Informationsverarbeitung Technische Universität Graz 02.07.2015 Übersicht Das Problem des Handelsreisenden TSP EUCLIDEAN-TSP
Breitensuche BFS (Breadth First Search)
Breitensuche BFS (Breadth First Search) Algorithmus BREITENSUCHE EINGABE: G = (V, E) als Adjazenzliste, Startknoten s V 1 Für alle v V 1 If (v = s) then d[v] 0 else d[v] ; 2 pred[v] nil; 2 Q new Queue;
Maximale s t-flüsse in Planaren Graphen
Maximale s t-flüsse in Planaren Graphen Vorlesung Algorithmen für planare Graphen June 1, 2015 Ignaz Rutter INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg
Übung 2 Algorithmen II
Yaroslav Akhremtsev, Demian Hespe [email protected], [email protected] Mit Folien von Michael Axtmann (teilweise) http://algo2.iti.kit.edu/algorithmenii_ws17.php - 0 Akhremtsev, Hespe: KIT Universität
Seien u, v V, u v. Da G zusammenhängend ist, muss mindestens ein Pfad zwischen u und v existieren.
Beweis: 1. 2. Seien u, v V, u v. Da G zusammenhängend ist, muss mindestens ein Pfad zwischen u und v existieren. Widerspruchsannahme: Es gibt zwei verschiedene Pfade zwischen u und v. Dann gibt es einen
Minimal spannende Bäume
http://www.uni-magdeburg.de/harbich/ Minimal spannende Fakultät für Informatik Otto-von-Guericke-Universität 2 Inhalt Definition Wege Untergraphen Kantengewichtete Graphen Minimal spannende Algorithmen
Graphdurchmusterung, Breiten- und Tiefensuche
Prof. Thomas Richter 18. Mai 2017 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg [email protected] Material zur Vorlesung Algorithmische Mathematik II am 18.05.2017 Graphdurchmusterung,
5. Bäume und Minimalgerüste
5. Bäume und Minimalgerüste Charakterisierung von Minimalgerüsten 5. Bäume und Minimalgerüste Definition 5.1. Es ein G = (V, E) ein zusammenhängender Graph. H = (V,E ) heißt Gerüst von G gdw. wenn H ein
Programmiertechnik II
Graph-Algorithmen Anwendungsgebiete "Verbundene Dinge" oft Teilproblem/Abstraktion einer Aufgabenstellung Karten: Wie ist der kürzeste Weg von Sanssouci nach Kunnersdorf? Hypertext: Welche Seiten sind
Matchings in Graphen. Praktikum Diskrete Optimierung (Teil 5)
Praktikum Diskrete Optimierung (Teil 5) 6.05.009 Matchings in Graphen Es sei ein ungerichteter Graph G = (V, E) gegeben. Ein Matching in G ist eine Teilmenge M E, so dass keine zwei Kanten aus M einen
Berechnung von Abständen
3. Kreis- und Wegeprobleme Abstände in Graphen Abstände in Graphen Definition 3.4. Es sei G = (V, E) ein Graph. Der Abstand d(v, w) zweier Knoten v, w V ist die minimale Länge eines Weges von v nach w.
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
Übung zur Vorlesung Diskrete Strukturen I
Technische Universität München WS 00/03 Institut für Informatik Aufgabenblatt 6 Prof. Dr. J. Csirik 18. November 00 Brandt & Stein Übung zur Vorlesung Diskrete Strukturen I Abgabetermin: Tutorübungen am
Diskrete Mathematik 1
Ruhr-Universität Bochum Lehrstuhl für Kryptologie und IT-Sicherheit Prof. Dr. Alexander May M. Ritzenhofen, M. Mansour Al Sawadi, A. Meurer Lösungsblatt zur Vorlesung Diskrete Mathematik 1 WS 2008/09 Blatt
Algorithmische Methoden für schwere Optimierungsprobleme
Algorithmische Methoden für schwere Optimierungsprobleme Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund
Bipartites Matching. Gegeben: Ein bipartiter, ungerichteter Graph (V 1, V 2, E). Gesucht: Ein Matching (Paarung) maximaler Kardinalität.
Netzwerkalgorithmen Bipartites Matching (Folie 90, Seite 80 im Skript) Gegeben: Ein bipartiter, ungerichteter Graph (V, V, E). Gesucht: Ein Matching (Paarung) maximaler Kardinalität. Ein Matching ist eine
8.4 Digraphen mit negativen Kantengewichten Grundsätzliches Betrachte Startknoten s und einen Kreis C mit Gesamtlänge < 0.
8.4 Digraphen mit negativen Kantengewichten 8.4.1 Grundsätzliches Betrachte Startknoten s und einen Kreis C mit Gesamtlänge < 0. k 4 5 1 s 1 3 2 C k 0 k 3 1 1 1 k 1 k 2 v Sollte ein Pfad von s nach C und
Geradenarrangements und Dualität von Punkten und Geraden
Vorlesung Algorithmische Geometrie von Punkten und Geraden INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 12.06.2012 Dualitätsabbildung Bisher haben wir Dualität für planare
Diskrete Mathematik für Informatiker
Universität Siegen Lehrstuhl Theoretische Informatik Carl Philipp Reh Daniel König Diskrete Mathematik für Informatiker WS 016/017 Übung 7 1. Gegeben sei folgender Graph und das Matching M = {{h, f}, {c,
Geradenarrangements und Dualität von Punkten und Geraden
Vorlesung Algorithmische Geometrie von Punkten und Geraden INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 12.06.2012 Dualitätsabbildung Bisher haben wir Dualität für planare
Das Problem des minimalen Steiner-Baumes
Das Problem des minimalen Steiner-Baumes Ein polynomieller Approximationsalgorithmus Benedikt Wagner 4.05.208 INSTITUT FU R THEORETISCHE INFORMATIK, LEHRSTUHL ALGORITHMIK KIT Die Forschungsuniversita t
Algorithmische Methoden zur Netzwerkanalyse
Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische
6. Übung zur Linearen Optimierung SS08
6 Übung zur Linearen Optimierung SS08 1 Sei G = (V, E) ein schlichter ungerichteter Graph mit n Ecken und m Kanten Für eine Ecke v V heißt die Zahl der Kanten (u, v) E Grad der Ecke (a) Ist die Anzahl
Definition Gerichteter Pfad. gerichteter Pfad, wenn. Ein gerichteter Pfad heißt einfach, falls alle u i paarweise verschieden sind.
3.5 Gerichteter Pfad Definition 291 Eine Folge (u 0, u 1,..., u n ) mit u i V für i = 0,..., n heißt gerichteter Pfad, wenn ( i {0,..., n 1} ) [ (u i, u i+1 ) A]. Ein gerichteter Pfad heißt einfach, falls
