Algorithmische Methoden zur Netzwerkanalyse
|
|
|
- Bastian Keller
- vor 9 Jahren
- Abrufe
Transkript
1 Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische Informatik nationales Algorithmische Forschungszentrum Methoden in der Helmholtz-Gemeinschaft zur Netzwerkanalyse
2 Vorlesung 8 Programm des Tages: Besprechung Übungsblatt 2, Aufgabe 6 : Eigenvektoren, PageRank 2 Henning Meyerhenke, Institut für Theoretische Informatik
3 Wiederholung Eigenschaften von Netzwerken: Gradverteilung k-kerne Clusterkoeffizienten (Dreiecke) Zusammenhang Durchmesser Eigenschaften von Knoten(paaren): Paarweise Abstände Kürzeste Wege Zuletzt: Algorithmus von Seidel für APSP Nun: ("Wie wichtig ist ein Knoten?") 3 Henning Meyerhenke, Institut für Theoretische Informatik
4 Zentralitäten Einführung Zentralitäten: Maße für die Bedeutung eines Knotens (oder evtl. auch einer Kante) in einem Netzwerk Beispiel Gradzentralität: Grad des Knotens Gibt einen Bonuspunkt für jeden Nachbarn Kann ein Indikator für die Bedeutung sein Frage: Was wird dadurch aber schlecht modelliert? 4 Henning Meyerhenke, Institut für Theoretische Informatik
5 Inhalt PageRank 5 Henning Meyerhenke, Institut für Theoretische Informatik
6 Nicht alle Nachbarn sind gleich wichtig Die Wichtigkeit einer Person in einem Netzwerk hängt auch von der Wichtigkeit seiner Nachbarn ab Wert der Nachbarn soll proportional eingehen in eigenen Wert Berechnung: Seien x der Zentralitätsvektor, x (0) sein initialer Zustand Aktualisierung eines Knotens: x (t+1) i = A ij x (t) j j Matrixnotation: x (t+1) = Ax (t) 6 Henning Meyerhenke, Institut für Theoretische Informatik
7 Exkurs: Eigenwerte und -vektoren (1) Definition (Eigenwert, Eigenvektor) Sei A eine symmetrische n n-matrix mit reellen Einträgen. Die Zahl λ heißt Eigenwert von A, wenn es einen Vektor z = 0 gibt, so dass Az = λz. Der Vektor z heißt Eigenvektor zum Eigenwert λ. Theorem (Eigenvektorbasis) Eine symmetrische reelle n n-matrix hat n unterschiedliche Eigenvektoren z 1,..., z n R n, die in R n eine Basis bilden. Ferner gilt z i z j für alle 1 i = j n. Der betragsmäßig größte Eigenwert ist nicht größer als eine induzierte Matrixnorm. 7 Henning Meyerhenke, Institut für Theoretische Informatik
8 Exkurs: Eigenwerte und -vektoren (2) Corollary Die Adjazenzmatrix A eines ungewichteten ungerichteten Graphen besitzt n unterschiedliche Eigenvektoren z 1,..., z n R n, die in R n eine Basis bilden. Ferner gilt z i z j für alle 1 i = j n. Die Eigenwerte von A liegen zwischen d max und d max, wobei d max den maximalen Knotengrad in G darstellt. Erinnerung zur iterativen Berechnung der EV-Zentralität: x (t+1) = Ax (t) Frage: Wie würden Sie das Ergebnis bei Konvergenz beschreiben? 8 Henning Meyerhenke, Institut für Theoretische Informatik
9 Darstellung in spektraler Form Lemma EV-Zentralität (EVZ) genügt Ax = κ 1 x. Daher ist x der Eigenvektor von A zum Eigenwert κ 1. Beweis: Siehe Tafel! EVZ von i ist proportional zur EVZ der Nachbarn: Beweis: Übung! x i = κ 1 EVZ kann groß sein, weil ein Knoten viele Nachbarn hat, die Nachbarn hohe EVZ haben oder beides 1 j A ij x j 9 Henning Meyerhenke, Institut für Theoretische Informatik
10 Eigenschaften der EVZ EVZ-Werte sind alle nicht-negativ (Beweis in Übung) EVZ ist prinzipiell anwendbar auf ungerichtete und gerichtete Netzwerke, aber: Problematisch bei gerichteten Netzwerken wegen unsymmetrischer Adjazenzmatrix Es gibt einen linken und einen rechten EV Welcher ist der richtige? Wichtiger ist, wie viele zu mir zeigen als zu wie vielen ich zeige der rechte EV ist sinnvoller 10 Henning Meyerhenke, Institut für Theoretische Informatik
11 EVZ in gerichteten Netzwerken Weiteres Problem: Knoten mit Eingangsgrad 0 haben EVZ 0 Problem: Das kann kaskadieren! Werte ungleich 0 bestenfalls in starken ZHK mit mind. 2 Knoten 11 Henning Meyerhenke, Institut für Theoretische Informatik
12 Berechnung der EVZ Sei G dünn besetzt. Frage: Warum berechnet man nicht A t und dann A t x (0)? Es gilt: A t i,j ist die Anzahl der Pfade der Länge t von i nach j in G. (Beweis: Selbstübung!) Matrix würde sich schnell auffüllen Fortgesetzte Matrix-Vektor-Multiplikation Potenzmethode, wird auch power method oder power iteration genannt 12 Henning Meyerhenke, Institut für Theoretische Informatik
13 Zu beachten bei der Potenzmethode Für die Bestimmung eines einzigen EV in dünnen Graphen effizient Startvektor darf nicht senkrecht zum Eigenvektor sein Lemma Die Einträge des führenden EV einer nicht-negativen Matrix haben alle dasselbe Vorzeichen. Corollary Wähle einen Startvektor, in dem alle Einträge dasselbe Vorzeichen haben! Normalisierung notwendig wegen Zahlengröße Frage: Wann ist Konvergenz erreicht? 13 Henning Meyerhenke, Institut für Theoretische Informatik
14 Konvergenz Eine Möglichkeit: Zwei verschiedene Startvektoren Nach Normalisierung in jeder Iteration (oder alle paar Iterationen) beide Vektoren vergleichen Funktioniert besonders gut, wenn sich die Vektoren von zwei unterschiedlichen Richtungen annähern Nach Konvergenz auch EW leicht zu berechnen: Dividieren eines Eintrags an demselben Index vor und nach der Iteration Achtung: Numerische Fehler möglich! 14 Henning Meyerhenke, Institut für Theoretische Informatik
15 Zeitkomplexität Komplexität des Algorithmus: Kosten pro Iteration Anzahl Iterationen (Konvergenzgeschwindigkeit) Kosten pro Iteration abhängig von Datenstruktur: Adjazenzmatrix: O(n 2 ) Adjazenzliste: O(m) Konvergenzgeschwindigkeit bestimmt von Eigenwerten Weiter an der Tafel! 15 Henning Meyerhenke, Institut für Theoretische Informatik
16 Inhalt PageRank 16 Henning Meyerhenke, Institut für Theoretische Informatik PageRank
17 PageRank Der Algorithmus, mit dem / durch den Google gegründet wurde Zutaten einer Suchmaschine (stark vereinfacht): Crawler Index Ranking The Anatomy of a Large-Scale Hypertextual Web Search Engine Sergey Brin and Lawrence Page Computer Science Department, Stanford University, Stanford, CA 94305, USA [email protected] and [email protected] Abstract In this paper, we present Google, a prototype of a large-scale search engine which makes heavy use of the structure present in hypertext. Google is designed to crawl and index the Web efficiently and produce much more satisfying search results than existing systems. The prototype with a full text and hyperlink database of at least 24 million pages is available at To engineer a search engine is a challenging task. Search engines index tens to hundreds of millions of web pages involving a comparable number of distinct terms. They answer tens of millions of queries every day. Despite the importance of large-scale search engines on the web, Google mit PageRank damals überlegen beim Ranking very little academic research has been done on them. Furthermore, due to rapid advance in 17 Henning Meyerhenke, technology Institut and für web Theoretische proliferation, Informatik creating a web search engine today is very different from three Beruhte auf years Algorithmus ago. This paper provides und an in-depth schneller description of Berechnung our large-scale web search engine -- the Algorithmische Methoden first such zur detailed Netzwerkanalyse public description we know of to date. Apart from the problems of scaling PageRank
18 Ideen hinter PageRank Bewertung von Webseiten anhand der Link-Struktur Je mehr Links auf eine Seite verweisen, desto wichtiger ist sie Ähnlich wie bei EV-Zentralität: Je wichtiger eine Seite ist, desto wichtiger ist ihr Verweis auf eine andere Seite 18 Henning Meyerhenke, Institut für Theoretische Informatik PageRank
19 Modell des Zufallssurfers Surfer bewegt sich zufällig im Webgraphen Er folgt dabei den ausgehenden Kanten mit gleicher Wahrscheinlichkeit (Klick auf Link) Außerdem kann man eine Seite verlassen, indem man sich wegteleportiert (eine neue URL im Browser eingibt) PageRank ist stationärer Zustand eines stochastischen Prozesses 19 Henning Meyerhenke, Institut für Theoretische Informatik PageRank
20 Die Mathematik hinter PageRank Zumindest ein wenig davon... Siehe Tafel! Verbindung zur ergibt sich aus der Umformung direkt, nur die Matrix ist eine andere! 20 Henning Meyerhenke, Institut für Theoretische Informatik PageRank
21 Zwischenfazit Mit entsprechender Hardware und Know-how kann man PageRank auch für große Graphen in akzeptabler Zeit berechnen Interessantes Maß, reichhaltige mathematische Analyse, in der Praxis nur ein Maß unter vielen Alternativer Algorithmus: Hubs and Authorities von Jon Kleinberg Netzwerkanalyse und das Engineering paralleler Algorithmen können einen reich machen 21 Henning Meyerhenke, Institut für Theoretische Informatik PageRank
Algorithmische Methoden zur Netzwerkanalyse
Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische
16. November 2011 Zentralitätsmaße. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 87
16. November 2011 Zentralitätsmaße H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 87 Darstellung in spektraler Form Zentralität genügt Ax = κ 1 x (Herleitung s. Tafel), daher ist x der Eigenvektor
Algorithmische Methoden zur Netzwerkanalyse
Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische
9. November ZHK in dynamischen Graphen Zentralitäten. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 67
9. November 2011 ZHK in dynamischen Graphen Zentralitäten H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 67 ZHK in dynamischen Graphen Ungerichteter schlichter dynamischer Graph Dynamisch:
Algorithmische Methoden zur Netzwerkanalyse
Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische
Algorithmische Methoden zur Netzwerkanalyse
Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische
Graphenalgorithmen und lineare Algebra Hand in Hand Prof. Dr. Henning Meyerhenke
Graphenalgorithmen und lineare Algebra Hand in Hand Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische
2. November Gradfolgen Zusammenhang Kürzeste Wege. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37
2. November 2011 Gradfolgen Zusammenhang Kürzeste Wege H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37 Satz von Erdős und Gallai Eine Partition einer natürlichen Zahl ist genau dann die Gradfolge
Algorithmische Methoden zur Netzwerkanalyse
Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Die Forschungsuniversität Meyerhenke, in der Institut für Theoretische Informatik
Algorithmische Methoden zur Netzwerkanalyse
Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische
Algorithmische Methoden zur Netzwerkanalyse Vorlesung 8, Henning Meyerhenke
Algorithmische Methoden zur Netzwerkanalyse Vorlesung 8, 07.12.2011 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum
Algorithmische Methoden zur Netzwerkanalyse
Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische
Algorithmische Methoden zur Netzwerkanalyse
Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Die Forschungsuniversität Meyerhenke, in der Institut für Theoretische Informatik
Hyperlink Induced Topic Search- HITS. Ying Ren Universität Heidelberg, Seminar Infomation Retrieval
Hyperlink Induced Topic Search- HITS Hyperlink-basiertes Ranking Ying Ren 25.01.2010 Universität Heidelberg, Seminar Infomation Retrieval Grundgedanken zum Link-basierten Rankingverfahren
Thema 8: Verbesserte Suchstrategien im WWW. Bearbeiter: Robert Barsch Betreuer: Dr. Oliver Ernst
Thema 8: Verbesserte Suchstrategien im WWW Bearbeiter: Robert Barsch Betreuer: Dr. Oliver Ernst Inhaltsverzeichnis 1. Einleitung 2. Grundlagen 3. Google PageRank Algorithmus 4. IBM Clever HITS Algorithmus
Algorithmische Methoden zur Netzwerkanalyse
Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische
Die Mathematik hinter Google
Die Mathematik hinter Google Informationstag für Gymnasiastinnen und Gymnasiasten Universität Fribourg (Schweiz) [email protected] Fribourg, 24. November 2010 [email protected] Die Mathematik
Die Mathematik hinter Google
Die Mathematik hinter Google Wolfram Decker TU Kaiserslautern Neustadt, 5. Dezember 05 Elemente einer Suchmaschine WWW Crawler Module Page Repository User query independent Indexing Module 000 000 000
Algorithmische Methoden zur Netzwerkanalyse Vorlesung 11, Henning Meyerhenke
Algorithmische Methoden zur Netzwerkanalyse Vorlesung 11, 18.01.2012 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum
Kombinatorische Optimierung
Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 16 Programm: Einführung
die Relevanz von Webseiten bestimmt Alexander Pohl
Wie die Relevanz von Webseiten bestimmt Alexander Pohl Gliederung 1. Einleitung 2. Das Web als Graph 3. Das Random Surfer Modell 4. Gleichgewicht im Random Surfer Modell (?) 5. Vervollständigung des Modells:
Ranking Functions im Web: PageRank & HITS
im Web: PageRank & HITS 28. Januar 2013 Universität Heidelberg Institut für Computerlinguistik Information Retrieval 4 / 30 Idee PageRank Entstehung: Larry Page & Sergey Brin, 1998, genutzt von Google
Das Prinzip der Suchmaschine Google TM
/9 Das Prinzip der Suchmaschine Google TM Numerische Mathematik WS 20/2 Basieren auf dem Paper The $25,000,000,000 Eigenvector: The Linear Algebra behind Google von Kurt Bryan und Tanya Leise (SIAM Review,
Algorithmische Methoden für schwere Optimierungsprobleme
Algorithmische Methoden für schwere Optimierungsprobleme Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund
Algorithmische Methoden für schwere Optimierungsprobleme
Algorithmische Methoden für schwere Optimierungsprobleme Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Die Forschungsuniversität Meyerhenke, in der Institut für Theoretische
Diskrete Modellierung
Diskrete Modellierung Wintersemester 2013/14 Prof. Dr. Isolde Adler Letzte Vorlesung: Korrespondenz zwischen der Page-Rank-Eigenschaft und Eigenvektoren zum Eigenwert 1 der Page-Rank-Matrix Markov-Ketten
Theoretische Überlegungen zur Ausbreitung von Infektionserregern auf Kontaktnetzen. Hartmut Lentz, Maria Kasper, Ansgar Aschfalk und Thomas Selhorst
Theoretische Überlegungen zur Ausbreitung von Infektionserregern auf Kontaktnetzen Hartmut Lentz, Maria Kasper, Ansgar Aschfalk und Thomas Selhorst Netzwerke / Graphen verschiedene Typen von Graphen: einfache
Vorlesung Big Data Analytics in Theorie und Praxis Theorieteil
Vorlesung Big Data Analytics in Theorie und Praxis Theorieteil Prof. Dr. Nicole Schweikardt Lehrstuhl Logik in der Informatik Institut für Informatik Humboldt-Universität zu Berlin Kapitel 1: PageRank:
Das Pagerank-Verfahren (und Markovketten) 16. Dezember 2013
Das Pagerank-Verfahren (und Markovketten) 16. Dezember 2013 Gegeben: Eine Sammlung von N Web-Seiten, die (teilweise) { untereinander verlinkt sind. 1 wenn Seite i auf Seite j verweist Sei L ij = 0 sonst
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Prof. Martin Lercher Institut für Informatik Heinrich-Heine-Universität Düsseldorf Teil 9 Graphen Version vom 13. Dezember 2016 1 / 1 Vorlesung Fortsetzung 13. Dezember
Kombinatorische Optimierung
Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 3 Programm des
8. Übung Algorithmen I
INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Grundlagen
Eigenwerte und Netzwerkanalyse. Page Rank
A Google versucht die Bedeutung von Webseiten mithilfe des sogenannten zu ermitteln. Der einer Seite basiert ausschließlich auf der Verweisstruktur des Webs. Der Inhalt einer Seite hat dagegen keinen direkten
10. Übung Algorithmen I
INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Bäume
5 Suchmaschinen Page Rank. Page Rank. Information Retrieval und Text Mining FH Bonn-Rhein-Sieg, SS Suchmaschinen Page Rank
Page Rank Google versucht die Bedeutung von Seiten durch den sogenannten Page Rank zu ermitteln. A C Page Rank basiert auf der Verweisstruktur des Webs. Das Web wird als großer gerichteter Graph betrachtet.
Algorithmische Methoden für schwere Optimierungsprobleme
Algorithmische Methoden für schwere Optimierungsprobleme Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund
15. Elementare Graphalgorithmen
Graphen sind eine der wichtigste Modellierungskonzepte der Informatik Graphalgorithmen bilden die Grundlage vieler Algorithmen in der Praxis Zunächst kurze Wiederholung von Graphen. Dann Darstellungen
Fortgeschrittene Netzwerk- und Graph-Algorithmen
Fortgeschrittene Netzwerk- und Graph-Algorithmen Dr. Hanjo Täubig Lehrstuhl für Eziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester 2007/08
Wie Google Webseiten bewertet. François Bry
Wie Google Webseiten bewertet François Bry Heu6ge Vorlesung 1. Einleitung 2. Graphen und Matrizen 3. Erste Idee: Ranking als Eigenvektor 4. Fragen: Exisi6ert der Eigenvektor? Usw. 5. Zweite Idee: Die Google
23. November Betweenness Centrality Closeness Centrality. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108
23. November 2011 Betweenness Centrality Closeness Centrality H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108 Betweenness Centrality Grundlegende Idee: Ein Knoten ist wichtig, wenn er auf
Algorithmische Methoden zur Netzwerkanalyse Vorlesung 13, Henning Meyerhenke
Algorithmische Methoden zur Netzwerkanalyse Vorlesung 13, 01.02.2012 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum
Ranking am Beispiel von Google (1998):
Ranking am Beispiel von Google (1998): So heute (lange) nicht mehr, aber wenigstens konkret, wie es prinzipiell gehen kann. Und Grundschema bleibt dasselbe. Zwei Komponenten (genaue Kombination unbekannt):
Algorithmische Methoden zur Netzwerkanalyse Vorlesung 12, Henning Meyerhenke
Algorithmische Methoden zur Netzwerkanalyse Vorlesung 12, 25.01.2012 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum
Algorithmische Methoden für schwere Optimierungsprobleme
Algorithmische Methoden für schwere Optimierungsprobleme Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund
Vorlesungstermin 2: Graphentheorie II. Markus Püschel David Steurer. Algorithmen und Datenstrukturen, Herbstsemester 2018, ETH Zürich
Vorlesungstermin 2: Graphentheorie II Markus Püschel David Steurer Algorithmen und Datenstrukturen, Herbstsemester 2018, ETH Zürich Wiederholung: Vollständige Induktion Ziel: zeige n N. A(n) für eine Aussage
Algorithmische Methoden zur Netzwerkanalyse Vorlesung 7, 30.11.2011 Henning Meyerhenke
Algorithmische Methoden zur Netzwerkanalyse Vorlesung 7, 30.11.2011 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum
Algorithmen und Datenstrukturen 2-1. Seminar -
Algorithmen und Datenstrukturen 2-1. Seminar - Dominic Rose Bioinformatics Group, University of Leipzig Sommersemster 2010 Outline 1. Übungsserie: 3 Aufgaben, insgesamt 30 28 Punkte A1 Spannbäume (10 8
7. Vorlesung. Bipartite Kerne Das kopierende Modell Bow-tie Struktur des Web Random Sampling von Web Seiten
7. Vorlesung Bipartite Kerne Das kopierende Modell Bow-tie Struktur des Web Random Sampling von Web Seiten Seite 179 Web als ein Soziales Netzwerk Small-world Netzwerk: Niedriger (Durchschnitts) Durchmesser
Seien u, v V, u v. Da G zusammenhängend ist, muss mindestens ein Pfad zwischen u und v existieren.
Beweis: 1. 2. Seien u, v V, u v. Da G zusammenhängend ist, muss mindestens ein Pfad zwischen u und v existieren. Widerspruchsannahme: Es gibt zwei verschiedene Pfade zwischen u und v. Dann gibt es einen
Ein Index zur Berechnung von Zentralität in Koautornetzwerken
Ein Index zur Berechnung von Zentralität in Koautornetzwerken Thomas Metz Universität Freiburg Seminar für Wissenschaftliche Politik 13. Dezember 2012 Zusammenfassung Bei der Analyse von Koautornetzwerken
8. Vorlesung, 5. April Numerische Methoden I. Eigenwerte und Eigenvektoren
8. Vorlesung, 5. April 2017 170 004 Numerische Methoden I Eigenwerte und Eigenvektoren 1 Eigenwerte und Eigenvektoren Gegeben ist eine n n-matrix A. Gesucht sind ein vom Nullvektor verschiedener Vektor
ADS: Algorithmen und Datenstrukturen 2
ADS: Algorithmen und Datenstrukturen 2 Teil 4 Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität
Graphenalgorithmen und lineare Algebra Hand in Hand Vorlesung für den Bereich Master Informatik
Vorlesung für den Bereich Master Informatik Dozent: Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg
Vorlesung 4 BETWEENNESS CENTRALITY
Vorlesung 4 BETWEENNESS CENTRALITY 101 Aufgabe! Szenario: Sie arbeiten bei einem sozialen Online-Netzwerk. Aus der Netzwerk-Struktur Ihrer Benutzer sollen Sie wichtige Eigenschaften extrahieren. [http://www.fahrschule-vatterodt.de/
Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Übersicht: Graphen. Definition: Ungerichteter Graph. Definition: Ungerichteter Graph
Programm heute Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 07 Dr. Stefanie Demirci Computer Aided Medical Procedures Technische Universität München 7 Fortgeschrittene Datenstrukturen Graphen
Algorithmische Methoden zur Netzwerkanalyse Vorlesung für den Bereich Master Informatik
Algorithmische Methoden zur Netzwerkanalyse Vorlesung für den Bereich Master Informatik Dozent: Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR
Algorithmische Graphentheorie
Algorithmische Graphentheorie Vorlesung 3: Einführung in die Graphentheorie - Teil 3 Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca [email protected] 2. März 2018 1/72 ZUSAMMENHANG
Algorithmische Methoden zur Netzwerkanalyse
Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische
Kombinatorische Optimierung
Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 4 Programm des
Motivation Kap. 6: Graphen
Motivation Kap. 6: Graphen Warum soll ich heute hier bleiben? Graphen sind wichtig und machen Spaß! Professor Dr. Lehrstuhl für Algorithm Engineering, LS Fakultät für Informatik, TU Dortmund Was gibt es
Algorithmische Methoden der Netzwerkanalyse
Algorithmische Methoden der Netzwerkanalyse Marco Gaertler 9. Dezember, 2008 1/ 15 Abstandszentralitäten 2/ 15 Distanzsummen auf Bäumen Lemma Sei T = (V, E) ein ungerichteter Baum und T s = (V S, E s )
Vorlesung 2 KÜRZESTE WEGE
Vorlesung 2 KÜRZESTE WEGE 34 Kürzeste Wege im Graphen Motivation! Heute:! Kürzeste Wege von einem Knoten (SSSP)! Kürzeste Wege zwischen allen Knotenpaaren (APSP)! Viele Anwendungen:! Navigationssysteme!
Berechnung von Abständen
3. Kreis- und Wegeprobleme Abstände in Graphen Abstände in Graphen Definition 3.4. Es sei G = (V, E) ein Graph. Der Abstand d(v, w) zweier Knoten v, w V ist die minimale Länge eines Weges von v nach w.
1 Datenstrukturen Datenstrukturen und Algorithmen
1 Datenstrukturen 1.1 Abstrakte Datentypen 1.2 Lineare Strukturen 1.3 Bäume 1.4 Prioritätsschlangen 1.5 Graphen 1 1.5 Graphen Darstellung allgemeiner Beziehungen zwischen Objekten/Elementen Objekte = Knoten:
Graphenalgorithmen und lineare Algebra Hand in Hand Vorlesung für den Bereich Diplom/Master Informatik
Vorlesung für den Bereich Diplom/Master Informatik Dozent: Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes
51 Numerische Berechnung von Eigenwerten und Eigenvektoren
5 Numerische Berechnung von Eigenwerten und Eigenvektoren 5. Motivation Die Berechnung der Eigenwerte einer Matrix A IR n n als Lösungen der charakteristischen Gleichung (vgl. Kapitel 45) ist für n 5 unpraktikabel,
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Prof. Martin Lercher Institut für Informatik Heinrich-Heine-Universität Düsseldorf Teil 10 Suche in Graphen Version vom 13. Dezember 2016 1 / 2 Vorlesung 2016 / 2017 2 /
Gambler s Ruin. B ist die Bank ) 4/40
Gambler s Ruin Zwei Spieler A und B spielen ein Spiel um m Franken. Spieler A hat a Franken, Spieler B hat b = m a Franken. In jeder Runde wird um 1 Franken gespielt. A gewinnt eine Runde mit W keit p,
2. Repräsentationen von Graphen in Computern
2. Repräsentationen von Graphen in Computern Kapitelinhalt 2. Repräsentationen von Graphen in Computern Matrizen- und Listendarstellung von Graphen Berechnung der Anzahl der verschiedenen Kantenzüge zwischen
DisMod-Repetitorium Tag 3
DisMod-Repetitorium Tag 3 Markov-Ketten 21. März 2018 1 Markov-Ketten Was ist eine Markov-Kette? Was gehört alles dazu? Darstellung als Graph und als Matrix Stationäre Verteilung und Grenzverteilung Ergodizität
Google s PageRank. Eine Anwendung von Matrizen und Markovketten. Vortrag im Rahmen der Lehrerfortbildung an der TU Clausthal 23.
Google s PageRank Eine Anwendung von Matrizen und Markovketten Vortrag im Rahmen der Lehrerfortbildung an der TU Clausthal 23. September 2009 Dr. Werner Sandmann Institut für Mathematik Technische Universität
Algorithmische Methoden zur Netzwerkanalyse
Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Skript zur Vorlesung Version v0.5.3 20. Juli 2017 Vorwort Dieses Skript basiert im Wesentlichen auf der Vorlesung Algorithmische
