Klausur Algorithmen und Datenstrukturen
|
|
|
- Oskar Hermann
- vor 6 Jahren
- Abrufe
Transkript
1 Technische Universität Braunschweig Wintersemester 2017/2018 Institut für Betriebssysteme und Rechnerverbund Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Christian Rieck Arne Schmidt Klausur Algorithmen und Datenstrukturen Name: Vorname: Matr.-Nr.: Studiengang: Bachelor Master Andere Mit der Veröffentlichung meines Klausurergebnisses unter meiner Matrikelnummer bin ich einverstanden Unterschrift Hinweise: Bitte das Deckblatt in Druckschrift vollständig ausfüllen. Die Klausur besteht aus 13 Blättern, bitte auf Vollständigkeit überprüfen. Erlaubte Hilfsmittel: Keine. Eigenes Papier ist nicht erlaubt. Die Rückseiten der Blätter dürfen beschrieben werden. Die Klausur ist mit 50 % der Punkte bestanden. Antworten die nicht gewertet werden sollen bitte deutlich durchstreichen. Kein Tippex verwenden. Mit Bleistift oder in Rot geschriebene Klausurteile können nicht gewertet werden. Werden mehrere Antworten gegeben, werten wir die mit der geringsten Punktzahl. Sämtliche Algorithmen, Datenstrukturen, Sätze und Begriffe beziehen sich, sofern nicht explizit anders angegeben, auf die in der Vorlesung vorgestellte Variante. Die Bearbeitungszeit für die Klausur beträgt 120 Minuten. Aufgabe Σ Punkte Erreicht Note Seite 1 / 13
2 Aufgabe 1: Graphen ( Punkte a Wende Tiefensuche auf den Graphen G aus Abbildung 1 an; starte dabei mit dem Knoten v 1. Kommen in einem Schritt des Algorithmus mehrere Knoten in Frage, wähle denjenigen mit dem kleinsten Index. Gib die entsprechende Datenstruktur R nach jeder Änderung an und zeichne den gefundenen Tiefensuchbaum. v 11 v 4 v 8 v 7 v 3 v 6 v 5 v 2 v 12 v 9 v10 v 1 Abbildung 1: Der Graph G. Seite 2 / 13
3 v 8 v 3 v 4 v 5 v 7 v 9 v 1 v 2 v 6 Abbildung 2: Der Graph H. b Gegeben sei der Graph aus Abbildung 2. Lösche 4 Kanten aus H, damit der resultierende zusammenhängende Graph eulersch wird. Reicht es weniger als 4 Kanten zu löschen? Begründe deine Antworten! c Gegeben sei der Graph aus Abbildung 2. Füge 2 Kanten in H ein, sodass der resultierende einfache Graph eulersch wird. Reicht es eine einzige Kante hinzuzufügen? Begründe deine Antworten! d Sei I ein Graph mit mindestens 3 Knoten. Zeige oder widerlege: Existiert in I ein Hamiltonkreis, dann gibt es zwischen jedem Paar von Knoten (u, v einen Hamiltonpfad, der in u startet und in v endet. Seite 3 / 13
4 Aufgabe 2: AVL-Bäume ( Punkte a Führe Insert(T 1,18 auf dem AVL-Baum aus. Gib den Baum nach der Einfügeoperation sowie nach Rotationsoperationen an. (Hinweis: Die Einfügeoperation darf in dem angegebenen Baum durchgeführt werden. T b Führe Insert(T 2,29 auf dem AVL-Baum aus. Gib den Baum nach der Einfügeoperation sowie nach Rotationsoperationen an. (Hinweis: Die Einfügeoperation darf in dem angegebenen Baum durchgeführt werden. T Seite 4 / 13
5 c Führe Delete(T 3,3 auf dem AVL-Baum aus. Gib den Baum nach der Löschoperation sowie nach Rotationsoperationen an. T d Zeige per vollständiger Induktion, dass ein AVL-Baum der Höhe h mindestens F h+2 1 Knoten enthält. (Hinweis: F n beschreibt die n-te Fibonacci Zahl mit F 0 = 0 und F 1 = 1 Seite 5 / 13
6 Aufgabe 3: O-Notation ( Punkte a Kreuze an, in welchen Klassen die jeweilige Funktion liegt (ohne Begründung. f(n Ω(n O(n log n O(n 2 Ω(n 3 Θ(n 2 n 2 (log 2 n 2 log 2 (n! 4n + n (n2 + 1(n 2 1 b In welcher Beziehung stehen die folgenden Klassen zueinander? Schreibe in das Feld, wenn Klasse A in Klasse B enthalten ist,, wenn Klasse B in Klasse A enthalten ist, =, wenn die Klassen A und B übereinstimmen und, wenn dies alles nicht zutrifft. Eine Begründung ist nicht notwendig. A Relation B O(3 n O(2 n Θ(log n Θ(log(n 2 Ω(n log n Ω(n 2 ( Θ(n O n log n Ω(n n/2 Ω(n n O(1 O(n 0.01 c Seien f, g, h : N R Funktionen. Zeige oder widerlege: f(n O(g(n g(n Ω(h(n f(n Ω(h(n Seite 6 / 13
7 d Seien f, g : N R Funktionen. Zeige oder widerlege: f(n Θ(g(n g(n Θ(f(n e Betrachte einen Algorithmus, der n Elemente als Input bekommt. Für jedes Paar von Elementen benötigt der Algorithmus eine Laufzeit von 4n 3 9n 2. Es müssen alle Paare abgearbeitet werden. Zeige: Der Algorithmus besitzt eine Laufzeit von Θ(n 5. Seite 7 / 13
8 Aufgabe 4: Rekursionen ( Punkte a Bestimme mit Hilfe des Mastertheorems das asymptotische Wachstum der Rekursion T (n = 16 T n 17. Bestimme die Werte aller im Mastertheorem auftretenden Parameter. b Bestimme mit Hilfe des Mastertheorems das asymptotische Wachstum der Rekursion U(n = log(n + 3 U + 2 U + 14n U Bestimme die Werte aller im Mastertheorem auftretenden Parameter. Seite 8 / 13
9 c Bestimme mit Hilfe des Mastertheorems das asymptotische Wachstum der Rekursion V (n = 7n log(n + 18 V + 13n V 5n Bestimme die Werte aller im Mastertheorem auftretenden Parameter. d Auf welche der folgenden Rekursionen lässt sich das Mastertheorem anwenden? T (n = n T wahr i=2 i falsch T (n = 2T T + n 2 wahr 2 4 falsch T (n = T + 5n wahr 2 falsch T (n = 3n 1 + T wahr 2 falsch Seite 9 / 13
10 Aufgabe 5: Mediane (1+4+5 Punkte a Sei X eine Menge von Zahlen. Wie lautet die Definition eines Rang-k Elements m? b Betrachte die untenstehenden, vorsortierten Fünfergruppen. Markiere den Median der Mediane m und grenze in jeder Gruppe ab, welche Elemente größer bzw. kleiner als m sind. Welche Elemente müssen wir weiterhin betrachten, falls wir nach dem Median der 45 Elemente suchen? Wie viel Prozent machen diese Elemente von allen aus? c Mit dem Median der Mediane von Fünfergruppen können wir immer so pivotisieren, dass wir eine Laufzeit von O(n erhalten, um ein Rang-k Element zu finden. Was passiert mit der Laufzeit, wenn man Dreiergruppen statt Fünfergruppen benutzt? Seite 10 / 13
11 Aufgabe 6: Sortieren (6+3 Punkte a Sortiere das Array aus Abbildung 3 mit dem Algorithmus MergeSort. Gib (separat und in chronologischer Reihenfolge das Array A nach jedem Aufruf von Merge an. Elemente, die nicht zum im jeweiligen Mergeschritt betrachteten Teilarray gehören, müssen nicht angegeben werden. Die Aufrufe von Merge auf einem Teilarray der Länge 1 müssen nicht angegeben werden. Nutze zur Bearbeitung der Aufgabe die in Abbildung 3 gegebene Tabelle. A = A = 2. A = 3. A = 4. A = 5. A = 6. A = 7. A = Abbildung 3: Mergesort im Array A. b Fülle die folgende Tabelle aus.(hinweis: Einträge mit müssen nicht ausgefüllt werden. Laufzeit Best-Case Average-Case Worst-Case Stabil? Bubblesort Mergesort Quicksort Seite 11 / 13
12 Aufgabe 7: Algorithmenentwurf Betrachte einen Graphen G = (V, E. (6+4 Punkte a Schreibe einen Algorithmus in Pseudocode, der in O( V Zeit überprüft, ob der Graph ein Baum ist. Gib außerdem in wenigen Worten wieder, was dein Algorithmus tut. (Hinweis: Es darf angenommen werden, dass der Graph als Adjazenzliste vorliegt. Algorithmen aus der Vorlesung dürfen verwendet werden. b Beweise, dass dein Algorithmus die Laufzeit O( V besitzt. Seite 12 / 13
13 Aufgabe 8: Kurzfragen ( Punkte Kreuze an, welche Aussagen korrekt sind. Es gibt nur Punkte für vollständig korrekt angekreuzte Teilaufgaben. (Hinweis: In jeder Teilaufgabe ist immer mindestens eine Aussage korrekt. a Ein zusammenhängender Graph besitzt einen Hamiltonkreis, wenn jeder Knoten den Grad... 2 besitzt. 3 besitzt. n 1 besitzt. b Welche Aussagen zu binären Suchbäumen der Höhe h mit n Knoten sind korrekt? Einfügen dauert im Worst-Case O(log n. Es gibt höchstens n+1 Blätter. 2 Es gilt h log 2 (n. c Die Codierungsgröße einer Adjazenzmatrix eines Graphen mit n Knoten und m Kanten ist immer... O(m log n. O(n. O(n 2. d Welche Laufzeitschranken sind korrekt? Vergleichsbasiertes Sortieren: Ω(n log n Suchen des k-ten Elements: O(n Graphen-Scan Algorithmus: O(n + m. e Ein zusammenhängender Graph G mit n Knoten besitzt eine Eulertour, wenn G... ein vollständiger Graph ist. nur Knoten mit geradem Grad besitzt. 12n 6 Kanten besitzt. Viel Erfolg Seite 13 / 13
Klausur Algorithmen und Datenstrukturen
Technische Universität Braunschweig Sommersemester 2018 Institut für Betriebssysteme und Rechnerverbund Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Christian Rieck Arne Schmidt Klausur Algorithmen
Klausur Algorithmen und Datenstrukturen
Technische Universität Braunschweig Wintersemester 2016/2017 Institut für Betriebssysteme und Rechnerverbund Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Phillip Keldenich Arne Schmidt Klausur Algorithmen
Klausur Algorithmen und Datenstrukturen
Technische Universität Braunschweig Wintersemester 2014/2015 Institut für Betriebssysteme und Rechnerverbund Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Dr. Christian Scheffer Klausur Algorithmen
Klausur Algorithmen und Datenstrukturen
Technische Universität Braunschweig Wintersemester 2013/2014 Institut für Betriebssysteme und Rechnerverbund Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Stephan Friedrichs Klausur Algorithmen und
Klausur Algorithmen und Datenstrukturen
Technische Universität Braunschweig Sommersemester 2013 IBR - Abteilung Algorithmik Prof. Dr. Sándor Fekete Dr. Christiane Schmidt Stephan Friedrichs Klausur Algorithmen und Datenstrukturen 22.08.2013
Name:... Vorname:... Matr.-Nr.:... Studiengang:...
Technische Universität Braunschweig Sommersemester 2011 IBR - Abteilung Algorithmik Prof. Dr. Sándor Fekete Christiane Schmidt Klausur Algorithmen und Datenstrukturen 01.09.2011 Name:.....................................
Klausur Algorithmen und Datenstrukturen
Technische Universität Braunschweig Wintersemester 2008/2009 IBR - Abteilung Algorithmik Prof. Dr. Sándor Fekete Tom Kamphans Nils Schweer Klausur Algorithmen und Datenstrukturen 23.02.2009 Name:.....................................
Klausur Algorithmen und Datenstrukturen II
Technische Universität Braunschweig Sommersemester 2017 Institut für Betriebssysteme und Rechnerverbund Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Arne Schmidt Klausur Algorithmen und Datenstrukturen
Klausur Algorithmen und Datenstrukturen II 01. Agust 2016
Technische Universität Braunschweig Sommersemester 2016 Institut für Betriebssysteme und Rechnerverbund Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Dr. Christian Scheffer Klausur Algorithmen und Datenstrukturen
2. Klausur Datenstrukturen und Algorithmen SS 2014
Prof. aa Dr. E. Ábrahám F. Corzilius, S. Schupp, T. Ströder 2. Klausur Datenstrukturen und Algorithmen SS 2014 Vorname: Nachname: Studiengang (bitte genau einen markieren): Informatik Bachelor Informatik
Klausur Algorithmen und Datenstrukturen II 10. August 2015
Technische Universität Braunschweig Sommersemester 2015 Institut für Betriebssysteme und Rechnerverbund Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Dr. Christian Scheffer Klausur Algorithmen und Datenstrukturen
Klausur Algorithmen und Datenstrukturen II 29. Juli 2013
Technische Universität Braunschweig Sommersemester 2013 Institut für Betriebssysteme und Rechnerverbund Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Stephan Friedrichs Klausur Algorithmen und Datenstrukturen
Name:... Vorname:... Matr.-Nr.:... Studiengang:...
Technische Universität Braunschweig Sommersemester 2013 IBR - Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Dr. Christiane Schmidt Stephan Friedrichs Klausur Netzwerkalgorithmen 16.07.2013 Name:.....................................
Präsenzübung Datenstrukturen und Algorithmen SS 2014
Prof. aa Dr. E. Ábrahám F. Corzilius, S. Schupp, T. Ströder Präsenzübung Datenstrukturen und Algorithmen SS 2014 Vorname: Nachname: Studiengang (bitte genau einen markieren): Informatik Bachelor Informatik
NAME, VORNAME: Studiennummer: Matrikel:
TU Ilmenau, Fakultat IA Institut für Theoretische Informatik FG Komplexitätstheorie und Effiziente Algorithmen Prof. Dr. (USA) M. Dietzfelbinger Klausur Algorithmen und Datenstrukturen SS08, Ing.-Inf.
Algorithmen und Datenstrukturen
Universität Innsbruck Institut für Informatik Zweite Prüfung 16. Oktober 2008 Algorithmen und Datenstrukturen Name: Matrikelnr: Die Prüfung besteht aus 8 Aufgaben. Die verfügbaren Punkte für jede Aufgabe
f 1 (n) = log(n) + n 2 n 5 f 2 (n) = n 3 + n 2 f 3 (n) = log(n 2 ) f 4 (n) = n n f 5 (n) = (log(n)) 2
Prof. aa Dr. E. Ábrahám Datenstrukturen und Algorithmen SS Lösung - Präsenzübung.05.0 F. Corzilius, S. Schupp, T. Ströder Aufgabe (Asymptotische Komplexität): (6 + 0 + 6 = Punkte) a) Geben Sie eine formale
Klausur Algorithmen und Datenstrukturen SS August Arbeitszeit 90 min
TU Ilmenau, Fakultät für Informatik und Automatisierung FG Komplexitätstheorie und Effiziente Algorithmen Univ.-Prof. Dr. M. Dietzfelbinger, Dipl.-Ing. C. Mattern Klausur Algorithmen und Datenstrukturen
Datenstrukturen (SoSe 12) Klausur (Modulabschlussprüfung)
Goethe-Universität Frankfurt am Main 27. Juli 2012 Institut für Informatik Theorie komplexer Systeme Dr. Mariano Zelke Datenstrukturen (SoSe 12) Klausur (Modulabschlussprüfung) Name: Vorname: Studiengang:
Datenstrukturen und Algorithmen 2. Klausur SS 2001
UNIVERSITÄT PADERBORN FACHBEREICH 7 (MATHEMATIK INFORMATIK) Datenstrukturen und Algorithmen 2. Klausur SS 200 Lösungsansätze Dienstag, 8. September 200 Name, Vorname:...................................................
Algorithmen und Datenstrukturen Übung #4 BFS/DFS, Wachstum von Funktionen
Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Algorithmen und Datenstrukturen Übung #4 BFS/DFS, Wachstum von Funktionen Christian Rieck, Arne Schmidt 22.11.2018 Heute 12 Breiten-
2. Präsenzübung Datenstrukturen und Algorithmen SS 2014
Prof. aa Dr. E. Ábrahám F. orzilius, S. Schupp, T. Ströder 2. Präsenzübung Datenstrukturen und lgorithmen SS 2014 Vorname: Nachname: Studiengang (bitte genau einen markieren): Informatik Bachelor Informatik
Klausur Algorithmentheorie
Prof. Dr. G. Schnitger Frankfurt, den 06.04.2009 Klausur Algorithmentheorie WS 2008/2009 Name: Vorname: Geburtsdatum: Studiengang: BITTE GENAU LESEN Die Klausur besteht aus 4 Aufgaben, in denen maximal
Klausur Algorithmentheorie
Prof. Dr. G. Schnitger Frankfurt, den 13.02.2009 Klausur Algorithmentheorie WS 2008/2009 Name: Vorname: Studiengang: BITTE GENAU LESEN Die Klausur besteht aus 4 Aufgaben, in denen maximal 100 Punkte erreicht
Kapitel 2. Weitere Beispiele Effizienter Algorithmen
Kapitel 2 Weitere Beispiele Effizienter Algorithmen Sequentielle Suche Gegeben: Array a[1..n] Suche in a nach Element x Ohne weitere Zusatzinformationen: Sequentielle Suche a[1] a[2] a[3] Laufzeit: n Schritte
ÜBUNGSKLAUSUR Studienhalbjahr: 2. Semester. Datum: 20. Juli 2016 Bearbeitungszeit: 90 Minuten. Modul: T2INF Dozent: Stephan Schulz
Matrikelnummer: Fakultät Studiengang: Jahrgang / Kurs : Technik Angewandte Informatik 01 B/C/K ÜBUNGSKLAUSUR Studienhalbjahr:. Semester Datum: 0. Juli 01 Bearbeitungszeit: 90 Minuten Modul: TINF100.1 Dozent:
Klausur zur Vorlesung Algorithmen und Datenstrukturen
Klausur zur Vorlesung Algorithmen und Datenstrukturen Die Dauer der Klausur beträgt 120 Minuten. Erlaubte Hilfsmittel: Ein selbst handschriftlich beschriebenes DIN A4 Blatt, das komplette Skript zur Vorlesung
Algorithmen und Datenstrukturen II
Algorithmen und Datenstrukturen II Große Übung #1 Arne Schmidt 19.04.2016 Organisatorisches Arne Schmidt Große Übung 2 Homepage Aktuelle Informationen, Hausaufgaben, Slides auf: https://www.ibr.cs.tu-bs.de/courses/ss17/aud2/
Karlsruher Institut für Technologie. Klausur Algorithmen I
Klausur-ID: Vorname: Matrikelnummer: Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Jörn Müller-Quade 11. April 2018 Klausur Algorithmen I Aufgabe 1. Kleinaufgaben 15 Punkte
Informatik II: Algorithmen & Datenstrukturen. Blättern Sie nicht um bevor Sie dazu aufgefordert werden!
Albert-Ludwigs-Universität Institut für Informatik Prof. Dr. F. Kuhn Informatik II: Algorithmen & Datenstrukturen Montag, 29. August, 2014, 14:00 17:00 Name:...........................................................
Algorithmen 1 Tutorium
Algorithmen 1 Tutorium Tutorium 13 Misch Sadler 18. Juli 2011 INHALT: VIELES Übersicht 1 Dynamische Programmierung 2 Wiederholung 3 Klausuraufgaben 4 Ende Misch Sadler Algo 1 Tut 18. Juli 2011 2/21 Übersicht
1. Klausur Datenstrukturen und Algorithmen SS 2014
Prof. aa Dr. E. Ábrahám F. Corzilius, S. Schupp, T. Ströder 1. Klausur Datenstrukturen und lgorithmen SS 2014 Vorname: Nachname: Studiengang (bitte genau einen markieren): Informatik Bachelor Informatik
Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen
Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 1 für die Übung
Der Rekursionsbaum hat
Prof. aa Dr. E. Ábrahám Datenstrukturen und Algorithmen SS Lösung - Klausur.09.0 F. Corzilius, S. Schupp, T. Ströder Aufgabe (Laufzeitanalyse): a) Beweisen oder widerlegen Sie: log(n) O( n) ( + + + = 9
Klausur Algorithmentheorie
Prof. Dr. G. Schnitger Frankfurt, den 24.02.2011 M. Poloczek Klausur Algorithmentheorie WS 2010/2011 Name: Vorname: Geburtsdatum: Studiengang: BITTE GENAU LESEN Die Klausur besteht aus 4 Aufgaben, in denen
Klausur Algorithmentheorie
Prof. Dr. G. Schnitger Frankfurt, den 07.04.2011 M. Poloczek Klausur Algorithmentheorie WS 2010/2011 Name: Vorname: Geburtsdatum: Studiengang: BITTE GENAU LESEN Die Klausur besteht aus 4 Aufgaben, in denen
Tutoraufgabe 1 (Starke Zusammenhangskomponenten):
für Informatik Prof. aa Dr. Ir. Joost-Pieter Katoen Allgemeine Hinweise: Datenstrukturen und Algorithmen SS1 Übungsblatt (Abgabe 4.0.01) Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder
Algorithmen und Datenstrukturen 1 VU 6.0 Nachtragstest SS Oktober 2014
Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.813 Algorithmen und Datenstrukturen 1 VU 6.0 Nachtragstest SS 2014 22. Oktober
Klausur zur Vorlesung Algorithmen und Datenstrukturen
Klausur zur Vorlesung Algorithmen und Datenstrukturen Die Dauer der Klausur beträgt 120 Minuten. Erlaubte Hilfsmittel: Ein selbst handschriftlich beschriebenes DIN A4 Blatt, das komplette Skript zur Vorlesung
DAP2 Probeklausur. Matrikelnummer Vorname Nachname. Datum: 24. Juli C. Sohler A. Krivo²ija, A. Rey, H. Sandvoÿ
SoSe 2017 C. Sohler A. Krivo²ija, A. Rey, H. Sandvoÿ DAP2 Probeklausur Datum: 2. Juli 2017 Matrikelnummer Vorname Nachname Diese Klausur besteht aus acht Aufgaben mit insgesamt 50 Punkten. Zum Bestehen
Beispielprüfung Datenstrukturen und Algorithmen D-INFK
Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik Peter Widmayer
Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1
Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1 Aufgabe 1. / 16 P Instruktionen: 1) In dieser Aufgabe sollen Sie nur die Ergebnisse angeben. Diese können Sie direkt bei den Aufgaben notieren. 2) Sofern
Übungsblatt 1. f(n) = f(n) = O(g(n)) g(n) = O(f(n)) Zeigen oder widerlegen Sie: 3 n = Θ(2 n ) Aufgabe 1.2 Gegeben sei die folgende Funktion:
Übungsblatt 1 Aufgabe 1.1 Beweisen oder widerlegen Sie, dass für die im Folgenden definierte Funktion f(n) die Beziehung f(n) = Θ(n 4 ) gilt. Beachten Sie, dass zu einem vollständigen Beweis gegebenenfalls
Übungsklausur Algorithmen I
Jun.-Prof. Hofheinz, Jun.-Prof. Meyerhenke (ITI, KIT) 08.06.2015 Übungsklausur Algorithmen I Aufgabe 1. (Algorithm Engineering) Nennen Sie zwei Konzepte, die Algorithm Engineering im Gegensatz zu theoretischer
Vorname:... Matrikel-Nr.:... Unterschrift:...
Fachhochschule Mannheim Hochschule für Technik und Gestaltung Fachbereich Informatik Studiengang Bachelor of Computer Science Klausur Algorithmen und Datenstrukturen Wintersemester 2002 / 2003 Name:...
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Große Übung #1 Christian Rieck, Arne Schmidt 26.10.2017 Organisatorisches Christian Rieck, Arne Schmidt Große Übung 2 Homepage Aktuelle Informationen, Hausaufgaben, Slides
Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1
Stud.-Nummer: Datenstrukturen & Algorithmen Seite Aufgabe. / 6 P Instruktionen: ) In dieser Aufgabe sollen Sie nur die Ergebnisse angeben. Diese können Sie direkt bei den Aufgaben notieren. 2) Sofern Sie
Algorithmen & Komplexität
Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik [email protected] Breitensuche, Tiefensuche Wir besprechen nun zwei grundlegende Verfahren, alle Knoten eines Graphen zu
Kurs 1663 Datenstrukturen" Musterlösungen zur Klausur vom Seite 1. Musterlösungen zur Hauptklausur Kurs 1663 Datenstrukturen 15.
Kurs 1663 Datenstrukturen" Musterlösungen zur Klausur vom 15.08.98 Seite 1 Musterlösungen zur Hauptklausur Kurs 1663 Datenstrukturen 15. August 1998 Kurs 1663 Datenstrukturen" Musterlösungen zur Klausur
Datenstrukturen und Algorithmen (SS 2013) Prof. Dr. Leif Kobbelt Thomas Ströder, Fabian Emmes, Sven Middelberg, Michael Kremer
Präsenzübung Datenstrukturen und Algorithmen (SS 2013) Prof. Dr. Leif Kobbelt Thomas Ströder, Fabian Emmes, Sven Middelberg, Michael Kremer Dienstag, 28. Mai 2013 Nachname: Vorname: Matrikelnummer: Studiengang:
Übungsklausur Algorithmen I
Name: Vorname: Matrikelnr.: Tutorium: Jun.-Prof. Hofheinz, Jun.-Prof. Meyerhenke (ITI, KIT) 08.06.2015 Übungsklausur Algorithmen I Aufgabe 1. (Algorithm Engineering) [2 Punkte] Nennen Sie zwei Konzepte,
Probeklausur Computerorientierte Mathematik II
Technische Universität Berlin SS 2012 Fakultät II, Institut für Mathematik Sekretariat MA 5 1, Frau Klink Prof. Dr. Rolf Möhring Torsten Gellert Jan-Philipp Kappmeier Jens Schulz Catharina Broermann, Christian
Übung Algorithmen und Datenstrukturen
Übung Algorithmen und Datenstrukturen Sommersemester 217 Marc Bux, Humboldt-Universität zu Berlin Agenda 1. Graphen und Bäume 2. Binäre Suchbäume 3. AVL-Bäume 4. Algorithmen und Datenstrukturen 2 Agenda
Datenstrukturen und Algorithmen D-INFK. Musterlösung 1
Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik Peter Widmayer
A Berlin, 10. April 2017
A Berlin, 10. April 2017 Name:... Matr.-Nr.:... Wiederholung der schriftlichen Prüfung zur Vorlesung Diskrete Strukturen (Niedermeier/Molter/Froese, Wintersemester 2016/17) Einlesezeit: 15 Minuten Bearbeitungszeit:
Algorithmen und Datenstrukturen VO 3.0 Vorlesungsprüfung 19. Oktober 2007
Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen 1 186.089 VO 3.0 Vorlesungsprüfung 19. Oktober
Übung Algorithmen und Datenstrukturen
Übung Algorithmen und Datenstrukturen Sommersemester 2017 Marc Bux, Humboldt-Universität zu Berlin Organisatorisches Vorlesung: Montag 11 13 Uhr Ulf Leser RUD 26, 0 115 Mittwoch 11 13 Uhr Ulf Leser RUD
Übung: Algorithmen und Datenstrukturen SS 2007
Übung: Algorithmen und Datenstrukturen SS 2007 Prof. Lengauer Sven Apel, Michael Claÿen, Christoph Zengler, Christof König Blatt 5 Votierung in der Woche vom 04.06.0708.06.07 Aufgabe 12 Manuelle Sortierung
Diskrete Strukturen. Name Vorname Studiengang Matrikelnummer. Hörsaal Reihe Sitzplatz Unterschrift ... Allgemeine Hinweise
Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 7 Prof. Dr. Javier Esparza Wintersemester 2008/09 Abschlussklausur 7. Februar 2009 Diskrete Strukturen Name Vorname Studiengang
Klausur. 18. Juli 2008, 10:15-12:15 Uhr. Name:... Matrikelnummer:... Anzahl beschriebener Blätter (ohne Aufgabenblatt):... D(p) : Y = p x X + p y
GRUNDZÜGE DER ALGORITHMISCHEN GEOMETRIE Klausur 18. Juli 2008, 10:15-12:15 Uhr Name:................................... Matrikelnummer:................................... Anzahl beschriebener Blätter (ohne
Algorithmen und Datenstrukturen 2 VU 3.0 Nachtragstest SS Oktober 2016
Technische Universität Wien Institut für Computergraphik und Algorithmen Algorithms and Complexity Group 186.815 Algorithmen und Datenstrukturen 2 VU 3.0 Nachtragstest SS 2016 5. Oktober 2016 Machen Sie
Algorithmen und Datenstrukturen Klausur WS 2006/07 Software-Engineering und Technische Informatik Bachelor
Klausur WS 2006/07 Software-Engineering und Technische Informatik Bachelor Die Klausur besteht aus 6 Aufgaben und umfasst 60 Punkte. Bitte schreiben Sie die Lösungen auf die Aufgabenblätter. Vergessen
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Große Übung #1 Christian Rieck, Arne Schmidt 25.10.2018 Organisatorisches Christian Rieck, Arne Schmidt Große Übung #1 - AuD 2 Homepage Aktuelle Informationen, Hausaufgaben,
Datenstrukturen und Algorithmen
Datenstrukturen und Algorithmen Jedes Programm verwendet Datenstrukturen und Algorithmen um seine Aufgabe zu erfüllen Diese müssen offenbar zunächst sorgfältig dem speziellen Problem entsprechend ausgewählt
DAP2-Klausur
DAP2-Klausur 09.10.2004 Vorname : Familienname: Ich studiere (Bitte markieren): Informatik (inkl. angewandte Informatik)/ Lehramt Informatik/Informationstechnik/ Physik/Mathe/Statistik/Sonstiges: Bitte
Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie
Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie Dipl-Math. Wolfgang Kinzner 2.4.2012 Kapitel 1: Grundlagen der algorithmischen Graphgentheorie
Algorithmen und Datenstrukturen 1 VL Übungstest WS November 2007
Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 1. Übungstest WS 2007 16. November
Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 9
Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 9 Aufgabe 9.1 (5+ Punkte) Für Graphen mit gewichteten Kanten steht in der Adjazenzmatrix an der Stelle i,j eine 0, falls es keine Kante von i
Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik Institut für Simulation und Graphik Prof. Dr. Holger Theisel
Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik Institut für Simulation und Graphik Prof. Dr. Holger Theisel Magdeburg, 26.07.2011 Klausur Algorithmen und Datenstrukturen Matrikelnummer:
Karlsruher Institut für Technologie Institut für Theoretische Informatik. Klausur Algorithmen I
Vorname: Matrikelnummer: Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Jörn Müller-Quade 4. September 2017 Klausur Algorithmen I Aufgabe 1. Kleinaufgaben 15 Punkte Aufgabe
Grundlagen: Algorithmen und Datenstrukturen
Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Dr. Hanjo Täubig Tobias Lieber Sommersemester 2011 Übungsblatt 5 14. Juni 2011 Grundlagen: Algorithmen und Datenstrukturen
Algorithmen I - Tutorium 28 Nr. 2
Algorithmen I - Tutorium 28 Nr. 2 11.05.2017: Spaß mit Invarianten (die Zweite), Rekurrenzen / Mastertheorem und Merging Marc Leinweber [email protected] INSTITUT FÜR THEORETISCHE INFORMATIK
Klausur Informatik 2: Algorithmen und Datenstrukturen. Blättern Sie nicht um bevor Sie dazu aufgefordert werden!
Albert-Ludwigs-Universität Institut für Informatik Prof. Dr. F. Kuhn Klausur Informatik 2: Algorithmen und Datenstrukturen Donnerstag, 9. März 21, 2017, 9:00 bis 12.00 Uhr Name:.....................................................................
2. Schriftliche Leistungskontrolle (EK)
TheGI 2: Berechenbarkeit und Komplexität Prof. Dr.-Ing. Uwe Nestmann - 13. Juli 2010 2. Schriftliche Leistungskontrolle EK Punktzahl In dieser schriftlichen Leistungskontrolle sind 100 Punkte erreichbar.
lim log 2n n = > 0 Da es einen Limes gibt, gibt es auch einen Limes inferior, der gleich diesem Limes ist.
Prof. aa Dr. Ir. Joost-Pieter Katoen Christian Dehnert, Jonathan Heinen, Thomas Ströder, Sabrina von Styp Aufgabe 1 (O-Notation): Beweisen oder widerlegen Sie die folgenden Aussagen: (3 + 3 + 4 = 10 Punkte)
Informatik B Sommersemester Musterlösung zur Klausur am
Informatik B Sommersemester 01 Musterlösung zur Klausur am 1.0.01 Leider wurde der Hinweis, dass alle Lösungen kurz (stichpunktartig), aber inhaltlich ausreichend zu kommentieren sind, nicht immer beachtet.
Übungsblatt 2 - Lösung
Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 2 - Lösung Vorlesung Algorithmentechnik im WS 08/09 Ausgabe 04. November 2008 Abgabe 8. November, 5:0 Uhr (im Kasten vor Zimmer
Prüfung Datenstrukturen und Algorithmen, D-INFK. Datenstrukturen & Algorithmen
Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik Peter Widmayer
Übung Algorithmen und Datenstrukturen
Übung Algorithmen und Datenstrukturen Sommersemester 2016 Patrick Schäfer, Humboldt-Universität zu Berlin Organisation Vorlesung: Montag 11 13 Uhr Marius Kloft RUD 26, 0 115 Mittwoch 11 13 Uhr Marius Kloft
Heapsort / 1 A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]
Heapsort / 1 Heap: Ein Array heißt Heap, falls A [i] A [2i] und A[i] A [2i + 1] (für 2i n bzw. 2i + 1 n) gilt. Beispiel: A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] Heapsort / 2 Darstellung eines Heaps als
Vorlesung Datenstrukturen
Vorlesung Datenstrukturen Weitere Grundlagen Maike Buchin 20.4.2017 Wiederholung wir interessieren uns für effizienten Algorithmen und Datenstrukturen Laufzeiten messen wir asymptotisch in der Oh-Notation
Klausur. Diskrete Mathematik I. Donnerstag, den um 14 Uhr
, Klausur Diskrete Mathematik I Donnerstag, den 29.02.2008 um 14 Uhr Aufgabenblätter Füllen Sie das Deckblattvollständigaus. Prüfen Sie, ob die Klausur 8 Aufgaben enthält.. Kennzeichnen Sie alle verwendeten
