Algorithmen und Datenstrukturen II
|
|
|
- Johann Pohl
- vor 7 Jahren
- Abrufe
Transkript
1 Algorithmen und Datenstrukturen II Große Übung #1 Arne Schmidt
2 Organisatorisches Arne Schmidt Große Übung 2
3 Homepage Aktuelle Informationen, Hausaufgaben, Slides auf: Arne Schmidt Große Übung 3
4 Anmeldung Anmeldung bis Freitag 23:59 Uhr. Einteilung der Gruppen: Vorraussichtlich im Laufe des Samstag. Arne Schmidt Große Übung 4
5 Semesterplan Vorlesung (Do.) Gr. Übung (Mi.) Semesterplan AuD II SS17 Kl. Übung HA Ausgabe (Mo./Mi./Fr.) (Mo.) HA Abgabe (Mo. bis 13:15 Uhr) HA Rückgabe (in kl UE) Woche HA0*, HA HA HA2 HA1** HA HA3 HA2 21 Christi Himmelfahrt 3 HA HA4 HA3 23 Exkursionswoche HA HA5 HA HA HA HA5 *: Mündliche Aufgaben, Bearbeitung in ersten kleinen Übungen; keine Bewertung **: Da der ein Feiertag ist, findet die Abgabe des ersten Blattes am statt. Arne Schmidt Große Übung 5
6 Hausaufgaben 6 Blätter 1 unbewertet 5 bewertet 45 Punkte pro Blatt, davon maximal 30 erreichbar Es gibt: zwei Theorieaufgaben, eine Programmieraufgabe (Java) Maximal 2 von 3 Aufgaben abgeben Studienleistung: mind. 75 Punkte Studienleistung ist keine Vorraussetzung, um an der Prüfung teilzunehmen Zusammen arbeiten, aber: einzeln aufschreiben und abgeben Nicht in Bleistift Nicht in Rot Arne Schmidt Große Übung 6
7 Klausur Findet statt am , zwischen 8:00 und 11:00 Uhr. Nähere Informationen dazu erfolgen gegen Ende des Semesters über die Mailingliste (und über die Webseite). Arne Schmidt Große Übung 7
8 Mailingliste Anmeldung über Homepage. Informationen zur Vorlesung/Übung/Klausur Bietet Möglichkeit Fragen zu stellen. Hiwis können über die Mailingliste erreicht werden. Arne Schmidt Große Übung 8
9 Fragen! Stellt Eure Fragen: über die Mailingliste in: Vorlesung, Gr. Übung, Kl. Übungen Euren Tutoren Sprechstunde von Arne Schmidt nach Vereinbarung Sprechstunde von Prof. Sándor Fekete (Mi. 13:15-14:00 Uhr) Arne Schmidt Große Übung 9
10 Fragen? Arne Schmidt Große Übung 10
11 Previously on AuD I Arne Schmidt Große Übung 11
12 Problem Allgemeine Fragestellung. Meistens formuliert mit: Eingabe: Was ist gegeben? Ausgabe: Was ist gesucht? Lösung eines Problems: Angabe eines Algorithmus. Arne Schmidt Große Übung 12
13 Instanz Eine Problemstellung mit konkreter Eingabe. Lösung einer Instanz: Angabe einer konkreten Ausgabe. Arne Schmidt Große Übung 13
14 Beispiel - Klausurproblem Gegeben: Maximale Zeit T, Zu erreichende Punkte P, Aufgaben A i = (t i, p i ) Gesucht: Menge S von A i s mit: und t i T i S p i P i S Lösung:?? Das seht ihr in der Vorlesung! Arne Schmidt Große Übung 14
15 Beispiel - Klausurinstanz Gegeben: Maximale Zeit 120, zu erreichende Punkte 44, Aufgaben A i : i t i p i Gesucht: Menge S von A i s mit: t i 120 und i S p i 44 i S Lösung: S = {6, 4, 13, 12, 9, 3, 16} (siehe VL) Arne Schmidt Große Übung 15
16 Laufzeiten / Komplexität Meistens ist die absolute Laufzeit eines Algorithmus weniger interessant. Wichtig ist die asympotische Laufzeit. Beispielsweise kann man 25n n log n 8n nach oben und unten abschätzen mit 17n 2 25n n log n 8n 37n 2 Da Konstanten für asympotisches Wachstum uninteressant sind, sagt man Die Funktion liegt in Θ(n 2 ) : 25n n log n 8n Θ(n 2 ) Arne Schmidt Große Übung 16
17 Laufzeiten / Komplexität Manchmal finden sich nur Abschätzungen nach oben bzw. nach unten. Dann ist zum Beispiel und 25n n log n 8n O(n 2 ) 25n n log n 8n Ω(n 2 ) Diese beiden Notationen werden verwendet, um auszudrücken: Eine Funktion f (n) braucht maximal c g(n) lange (sprich f (n) O(g(n))). Eine Funktion f (n) braucht mindestens c g(n) lange (sprich f (n) Ω(g(n))). Arne Schmidt Große Übung 17
18 Sortieren Aufgabe: Sortiere ein Array von n Zahlen in aufsteigender Reihenfolge. Lösungen: 1. Bubblesort: Lasse Zahlen wie Blasen aufsteigen. Große Blasen verdrängen kleine Blasen. 2. Quicksort: Nimm ein Pivotelement p und teile die Zahlen in die Bereiche < p, = p und > p. Wiederhole Prozedur auf erstem und drittem Bereich. 3. Mergesort: Teile das Array in der Mitte und sortiere die linke und rechte Hälfte mit Mergesort. Sind beide Hälften sortiert, kombiniere beide Hälften. Arne Schmidt Große Übung 18
19 Sortieren - Laufzeit Algorithmus Best-Case Average-Case Worst-Case Bubblesort O(n) O(n 2 ) O(n 2 ) Quicksort O(n log n) O(n log n) O(n 2 ) Mergesort O(n log n) O(n log n) O(n log n) Alle Algorithmen nutzen Vergleiche. Man weiß: Theorem Jeder vergleichsbasierte Sortieralgorithmus benötigt Ω(n log n) Vergleiche. Arne Schmidt Große Übung 19
20 Hausaufgaben (Programmierteil) Arne Schmidt Große Übung 20
21 muss durch eure Matrikelnummer ersetzt werden! (Auch der Dateiname muss dann angepasst werden.) Arne Schmidt Große Übung 21
22 Dies ist der Teil, der von euch über das Semester ausgefüllt werden soll. Arne Schmidt Große Übung 22
23 Um das Ergebnis einer Methode zu sehen, entfernt die Kommentierung der entsprechenden Zeile. Das erste println gibt euch die Instanzdaten auf der Konsole aus. Hinweis: Der Wert einer Lösung ist immer auf die nächste kleinere ganze Zahl gerundet! Arne Schmidt Große Übung 23
24 Hausaufgaben (Das Partitionsproblem) Arne Schmidt Große Übung 24
25 Das Partitionsproblem - Partition Das Problem wird noch in der 3. Vorlesung behandelt. Um die Hausaufgaben zu bearbeiten, seht ihr es jetzt schon: Gegeben: n Objekte 1,..., n mit jeweils Größe z i. Gesucht: Teilmenge S {1,..., n} mit z i = i S i / S Anders ausgedrückt: Teile n Zahlen in zwei Mengen, deren Gewicht gleichgroß ist. Ein Beispiel: 7, 5, 9, 4, 6, 8, 3 lässt sich aufteilen in {7,6,8} und {5,9,4,3} Leider klappt das Aufteilen nicht immer so einfach! z i Arne Schmidt Große Übung 25
26 Fragen? Arne Schmidt Große Übung 26
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Große Übung #1 Christian Rieck, Arne Schmidt 26.10.2017 Organisatorisches Christian Rieck, Arne Schmidt Große Übung 2 Homepage Aktuelle Informationen, Hausaufgaben, Slides
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Große Übung #1 Christian Rieck, Arne Schmidt 25.10.2018 Organisatorisches Christian Rieck, Arne Schmidt Große Übung #1 - AuD 2 Homepage Aktuelle Informationen, Hausaufgaben,
Übungen zu Algorithmentechnik WS 09/10
Übungen zu Algorithmentechnik WS 09/10 1. Kurzsitzung Thomas Pajor 22. Oktober 2009 1/ 25 Eure Übungsleiter Tanja Hartmann [email protected] Raum 306, Gebäude 50.34 Thomas Pajor [email protected] Raum 322,
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen 11. Übung Verkettete Listen, Sortieren Insertionsort, Mergesort, Radixsort, Quicksort Clemens Lang Übungen zu AuD 19. Januar 2010 Clemens Lang (Übungen zu AuD) Algorithmen
Präsenzübung Datenstrukturen und Algorithmen SS 2014
Prof. aa Dr. E. Ábrahám F. Corzilius, S. Schupp, T. Ströder Präsenzübung Datenstrukturen und Algorithmen SS 2014 Vorname: Nachname: Studiengang (bitte genau einen markieren): Informatik Bachelor Informatik
Klausur Algorithmen und Datenstrukturen
Technische Universität Braunschweig Wintersemester 2013/2014 Institut für Betriebssysteme und Rechnerverbund Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Stephan Friedrichs Klausur Algorithmen und
Übung Algorithmen und Datenstrukturen
Übung Algorithmen und Datenstrukturen Sommersemester 2016 Patrick Schäfer, Humboldt-Universität zu Berlin Organisation Vorlesung: Montag 11 13 Uhr Marius Kloft RUD 26, 0 115 Mittwoch 11 13 Uhr Marius Kloft
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Große Übung #6 Phillip Keldenich, Arne Schmidt 26.02.2017 Heute: Master-Theorem Phillip Keldenich, Arne Schmidt Große Übung 2 Vorbetrachtungen Wir betrachten rekursive Gleichungen
Klausur Algorithmen und Datenstrukturen
Technische Universität Braunschweig Wintersemester 2014/2015 Institut für Betriebssysteme und Rechnerverbund Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Dr. Christian Scheffer Klausur Algorithmen
Tutoraufgabe 1 (Sortieralgorithmus):
Prof. aa Dr. Ir. Joost-Pieter Katoen Datenstrukturen und Algorithmen SS Tutoriumslösung - Übung 4 (Abgabe 2..2) Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder Tutoraufgabe (Sortieralgorithmus):
Übung Algorithmen und Datenstrukturen
Übung Algorithmen und Datenstrukturen Sommersemester 2017 Marc Bux, Humboldt-Universität zu Berlin Organisatorisches Vorlesung: Montag 11 13 Uhr Ulf Leser RUD 26, 0 115 Mittwoch 11 13 Uhr Ulf Leser RUD
f 1 (n) = log(n) + n 2 n 5 f 2 (n) = n 3 + n 2 f 3 (n) = log(n 2 ) f 4 (n) = n n f 5 (n) = (log(n)) 2
Prof. aa Dr. E. Ábrahám Datenstrukturen und Algorithmen SS Lösung - Präsenzübung.05.0 F. Corzilius, S. Schupp, T. Ströder Aufgabe (Asymptotische Komplexität): (6 + 0 + 6 = Punkte) a) Geben Sie eine formale
Übung Algorithmen und Datenstrukturen
Übung Algorithmen und Datenstrukturen Sommersemester 2015 Marc Bux, Humboldt-Universität zu Berlin Organisation Vorlesung: Montag 11 13 Uhr Ulf Leser RUD 26, 0 115 Mittwoch 11 13 Uhr Ulf Leser RUD 26,
Übung: Algorithmen und Datenstrukturen SS 2007
Übung: Algorithmen und Datenstrukturen SS 2007 Prof. Lengauer Sven Apel, Michael Claÿen, Christoph Zengler, Christof König Blatt 5 Votierung in der Woche vom 04.06.0708.06.07 Aufgabe 12 Manuelle Sortierung
Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen
Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 1 für die Übung
Klausur Algorithmen und Datenstrukturen
Technische Universität Braunschweig Wintersemester 2008/2009 IBR - Abteilung Algorithmik Prof. Dr. Sándor Fekete Tom Kamphans Nils Schweer Klausur Algorithmen und Datenstrukturen 23.02.2009 Name:.....................................
Grundlagen: Algorithmen und Datenstrukturen
Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2010
Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g:
TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 2 Prof. Dr. Helmut Seidl, S. Pott,
Algorithmen und Datenstrukturen 12
12. Juli 2012 1 Besprechung Blatt 11 Fragen 2 Binary Search Binäre Suche in Arrays Binäre Suchbäume (Binary Search Tree) 3 Sortierverfahren Allgemein Heapsort Bubblesort Insertionsort Mergesort Quicksort
Heapsort. Dr. Michael Brinkmeier (TU Ilmenau) Algorithmen und Datenstrukturen / 50
Heapsort Dr. Michael Brinkmeier (TU Ilmenau) Algorithmen und Datenstrukturen 27.6.2007 / 50 Heapsort - Wiederholung Definition Array A[..n] mit Einträgen aus (U,
Übung Algorithmen und Datenstrukturen
Übung Algorithmen und Datenstrukturen Sommersemester 2016 Marc Bux, Humboldt-Universität zu Berlin Organisation Vorlesung: Montag 11 13 Uhr Marius Kloft RUD 26, 0 115 Mittwoch 11 13 Uhr Marius Kloft RUD
Algorithmen und Datenstrukturen
1 Algorithmen und Datenstrukturen Wintersemester 2014/15 3. Vorlesung Laufzeitanalyse Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Recap: Diskutieren Sie mit Ihrer NachbarIn! 1. 2. 3. Was sind
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen A7. Sortieren III Marcel Lüthi and Gabriele Röger Universität Basel 14. März 2018 Untere Schranke Sortierverfahren Sortieren Vergleichsbasierte Verfahren Nicht vergleichsbasierte
A7.1 Untere Schranke. Algorithmen und Datenstrukturen. A7.1 Untere Schranke. Algorithmen und Datenstrukturen. A7.2 Quicksort. A7.
Algorithmen und Datenstrukturen 14. März 2018 A7. III Algorithmen und Datenstrukturen A7. III Marcel Lüthi and Gabriele Röger Universität Basel 14. März 2018 A7.1 Untere Schranke A7.2 Quicksort A7.3 Heapsort
Übung Algorithmen und Datenstrukturen
Übung Algorithmen und Datenstrukturen Sommersemester 2017 Patrick Schäfer, Humboldt-Universität zu Berlin Agenda: Sortierverfahren 1. Schreibtischtest 2. Stabilität 3. Sortierung spezieller Arrays 4. Untere
Algorithmik Kap. 2: Laufzeit von Algorithmen
1. Motivation 1.1 Fallstudie: Sortieralgorithmen 1.2 Fallstudie: Selektionsalgorithmen 2. Laufzeit von Algorithmen 2.1 Grundlagen 2.2 3. Paradigmen des Algorithmenentwurfs 3.1 Dynamisches Programmieren
Algorithmen I. Tutorium 1-3. Sitzung. Dennis Felsing
Algorithmen I Tutorium 1-3. Sitzung Dennis Felsing [email protected] www.stud.uni-karlsruhe.de/~ubcqr/algo 2011-05-02 Überblick 1 Sortieren und Suchen 2 Mastertheorem 3 Datenstrukturen 4 Kreativaufgabe
Übungsblatt 1. f(n) = f(n) = O(g(n)) g(n) = O(f(n)) Zeigen oder widerlegen Sie: 3 n = Θ(2 n ) Aufgabe 1.2 Gegeben sei die folgende Funktion:
Übungsblatt 1 Aufgabe 1.1 Beweisen oder widerlegen Sie, dass für die im Folgenden definierte Funktion f(n) die Beziehung f(n) = Θ(n 4 ) gilt. Beachten Sie, dass zu einem vollständigen Beweis gegebenenfalls
Suchen und Sortieren
Suchen und Sortieren Suchen Sortieren Mischen Zeitmessungen Bewertung von Sortier-Verfahren Seite 1 Suchverfahren Begriffe Suchen = Bestimmen der Position (Adresse) eines Wertes in einer Datenfolge Sequentielles
Klausur Algorithmen und Datenstrukturen II 10. August 2015
Technische Universität Braunschweig Sommersemester 2015 Institut für Betriebssysteme und Rechnerverbund Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Dr. Christian Scheffer Klausur Algorithmen und Datenstrukturen
Klausur Algorithmen und Datenstrukturen
Technische Universität Braunschweig Sommersemester 2013 IBR - Abteilung Algorithmik Prof. Dr. Sándor Fekete Dr. Christiane Schmidt Stephan Friedrichs Klausur Algorithmen und Datenstrukturen 22.08.2013
Klausur Algorithmen und Datenstrukturen II
Technische Universität Braunschweig Sommersemester 2017 Institut für Betriebssysteme und Rechnerverbund Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Arne Schmidt Klausur Algorithmen und Datenstrukturen
Übung Algorithmen und Datenstrukturen
Übung Algorithmen und Datenstrukturen Sommersemester 017 Marc Bux, Humboldt-Universität zu Berlin Agenda 1. Vorrechnen von Aufgabenblatt 1. Wohlgeformte Klammerausdrücke 3. Teile und Herrsche Agenda 1.
Übung Datenstrukturen. Sortieren
Übung Datenstrukturen Sortieren Aufgabe 1 Gegeben sei nebenstehender Sortieralgorithmus für ein Feld a[] ganzer Zahlen mit N Elementen: a) Um welches Sortierverfahren handelt es sich? b) Geben Sie möglichst
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Wintersemester 2012/13 17. Vorlesung Nächstes Paar Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Problem: Gegeben: Menge P von n Punkten in der Ebene, jeder Punkt
2 Sortieren durch Vergleichen Eingabefolge a 1, a 2,..., a n 2, 1, 3 Sortieralg. Für festes n ist ein vergleichsbasierter Sortieralg. charakterisiert
1 Algorithmen und Datenstrukturen Wintersemester 2014/15 9. Vorlesung Sortieren in Linearzeit Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Sortieren durch Vergleichen Eingabefolge a 1, a 2,...,
Kapitel 2. Weitere Beispiele Effizienter Algorithmen
Kapitel 2 Weitere Beispiele Effizienter Algorithmen Sequentielle Suche Gegeben: Array a[1..n] Suche in a nach Element x Ohne weitere Zusatzinformationen: Sequentielle Suche a[1] a[2] a[3] Laufzeit: n Schritte
NAME, VORNAME: Studiennummer: Matrikel:
TU Ilmenau, Fakultat IA Institut für Theoretische Informatik FG Komplexitätstheorie und Effiziente Algorithmen Prof. Dr. (USA) M. Dietzfelbinger Klausur Algorithmen und Datenstrukturen SS08, Ing.-Inf.
Karlsruher Institut für Technologie Institut für Theoretische Informatik. Übungsklausur Algorithmen I
Vorname: Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Jörn Müller-Quade 21.06.2017 Übungsklausur Algorithmen I Aufgabe 1. Kleinaufgaben 8 Punkte Aufgabe 2. Hashing 6 Punkte
Klausur Algorithmen und Datenstrukturen SS August Arbeitszeit 90 min
TU Ilmenau, Fakultät für Informatik und Automatisierung FG Komplexitätstheorie und Effiziente Algorithmen Univ.-Prof. Dr. M. Dietzfelbinger, Dipl.-Ing. C. Mattern Klausur Algorithmen und Datenstrukturen
Grundlagen: Algorithmen und Datenstrukturen
Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Dr. Hanjo Täubig Jeremias Weihmann Sommersemester 2014 Übungsblatt 2 28. April 2014 Grundlagen: Algorithmen und
Übersicht. Datenstrukturen und Algorithmen. Übersicht. Divide-and-Conquer. Vorlesung 9: Quicksort (K7)
Datenstrukturen und Algorithmen Vorlesung 9: (K7) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://www-i2.rwth-aachen.de/i2/dsal0/ Algorithmus 8. Mai 200 Joost-Pieter
Algorithmen und Datenstrukturen Tafelübung 14. Jens Wetzl 8. Februar 2012
Algorithmen und Datenstrukturen Tafelübung 14 Jens Wetzl 8. Februar 2012 Folien Keine Garantie für Vollständigkeit und/oder Richtigkeit Keine offizielle Informationsquelle LS2-Webseite Abrufbar unter:
Klausur Algorithmen und Datenstrukturen II 01. Agust 2016
Technische Universität Braunschweig Sommersemester 2016 Institut für Betriebssysteme und Rechnerverbund Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Dr. Christian Scheffer Klausur Algorithmen und Datenstrukturen
Komplexität von Algorithmen:
Komplexität von Algorithmen: Ansatz: Beschreiben/erfassen der Komplexität über eine Funktion, zur Abschätzung des Rechenaufwandes abhängig von der Größe der Eingabe n Uns interessiert: (1) Wie sieht eine
Übung Algorithmen und Datenstrukturen
Übung Algorithmen und Datenstrukturen Sommersemester 2016 Patrick Schäfer, Humboldt-Universität zu Berlin Agenda 1. Vorstellen des vierten Übungsblatts 2. Vorbereitende Aufgaben für das vierte Übungsblatt
Aufgabenblatt 2 Suchen und Sortieren. Aufgabe 1: Vergleiche und Sortieren in Java
Aufgabenblatt 2 Suchen und Sortieren Abgabetermin: Samstag, 21.05.2016 23:55 Uhr Zur Prüfungszulassung müssen in einem Aufgabenblatt mind. 25% der Punkte erreicht werden und alle weiteren Aufgabenblätter
1.3 Erinnerung: Mergesort
Mergesort 1.3 Erinnerung: Mergesort Um n Zahlen/Objekte a 1,..., a n zu sortieren, geht der Mergesort-Algorithmus so vor: Falls n n 0 : Sortiere mit einem naiven Algorithmus (z. B. Insertion Sort). Sonst:
Heapsort / 1 A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]
Heapsort / 1 Heap: Ein Array heißt Heap, falls A [i] A [2i] und A[i] A [2i + 1] (für 2i n bzw. 2i + 1 n) gilt. Beispiel: A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] Heapsort / 2 Darstellung eines Heaps als
Datenstrukturen & Algorithmen
Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Untere Schranken für Sortieren Sortieren mit linearem Aufwand Mediane und Ranggrössen 2 Wie schnell können wir sortieren?
Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität
Datenstrukturen und Algorithmen Christian Sohler FG Algorithmen & Komplexität 1 Geometrisches Problem: Problem: Nächstes Paar Eingabe: n Punkte in der Ebene Ausgabe: Das Paar q,r mit geringstem Abstand
4. Sortieren 4.1 Vorbemerkungen
. Seite 1/21 4. Sortieren 4.1 Vorbemerkungen allgemeines Sortierproblem spezielle Sortierprobleme Ordne a 1,..., a n so um, dass Elemente in aufsteigender Reihenfolge stehen. Die a i stammen aus vollständig
Übungsklausur Algorithmen I
Name: Vorname: Matrikelnr.: Tutorium: Jun.-Prof. Hofheinz, Jun.-Prof. Meyerhenke (ITI, KIT) 08.06.2015 Übungsklausur Algorithmen I Aufgabe 1. (Algorithm Engineering) [2 Punkte] Nennen Sie zwei Konzepte,
Algorithmen & Komplexität
Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik Was ist ein Algorithmus? Ein Algorithmus ist eine eindeutige Handlungsvorschrift, [bestehend] aus endlich vielen, wohldefinierten
JAVA - Suchen - Sortieren
Übungen Informatik I JAVA - Suchen - Sortieren http://www.fbi-lkt.fh-karlsruhe.de/lab/info01/tutorial Übungen Informatik 1 Folie 1 Inhalt Suchen/Sortieren binary search mergesort bubblesort Übungen Informatik
Datenstrukturen, Algorithmen und Programmierung 2
Datenstrukturen, Algorithmen und Programmierung 2 Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 2. VO SS 2009 16. April 2009 1 Überblick Asymptotische Schranken
Sortieren II / HeapSort Heaps
Organisatorisches VL-07: Sortieren II: HeapSort (Datenstrukturen und Algorithmen, SS 2017) Vorlesung: Gerhard Woeginger (Zimmer 4024 im E1) Email: [email protected] Webseite: http://algo.rwth-aachen.de/lehre/ss17/dsa.php
Übung zu Algorithmen und Datenstrukturen (für ET/IT)
Übung zu Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2017 Rüdiger Göbl, Mai Bui Computer Aided Medical Procedures Technische Universität München Fibonacci Zahlen Fibonacci Folge Die Fibonacci
Klausur Algorithmen und Datenstrukturen II 29. Juli 2013
Technische Universität Braunschweig Sommersemester 2013 Institut für Betriebssysteme und Rechnerverbund Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Stephan Friedrichs Klausur Algorithmen und Datenstrukturen
Ordnen Sie die folgenden Funktionen nach ihrer asymptotischer Komplexität in aufsteigender Reihenfolge: i=1 4i + n = 4 n. i=1 i + 3n = 4 ( n(n+1)
für Informatik Prof. aa Dr. Ir. Joost-Pieter Katoen Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder Tutoraufgabe (Asymptotische Komplexität): Ordnen Sie die folgenden Funktionen nach
Übungsblatt 7. Thema: Sortieren, Objektorientierung
Informatik I WS 05/06 Prof. Dr. W. May Dipl.-Inform. Oliver Fritzen Dipl.-Inform. Christian Kubczak Übungsblatt 7 Ausgegeben am: Abgabe bis: 9.12.2005 6.1.2006 (Theorie) 6.1.2006 (Praktisch) Thema: Sortieren,
Algorithmen und Datenstrukturen
Universität Innsbruck Institut für Informatik Zweite Prüfung 16. Oktober 2008 Algorithmen und Datenstrukturen Name: Matrikelnr: Die Prüfung besteht aus 8 Aufgaben. Die verfügbaren Punkte für jede Aufgabe
2.2 Allgemeine (vergleichsbasierte) Sortierverfahren
. Allgemeine (vergleichsbasierte) Sortierverfahren Vergleichsbaum: Der Aufbau des Verbleichsbaum ist für jeden Algorithmus und jede Eingabelänge n gleich. Jede Permutation der Eingabe, muss zu einem anderen
Klausur Algorithmentheorie
Prof. Dr. G. Schnitger Frankfurt, den 13.02.2009 Klausur Algorithmentheorie WS 2008/2009 Name: Vorname: Studiengang: BITTE GENAU LESEN Die Klausur besteht aus 4 Aufgaben, in denen maximal 100 Punkte erreicht
Sortieren und Suchen. Jens Wächtler Hallo Welt! -Seminar LS 2
Sortieren und Suchen Jens Wächtler 17.05.2017 Hallo Welt! -Seminar LS 2 Überblick Sortieren kurze Wiederholung Binäre & Ternäre Suche Binäre Suche in einer Liste Bisektionsverfahren (Nullstellensuche)
Tutoraufgabe 1 (Sortieren): Lösung: Datenstrukturen und Algorithmen SS14 Lösung - Übung 4
Prof. aa Dr. E. Ábrahám Datenstrukturen und Algorithmen SS Lösung - Übung F. Corzilius, S. Schupp, T. Ströder Tutoraufgabe (Sortieren): a) Sortieren Sie das folgende Array durch Anwendung des Selectionsort-Algorithmus.
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme Stefan Werner (Übungen) sowie viele Tutoren Teilnehmerkreis und Voraussetzungen Studiengänge
Algorithmen und Datenstrukturen SS09. Foliensatz 15. Michael Brinkmeier. Technische Universität Ilmenau Institut für Theoretische Informatik
Foliensatz 15 Michael Brinkmeier Technische Universität Ilmenau Institut für Theoretische Informatik Sommersemester 2009 TU Ilmenau Seite 1 / 16 Untere Schranken für das Vergleichsbasierte Sortieren TU
Aufgabe (Schreibtischtest, lexikographische Ordnung)
Aufgabe (Schreibtischtest, lexikographische Ordnung) Führen Sie einen Schreibtischtest für den Algorithmus Bubblesort aus der VL für die folgenden Eingabe-Arrays durch. Geben Sie das Array S nach jedem
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen A1. Organisatorisches Marcel Lüthi and Gabriele Röger Universität Basel 28. Februar 2018 Organisatorisches Personen: Dozenten Marcel Lüthi Gabriele Röger Dozenten Dr. Marcel
Vorlesung Datenstrukturen
Vorlesung Datenstrukturen Einleitung und Grundlagen Maike Buchin 18.4.2017 Verantwortliche Dozentin Organisation der Übungen Übungsleiter Korrekteure Maike Buchin [email protected] Raum NA 1/70 Sprechzeiten:
Datenstrukturen und Algorithmen 2. Klausur SS 2001
UNIVERSITÄT PADERBORN FACHBEREICH 7 (MATHEMATIK INFORMATIK) Datenstrukturen und Algorithmen 2. Klausur SS 200 Lösungsansätze Dienstag, 8. September 200 Name, Vorname:...................................................
2. Grundlagen. Beschreibung von Algorithmen durch Pseudocode. Korrektheit von Algorithmen durch Invarianten.
2. Grundlagen Beschreibung von Algorithmen durch Pseudocode. Korrektheit von Algorithmen durch Invarianten. Laufzeitverhalten beschreiben durch O-Notation. 1 Beispiel Minimum-Suche Eingabe bei Minimum
Kapitel 5: Paradigmen des Algorithmenentwurfs. Gliederung
Gliederung 1. Grundlagen 2. Analyse der Laufzeit von Algorithmen 3. Untere Schranken für algorithmische Probleme 4. Sortier- und Selektionsverfahren 5. Paradigmen des Algorithmenentwurfs 6. Ausgewählte
Karlsruher Institut für Technologie Institut für Theoretische Informatik. Klausur Algorithmen I
Name: Vorname: Matrikelnummer: Klausur-ID: svorschlag Karlsruher Institut für Technologie Institut für Theoretische Informatik Jun.-Prof. D. Hofheinz, Jun.-Prof. H. Meyerhenke 8.09.05 Klausur Algorithmen
Untere Schranke für allgemeine Sortierverfahren
Untere Schranke für allgemeine Sortierverfahren Prinzipielle Frage: wie schnell kann ein Algorithmus (im worst case) überhaupt sein? Satz: Zum einer Folge von n Keys mit einem allgemeinen Sortierverfahren
Algorithmen und Datenstrukturen 1 Kapitel 5
Algorithmen und Datenstrukturen 1 Kapitel 5 Technische Fakultät [email protected] Vorlesung, U. Bielefeld, Winter 2005/2006 Kapitel 5: Effizienz von Algorithmen 5.1 Vorüberlegungen Nicht
14. Sortieren II Heapsort. Heapsort. [Max-]Heap 7. Heapsort, Quicksort, Mergesort. Binärer Baum mit folgenden Eigenschaften
Heapsort, Quicksort, Mergesort 14. Sortieren II 14.1 Heapsort [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6] 397 398 Heapsort [Max-]Heap 7 Inspiration von Selectsort: Schnelles Einfügen Binärer Baum
ÜBUNGSKLAUSUR Studienhalbjahr: 2. Semester. Datum: 20. Juli 2016 Bearbeitungszeit: 90 Minuten. Modul: T2INF Dozent: Stephan Schulz
Matrikelnummer: Fakultät Studiengang: Jahrgang / Kurs : Technik Angewandte Informatik 01 B/C/K ÜBUNGSKLAUSUR Studienhalbjahr:. Semester Datum: 0. Juli 01 Bearbeitungszeit: 90 Minuten Modul: TINF100.1 Dozent:
Algorithmen und Datenstrukturen Tutorium I
Algorithmen und Datenstrukturen Tutorium I 20. - 25. 04. 2016 AlgoDat - Tutorium I 1 1 Organisatorisches Kontakt 2 Landau-Notation Definiton von O Logarithmen Gesetze & Ableitung Satz von l Hôpital 3 Algorithmen
Sortieralgorithmen. Jan Pöschko. 18. Januar Problemstellung Definition Warum Sortieren?... 2
Jan Pöschko 18. Januar 2007 Inhaltsverzeichnis 1 Problemstellung 2 1.1 Definition................................... 2 1.2 Warum Sortieren?.............................. 2 2 Einfache Sortieralgorithmen
Abschnitt 19: Sortierverfahren
Abschnitt 19: Sortierverfahren 19. Sortierverfahren 19.1 Allgemeines 19.2 Einfache Sortierverfahren 19.3 Effizientes Sortieren: Quicksort 19.4 Zusammenfassung 19 Sortierverfahren Informatik 2 (SS 07) 758
Algorithms & Data Structures 2
Algorithms & Data Structures Digital Sorting WS B. Anzengruber-Tanase (Institute for Pervasive Computing, JKU Linz) (Institute for Pervasive Computing, JKU Linz) WIEDERHOLUNG :: UNTERE SCHRANKE FÜR SORTIEREN
3. Hausübung Algorithmen und Datenstrukturen
Prof. Dr. Gerd Stumme, Folke Eisterlehner, Dominik Benz Fachgebiet Wissensverarbeitung 3. Hausübung Algorithmen und Datenstrukturen Sommersemester 2009 Abgabetermin: Montag, 18.05.2009, 10:00 Uhr 11.05.2009
8. Sortieren II. 8.1 Heapsort. Heapsort. [Max-]Heap 6. Heapsort, Quicksort, Mergesort. Binärer Baum mit folgenden Eigenschaften
Heapsort, Quicksort, Mergesort 8. Sortieren II 8.1 Heapsort [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6] 9 210 Heapsort [Max-]Heap 6 Inspiration von Selectsort: Schnelles Einfügen Binärer Baum mit
Heapsort, Quicksort, Mergesort. 8. Sortieren II
209 Heapsort, Quicksort, Mergesort 8. Sortieren II 210 8.1 Heapsort [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6] 211 Heapsort Inspiration von Selectsort: Schnelles Einfügen Inspiration von Insertionsort:
Sortierverfahren für Felder (Listen)
Sortierverfahren für Felder (Listen) Generell geht es um die Sortierung von Daten nach einem bestimmten Sortierschlüssel. Es ist auch möglich, daß verschiedene Daten denselben Sortierschlüssel haben. Es
Ordnen Sie die folgenden Funktionen nach ihrer asymptotischer Komplexität in aufsteigender Reihenfolge: i=1 4i + n = 4 n. i=1 i + 3n = 4 ( n(n+1)
für Informatik Prof. aa Dr. Ir. Joost-Pieter Katoen Tutoriumslösung - Übung (Abgabe 9.04.05) Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder Tutoraufgabe (Asymptotische Komplexität):
