Kapitel 9. Komplexität von Algorithmen und Sortieralgorithmen
|
|
|
- Gabriel Straub
- vor 9 Jahren
- Abrufe
Transkript
1 Kapitel 9 Komplexität von Algorithmen und Sortieralgorithmen Arrays 1
2 Ziele Komplexität von Algorithmen bestimmen können (in Bezug auf Laufzeit und auf Speicherplatzbedarf) Sortieralgorithmen kennenlernen: Bubble Sort und Selection Sort (Quicksort wird in Kap. 10 behandelt) Komplexität von Sortieralgorithmen verstehen Arrays 2
3 Komplexität von Algorithmen Wir unterscheiden den Zeitbedarf und den Speicherplatzbedarf eines Algorithmus. Beides hängt ab von den verwendeten Datenstrukturen, den verwendeten algorithmischen Konzepten (z.b. Schleifen), der verwendeten Rechenanlage zur Ausführungszeit (davon abstrahieren wir im Folgenden). Arrays 3
4 Zeit- und Speicherplatzbedarf Der Zeitbedarf eines Algorithmus errechnet sich aus dem Zeitaufwand für die Auswertung von Ausdrücken, einschl. Durchführung von Operationen, die Ausführung von Anweisungen, organisatorischen Berechnungen (davon abstrahieren wir im Folgenden). Der Speicherplatzbedarf eines Algorithmus errechnet sich aus dem benötigten Speicher für lokale Variable (einschließlich formaler Parameter) Objekte (einschließlich Arrays) und deren Attribute, organisatorische Daten (davon abstrahieren wir im Folgenden). Arrays 4
5 Beispiel: Lineare Suche eines Elements in einem Array (1) Zeitbedarf static boolean linsearch(int[] a, int e){ Sei n = a.length 1 Zuweisung an i for (int i = 0; i < a.length; i++){ if (a[i] == e){ 2*n Arrayzugriffe + return true; 2*n Vergleiche + } n Operationen (i+1) + } n Zuweisungen an i + 1 Arrayzugriff+1 Vergleich } return false; 1 Return Zeitbedarf für verschiedene Aufrufe der Methode linsearch: int[] a = new int[] {30, 7, 1, 15, 20, 13, 28, 25}; boolean b1 = linsearch(a, 30); // Zeit: 6 boolean b2 = linsearch(a, 23); // Zeit: 52 Arrays 5
6 Beispiel: Lineare Suche eines Elements (2) Speicherplatzbedarf static boolean linsearch(int[] a, int e){ n+1 (für a mit length) 1 (für e) for (int i = 0; i < a.length; i++){ 1 (für i) if (a[i] == e){ return true; 1 (für Ergebnis) } } } return false; Speicherplatzbedarf für verschiedene Aufrufe der Methode linsearch: int[] a = new int[] {30, 7, 1, 15, 20, 13, 28, 25}; boolean b1 = linsearch(a, 30); // Speicherplätze: 12 boolean b2 = linsearch(a, 23); // Speicherplätze: 12 Arrays 6
7 Komplexitätsanalyse Der Zeitbedarf und der Speicherplatzbedarf einer Methode hängt i.a. ab von der aktuellen Eingabe. Gegeben sei eine Methode static type1 m(type2 x) {body} Notation: Meist ist man am Skalierungsverhalten eines Algorithmus interessiert: Wie hängen Zeit- und Speicherplatzbedarf von der Größe n der Eingabe e ab (z.b. von der Länge eines Arrays)? Der Algorithmus zum Suchen eines Elements in einem Array hat für Arrays gleicher Länge unterschiedliche Kosten bzgl. der Zeit. Um solche Unterschiede abschätzen zu können, unterscheidet man die Komplexität im schlechtesten, mittleren und besten Fall (engl. worst case, average case, best case complexity). Arrays 7
8 Komplexitätsarten Zeitkomplexität im Speicherplatzkomplexität im Arrays 8
9 Beispiel: Lineare Suche static boolean linsearch(int[] a, int e) Als Größenmaß für die Eingabe a und e wählen wir die Länge n des Arrays a. (Für das Skalierungsverhalten ist hier die Größe des Elements e nicht relevant.) Speicherplatzbedarf: S w linsearch (n) = linsearch (n) = S a S b (n) = n+4 linsearch Zeitbedarf: Schlechtester Fall: T w (n) = 2+(6*n+2) = 6*n+4 linsearch Bester Fall: T b linsearch (n) = 6 Arrays 9
10 Beispiel: Lineare Suche (Durchschnittlicher Zeitbedarf) Zeitbedarf: Durchschnittlicher Fall: Erklärung: linsearch (n) = (6 j) Wir nehmen an, dass das Element im Array vorkommt. Bei einer Eingabe der Länge n gibt es n Möglichkeiten: T a Arrays 10 n j=1 n = 3*n+3 1 Schleifendurchlauf wird benötigt um das Element zu finden, 2 Schleifendurchläufe werden benötigt, n Schleifendurchläufe werden benötigt. Wir nehmen an, dass jeder dieser Fälle gleich wahrscheinlich ist. Im Fall von j Schleifendurchläufen (1 j n) werden 2+6*j-2 Zeiteinheiten benötigt. Der durchschnittliche Fall ergibt sich dann aus dem arithmetischen Mittel der Summe des Zeitbedarfs aller n Fälle für j = 1,,n.
11 Größenordnung der Komplexität: Die O-Notation Eine exakte Beschreibung des Zeit- und Speicherplatzbedarfs wird schnell zu kompliziert um praktikabel zu sein. Beispiele: T w linsearch (n) ist in O(n) S w linsearch (n) ist in O(n) Arrays 11
12 Man nennt eine Funktion f Komplexitätsklassen konstant logarithmisch linear falls falls falls log-linear falls f(n) in O(n * log(n)) quadratisch kubisch polynomiell exponentiell falls falls falls falls Arrays 12
13 Vergleich häufig auftretender Zeitkomplexitäten f(n) f(10) f(100) f(1000) f(10 4 ) 1 konstant 1s 1s 1s 1s log 2 (n) logarithm. 3s 7s 10s 13s n linear 10s 1min 16min 2h n*log 2 (n) log-linear 30s 10min 12h 1d n 2 quadratisch 1min 2h 11d 3 Jahre n 3 kubisch 16min 11d 30 Jahre Jahre 2 n exponentiell 16min > als Alter Die Zeitangaben sind ungefähre Werte. des Universums Arrays 13
14 Binäre Suche in einem geordneten Array Sei a ein geordnetes Array mit den Grenzen j und k, d.h. a[i] a[i+1] für i = j,,k; also z.b.: Algorithmus: a: j j+1 Um den Wert e in a zu suchen, teilt man das Array in der Mitte und vergleicht e mit dem Element in der Mitte : Ist e < a[mid], so sucht man weiter im linken Teil a[j],,a[mid-1]. Ist e = a[mid], so hat man das Element gefunden.... Ist e > a[mid], so sucht man weiter im rechten Teil a[mid+1],, a[k]. k Arrays 14
15 Binäre Suche in Java static boolean binarysearch(int[] a, int e) { int j = 0; // linke Grenze int k = a.length - 1; // rechte Grenze boolean found = false; // wurde das Element e schon gefunden? while (!found && j <= k) { // solange nicht gefunden und Array nicht leer int mid = j + (k - j)/2; // Mitte des Arrays bzw. links von der Mitte if (e < a[mid]) { // Ist e kleiner als das mittlere Element, k = mid - 1; // so machen wir mit dem linken Teilarray weiter. } else if (e > a[mid]){ // Ist e groesser das mittlere Element, so j = mid + 1; // machen wir mit dem rechten Teilarray weiter. } else { //Anderenfalls haben wir den Wert im Array gefunden. found = true; } } // Ende while return found; } Arrays 15
16 Wie oft wird die while-schleife maximal durchlaufen? Beispiel: In einem Array der Größe 16 braucht man maximal 5 Durchläufe. Größe des betrachteten Arrays X X X X X X X X X X X X X Array der Länge n mit 2 i n < 2 i+1 benötigt im schlimmsten Fall i+1 Schleifendurchläufe. log 2 (n) bezeichnet den ganzzahligen Anteil des Logarithmus zur Basis 2. Es gilt: 2 log 2(n) n < 2 log2(n)+1 Daher benötigt ein Array der Länge n im schlimmsten Fall log 2 (n) + 1 Durchläufe. Arrays 16
17 Worst-Case Komplexitäten der Suchalgorithmen T w binarysearch (n) ist in O(log(n)) S w binarysearch (n) ist in O(n) logarithmisch linear T w linsearch (n) ist in O(n) S w linsearch (n) ist in O(n) linear linear Arrays 17
18 Exponentielle und polynomielle Komplexität Für folgendes Problem des Handelsreisenden (engl. Traveling Salesman) sind nur (determinisitische) Algorithmen mit exponentieller Zeitkomplexität bekannt: Gegeben sei ein Graph mit n Städten und den jeweiligen Entfernungen zwischen den Städten. Berechnet werden soll eine kürzeste Tour, so dass jede Stadt einmal besucht wird? Randbemerkung: Für das Traveling-Salesman-Problem gibt es einen nichtdeterministischpolynomiellen (NP) Algorithmus ( man darf die richtige Lösung raten ). Das Traveling-Salesman-Problem ist NP-vollständig, d.h. falls es einen polynomiellen Algorithmus zu seiner Lösung gibt, so hat jeder nichtdeterministisch-polynomielle Algorithmus eine polynomielle Lösung. Die Frage, ob ein NP-vollständiges Problem (und damit alle) in polynomieller Zeit (P) gelöst werden kann, ist eine der bekanntesten ungelösten Fragen der theoretischen Informatik. P = NP? Arrays 18
19 Sortieren eines Arrays durch Vertauschen (Bubble Sort) Idee: Vertausche benachbarte Elemente, wenn sie nicht wie gewünscht geordnet sind. In jedem Durchlauf des Feldes steigt das relativ größte Element wie eine "Blase" (bubble) im Wasser auf. Algorithmus: Sei outer ein Zeiger auf das letzte Element des Arrays. Solange outer nicht auf das erste Element zeigt: 1. Sei inner ein Zeiger auf das erste Element des Arrays. Solange inner < outer : 1.1. Vertausche Elemente an den Positionen inner und inner+1, wenn sie in falscher Reihenfolge stehen Rücke mit inner eine Position vorwärts. 2. Rücke mit outer eine Position rückwärts. Arrays 19
20 Bubble Sort: Beispiel Nach dem ersten Durchlauf ist das größte Element an der richtigen Stelle Nach dem zweiten Durchlauf sind die beiden größten Elemente an der richtigen Stelle. In jedem Durchlauf werden höchstens n Vertauschungen ausgeführt. Arrays 20
21 Bubble Sort in Java static void bubblesort(double[] a){ for (int outer = a.length - 1; outer > 0; outer--) { for (int inner = 0; inner < outer; inner++) { if (a[inner] > a[inner + 1]) { // tausche a[inner] und a[inner + 1] int temp = a[inner]; a[inner] = a[inner + 1]; a[inner + 1] = temp; } //Ende if } // Ende innere for-schleife } //Ende äußere for-schleife } Arrays 21
22 Sei n die Länge des Arrays. Zeitkomplexität: Komplexitäten des Bubble Sort Die äußere for-schleife wird in jedem Fall n-1 mal durchlaufen. Im i-ten Schritt wird die innere for-schleife n-i mal durchlaufen, was durch n nach oben abgeschätzt werden kann. Folglich ist die Zeitkomplexität des Bubble Sort in jedem Fall quadratisch, also in O(n 2 ). Speicherplatzkomplexität: Es werden in jedem Fall n Speicherplätze für den Array und 3 zusätzliche Speicherplätze für die lokalen Variablen gebraucht. Folglich ist die Speicherplatzkomplexität des Bubble Sort linear, d.h. in O(n). Arrays 22
23 Sortieren eines Arrays durch Auswahl (Selection Sort) Sortiere Array von links nach rechts. In jedem Schritt wird der noch unsortierte Teil des Arrays nach dem kleinsten Element durchsucht. Das kleinste Element wird gewählt und mit dem ersten Element des unsortierten Teils vertauscht. Die Länge des unsortierten Teils wird um eins kürzer Arrays 23
24 Selection Sort in Java static void selectionsort(double[] a) { for (int i = 0; i < a.length - 1; i++) { int minindex = selectminindex(a,i); int tmp = a[i]; //vertauschen a[i] = a[minindex]; a[minindex] = tmp; }} static int selectminindex(int[] a, int ab) { int minindex = ab; for (int i = ab + 1; i < a.length; i++) { if (a[i] < a[minindex]) { minindex = i; } } return minindex;} Arrays 24
25 Sei n die Länge des Arrays. Zeitkomplexität: Komplexitäten des Selection Sort Es werden in jedem Fall n Schritte durchgeführt, wobei in jedem Schritt eine Minimumsuche in einem Teil des Arrays erfolgt. Für die Minimumsuche im j-ten Schritt werden n-j Schritte durchgeführt, was durch n nach oben abgeschätzt werden kann. Folglich ist die Zeitkomplexität des Selection Sort in jdem Fall quadratisch, also in O(n 2 ). Speicherplatzkomplexität: Es werden in jedem Fall n Speicherplätze für den Array und eine konstante Zahl von zusätzlichen Speicherplätzen für die lokalen Variablen und Rückgaben gebraucht. Folglich ist die Speicherplatzkomplexität des Selection Sort linear, d.h. in O(n). Arrays 25
Kapitel 9. Komplexität von Algorithmen und Sortieralgorithmen
1 Kapitel 9 Komplexität von Algorithmen und Sortieralgorithmen Ziele 2 Komplexität von Algorithmen bestimmen können (in Bezug auf Laufzeit und auf Speicherplatzbedarf) Sortieralgorithmen kennenlernen:
Kapitel 10. Komplexität von Algorithmen und Sortieralgorithmen
Kapitel 10 Komplexität von Algorithmen und Sortieralgorithmen Arrays 1 Ziele Komplexität von Algorithmen bestimmen können (in Bezug auf Laufzeit und auf Speicherplatzbedarf) Sortieralgorithmen kennenlernen:
Ziele. Kapitel 10: Komplexität von Algorithmen und Sortierverfahren. Beispiel: Lineare Suche eines Elements in einem Array (1)
Einführung in die Informatik: Programmierung und Softwareentwicklung Wintersemester 2018/19 Ziele Kapitel 10: Komplexität von Algorithmen und Sortierverfahren Prof. Dr. David Sabel Lehr- und Forschungseinheit
Komplexität von Algorithmen
Ziele 2 Komplexität von Algorithmen Zeit- und Speicherplatzbedarf einer Anweisung berechnen können Zeit- und Speicherplatzbedarf einer Methode berechnen können Martin Wirsing Unterschiede der Komplexität
Einführung in die Programmierung für NF. Arrays
Einführung in die Programmierung für NF Arrays ARRAY (REIHUNG) 4 Arrays 2 Array In der Programmierung werden o: Tupel verschiedener Länge benutzt. Beispiel: Vektoren (1.0, 1.0) (0.2, 1.2, 7.0) Beispiel:
Reihungen. Prof. Dr. Christian Böhm. In Zusammenarbeit mit Gefei Zhang. WS 07/08
Reihungen Prof. Dr. Christian Böhm In Zusammenarbeit mit Gefei Zhang http://www.dbs.ifi.lmu.de/lehre/nfinfosw WS 07/08 2 Ziele Die Datenstruktur der Reihungen verstehen: mathematisch und im Speicher Grundlegende
Programmieren und Problemlösen
Dennis Komm Programmieren und Problemlösen Komplexität von Algorithmen Frühling 2019 27. Februar 2019 Komplexität von Algorithmen Aufgabe Primzahltest Schreibe ein Programm, das eine ganze Zahl x als Eingabe
Grundlegende Sortieralgorithmen
Grundlegende Sortieralgorithmen Prof. Dr. Christian Böhm in Zusammenarbeit mit Gefei Zhang http://www.dbs.ifi.lmu.de/lehre/nfinfosw WS 07/08 2 Ziele Grundlegende Sortieralgorithmen auf Reihungen kennen
Grundlegende Sortieralgorithmen
Grundlegende Sortieralgorithmen Martin Wirsing in Zusammenarbeit mit Matthias Hölzl und Nora Koch Sortieren in Java Man kann Sortierverfahren in einem imperativem oder einem objektorientierten Stil programmieren.
Grundlegende Sortieralgorithmen
Grundlegende Sortieralgorithmen Martin Wirsing in Zusammenarbeit mit Michael Barth, Philipp Meier und Gefei Zhang 01/05 2 Ziele Grundlegende Sortieralgorithmen auf Reihungen kennen lernen 3 Klassifizierung
Komplexität von Algorithmen OOPM, Ralf Lämmel
Ganz schön komplex! Komplexität von Algorithmen OOPM, Ralf Lämmel 885 Motivierendes Beispiel Algorithmus Eingabe: ein Zahlen-Feld a der Länge n Ausgabe: Durchschnitt Fragen: sum = 0; i = 0; while (i
Heapsort / 1 A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]
Heapsort / 1 Heap: Ein Array heißt Heap, falls A [i] A [2i] und A[i] A [2i + 1] (für 2i n bzw. 2i + 1 n) gilt. Beispiel: A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] Heapsort / 2 Darstellung eines Heaps als
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens 1 Organisatorisches Am Freitag, 9. Juni 2006, erfolgt in der Vorlesung eine Zusammenfassung der Vorlesungsinhalte als Vorbereitung auf die
Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g:
TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 2 Prof. Dr. Helmut Seidl, S. Pott,
QuickSort ist ein Sortieralgorithmus, der auf der Idee des Teile & Beherrsche beruht, und das gegebene Array an Ort und Stelle (in place) sortiert
4.3.6 QuickSort QuickSort ist ein Sortieralgorithmus, der auf der Idee des Teile & Beherrsche beruht, und das gegebene Array an Ort und Stelle (in place) sortiert QuickSort teilt das gegebene Array anhand
Reihungen. Martin Wirsing. in Zusammenarbeit mit Matthias Hölzl und Nora Koch 11/03
Reihungen Martin Wirsing in Zusammenarbeit mit Matthias Hölzl und Nora Koch 11/03 2 Ziele Die Datenstruktur der Reihungen verstehen: mathematisch und im Speicher Grundlegende Algorithmen auf Reihungen
Algorithmen als systematische Vorgehensweisen zur Lösung eines formal definierten Problems
4. Algorithmen Motivation Algorithmen als systematische Vorgehensweisen zur Lösung eines formal definierten Problems Der Begriff Algorithmus geht auf den Gelehrten Muhammad al-chwarizmi zurück, der um
Algorithmen als systematische Vorgehensweisen zur Lösung eines formal definierten Problems
4. Algorithmen Motivation Algorithmen als systematische Vorgehensweisen zur Lösung eines formal definierten Problems Der Begriff Algorithmus geht auf den Gelehrten Muhammad al-chwarizmi zurück, der um
8 Komplexitätstheorie
8 Komplexitätstheorie Formale Grundlagen der Informatik I Herbstsemester 2012 Robert Marti Vorlesung teilweise basierend auf Unterlagen von Prof. emer. Helmut Schauer Grundidee der Komplexitätstheorie
Einführung in die Informatik Algorithmen und Datenstrukturen. Thema 17 Sortieren
Einführung in die Informatik Algorithmen und Datenstrukturen Thema 17 Sortieren Sortierproblem Es gibt eine Menge von Datensätzen, und jeder dieser Sätze besitzt einen (möglichst eindeutigen) Schlüssel.
(08 - Einfache Sortierverfahren)
Vorlesung Informatik 2 Algorithmen und Datenstrukturen (08 - Einfache Sortierverfahren) Prof. Dr. Susanne Albers Sortieren Motivation, Einführung Datenbestände müssen sehr oft sortiert werden, etwa um
Komplexität von Algorithmen
Komplexität von Algorithmen Ziel Angabe der Effizienz eines Algorithmus unabhängig von Rechner, Programmiersprache, Compiler. Page 1 Eingabegröße n n Integer, charakterisiert die Größe einer Eingabe, die
Algorithmen und Datenstrukturen 1 Kapitel 5
Algorithmen und Datenstrukturen 1 Kapitel 5 Technische Fakultät [email protected] Vorlesung, U. Bielefeld, Winter 2005/2006 Kapitel 5: Effizienz von Algorithmen 5.1 Vorüberlegungen Nicht
Interne Sortierverfahren
Angewandte Datentechnik Interne Sortierverfahren Interne Sortierverfahren Ausarbeitung einer Maturafrage aus dem Fach A n g e w a n d t e D a t e n t e c h n i k Andreas Hechenblaickner 5CDH HTBLA Kaindorf/Sulm
Abschnitt 7: Komplexität von imperativen Programmen
Abschnitt 7: Komplexität von imperativen Programmen 7. Komplexität von imperativen Programmen 7 Komplexität von imperativen Programmen Einf. Progr. (WS 08/09) 399 Ressourcenbedarf von Algorithmen Algorithmen
Asymptotik und Laufzeitanalyse
und Vorkurs Informatik SoSe13 08. April 2013 und Algorithmen = Rechenvorschriften Wir fragen uns: Ist der Algorithmus effizient? welcher Algorithmus löst das Problem schneller? wie lange braucht der Algorithmus
Einführung in die Informatik I Kapitel II.3: Sortieren
1 Einführung in die Informatik I Kapitel II.3: Sortieren Prof. Dr.-Ing. Marcin Grzegorzek Juniorprofessur für Mustererkennung im Institut für Bildinformatik Department Elektrotechnik und Informatik Fakultät
Ordnen Sie die folgenden Funktionen nach ihrer asymptotischer Komplexität in aufsteigender Reihenfolge: i=1 4i + n = 4 n. i=1 i + 3n = 4 ( n(n+1)
für Informatik Prof. aa Dr. Ir. Joost-Pieter Katoen Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder Tutoraufgabe (Asymptotische Komplexität): Ordnen Sie die folgenden Funktionen nach
Übersicht Datenstrukturen und Algorithmen. Literatur. Algorithmus: Wikipedia Definition. Vorlesung 1: Einführung. Prof. Dr.
Übersicht Datenstrukturen und Vorlesung 1: Prof. Dr. Erika Ábrahám Theorie Hybrider Systeme Informatik 2 http://ths.rwth-aachen.de/teaching/ss-14/ datenstrukturen-und-algorithmen/ Diese Präsentation verwendet
Algorithmen und Datenstrukturen (Th. Ottmann und P. Widmayer) Folien: Suchverfahren Autor: Stefan Edelkamp / Sven Schuierer
Algorithmen und Datenstrukturen (Th. Ottmann und P. Widmayer) Folien: Suchverfahren Autor: Stefan Edelkamp / Sven Schuierer Institut für Informatik Georges-Köhler-Allee Albert-Ludwigs-Universität Freiburg
Suchen und Sortieren Sortieren. Mergesort
Suchen und Mergesort (Folie 142, Seite 55 im Skript) Algorithmus procedure mergesort(l, r) : if l r then return fi; m := (r + l)/2 ; mergesort(l, m 1); mergesort(m, r); i := l; j := m; k := l; while k
1. Musterlösung. Problem 1: Average-case-Laufzeit vs. Worst-case-Laufzeit ** i=1
Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 05/06 ITI Wagner. Musterlösung Problem : Average-case-Laufzeit vs. Worst-case-Laufzeit ** (a) Im schlimmsten Fall werden für jedes Element
Kapitel 2. Weitere Beispiele Effizienter Algorithmen
Kapitel 2 Weitere Beispiele Effizienter Algorithmen Sequentielle Suche Gegeben: Array a[1..n] Suche in a nach Element x Ohne weitere Zusatzinformationen: Sequentielle Suche a[1] a[2] a[3] Laufzeit: n Schritte
Komplexität von Algorithmen:
Komplexität von Algorithmen: Ansatz: Beschreiben/erfassen der Komplexität über eine Funktion, zur Abschätzung des Rechenaufwandes abhängig von der Größe der Eingabe n Uns interessiert: (1) Wie sieht eine
Übung Algorithmen und Datenstrukturen
Übung Algorithmen und Datenstrukturen Sommersemester 2016 Patrick Schäfer, Humboldt-Universität zu Berlin Organisation Vorlesung: Montag 11 13 Uhr Marius Kloft RUD 26, 0 115 Mittwoch 11 13 Uhr Marius Kloft
Übung zur Vorlesung Berechenbarkeit und Komplexität
RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Übungsblatt 7 26.11.2012 Übung zur Vorlesung Berechenbarkeit und Komplexität Aufgabe T15 Entwickeln Sie ein
Komplexität von Algorithmen
Komplexität von Algorithmen Prof. Dr. Christian Böhm WS 07/08 in Zusammenarbeit mit Gefei Zhang http://www.dbs.informatik.uni-muenchen.de/lehre/nfinfosw Ressourcenbedarf - Größenordnungen Prozesse verbrauchen
Einführung in die Informatik 2
Einführung in die Informatik 2 Suchen in Datenmengen Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 [email protected] Sprechstunde: Freitag, 12:30-14:00 Uhr, o.n.v.
Algorithmen und Datenstrukturen (für ET/IT)
Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2017 Dr. Stefanie Demirci Computer Aided Medical Procedures Technische Universität München Programm heute 1 Einführung 2 Grundlagen von Algorithmen
f 1 (n) = log(n) + n 2 n 5 f 2 (n) = n 3 + n 2 f 3 (n) = log(n 2 ) f 4 (n) = n n f 5 (n) = (log(n)) 2
Prof. aa Dr. E. Ábrahám Datenstrukturen und Algorithmen SS Lösung - Präsenzübung.05.0 F. Corzilius, S. Schupp, T. Ströder Aufgabe (Asymptotische Komplexität): (6 + 0 + 6 = Punkte) a) Geben Sie eine formale
2. Grundlagen. Beschreibung von Algorithmen durch Pseudocode. Korrektheit von Algorithmen durch Invarianten.
2. Grundlagen Beschreibung von Algorithmen durch Pseudocode. Korrektheit von Algorithmen durch Invarianten. Laufzeitverhalten beschreiben durch O-Notation. 1 Beispiel Minimum-Suche Eingabe bei Minimum
Suchen und Sortieren
Suchen und Sortieren Suchen Sortieren Mischen Zeitmessungen Bewertung von Sortier-Verfahren Seite 1 Suchverfahren Begriffe Suchen = Bestimmen der Position (Adresse) eines Wertes in einer Datenfolge Sequentielles
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen A3. Sortieren: Selection- und Insertionsort Marcel Lüthi and Gabriele Röger Universität Basel 1. März 2018 Sortieralgorithmen Inhalt dieser Veranstaltung A&D Sortieren Komplexitätsanalyse
Überblick. Lineares Suchen
Komplexität Was ist das? Die Komplexität eines Algorithmus sei hierbei die Abschätzung des Aufwandes seiner Realisierung bzw. Berechnung auf einem Computer. Sie wird daher auch rechnerische Komplexität
Sortieren II / HeapSort Heaps
Organisatorisches VL-07: Sortieren II: HeapSort (Datenstrukturen und Algorithmen, SS 2017) Vorlesung: Gerhard Woeginger (Zimmer 4024 im E1) Email: [email protected] Webseite: http://algo.rwth-aachen.de/lehre/ss17/dsa.php
Übung Algorithmen und Datenstrukturen
Übung Algorithmen und Datenstrukturen Sommersemester 2016 Patrick Schäfer, Humboldt-Universität zu Berlin Agenda 1. Vorstellen des vierten Übungsblatts 2. Vorbereitende Aufgaben für das vierte Übungsblatt
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Wintersemester 2012/13 1. Vorlesung Kapitel 1: Sortieren Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Das Problem Eingabe Gegeben: eine Folge A = a 1, a 2,..., a
A3.1 Sortieralgorithmen
Algorithmen und Datenstrukturen 1. März 2018 A3. : Selection- und Insertionsort Algorithmen und Datenstrukturen A3. : Selection- und Insertionsort Marcel Lüthi and Gabriele Röger Universität Basel 1. März
3.2. Korrektheit und Komplexität am Beispiel: Sortieren Sortieren ist eine wichtige Basis-Operation für komplexe Algorithmen
3.2. Korrektheit und Komplexität am Beispiel: Sortieren Sortieren ist eine wichtige Basis-Operation für komplexe Algorithmen Sortierproblem Eingabe: Folge von n natürlichen Zahlen a 1, a 2,, a n, die Folge
Programmieren I. Kapitel 5. Kontrollfluss
Programmieren I Kapitel 5. Kontrollfluss Kapitel 5: Kontrollfluss Ziel: Komplexere Berechnungen im Methodenrumpf Ausdrücke und Anweisungen Fallunterscheidungen (if, switch) Wiederholte Ausführung (for,
Algorithmen & Komplexität
Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik [email protected] Breitensuche, Tiefensuche Wir besprechen nun zwei grundlegende Verfahren, alle Knoten eines Graphen zu
Algorithmen und Datenstrukturen
Universität Innsbruck Institut für Informatik Zweite Prüfung 16. Oktober 2008 Algorithmen und Datenstrukturen Name: Matrikelnr: Die Prüfung besteht aus 8 Aufgaben. Die verfügbaren Punkte für jede Aufgabe
Präsenzübung Datenstrukturen und Algorithmen SS 2014
Prof. aa Dr. E. Ábrahám F. Corzilius, S. Schupp, T. Ströder Präsenzübung Datenstrukturen und Algorithmen SS 2014 Vorname: Nachname: Studiengang (bitte genau einen markieren): Informatik Bachelor Informatik
Programmiertechnik II
Analyse von Algorithmen Algorithmenentwurf Algorithmen sind oft Teil einer größeren Anwendung operieren auf Daten der Anwendung, sollen aber unabhängig von konkreten Typen sein Darstellung der Algorithmen
Datenstrukturen & Algorithmen
Datenstrukturen & Algorithmen VO 708.031 Um was geht es? Datenstrukturen Algorithmen Algorithmus Versuch einer Erklärung: Ein Algorithmus nimmt bestimmte Daten als Input und transformiert diese nach festen
Grundlagen: Algorithmen und Datenstrukturen
Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Dr. Hanjo Täubig Tobias Lieber Sommersemester 2011 Übungsblatt 1 16. September 2011 Grundlagen: Algorithmen und
Datenstrukturen und Algorithmen (SS 2013)
Datenstrukturen und Algorithmen (SS 2013) Präsenzübung Musterlösung Dienstag, 28.05.2013 Aufgabe 1 (Allgemeine Fragen [20 Punkte]) 1. Tragen Sie in der folgenden Tabelle die Best-, Average- und Worst-Case-
Algorithmen und Datenstrukturen 2. Stefan Florian Palkovits, BSc Juni 2016
Algorithmen und Datenstrukturen Übung Stefan Florian Palkovits, BSc 09 [email protected] 9. Juni 0 Aufgabe 9: Anwenden der Spanning Tree Heuristik auf symmetrisches TSP 9 8 7 8 8 7 Bilden eines
Komplexität. G. Zachmann Clausthal University, Germany Leistungsverhalten von Algorithmen
lausthal Informatik II Komplexität von Algorithmen. Zachmann lausthal University, ermany [email protected] Leistungsverhalten von Algorithmen Speicherplatzkomplexität: Wird primärer & sekundärer
Übungsklausur Algorithmen I
Name: Vorname: Matrikelnr.: Tutorium: Jun.-Prof. Hofheinz, Jun.-Prof. Meyerhenke (ITI, KIT) 08.06.2015 Übungsklausur Algorithmen I Aufgabe 1. (Algorithm Engineering) [2 Punkte] Nennen Sie zwei Konzepte,
Tutoraufgabe 1 (Sortieralgorithmus):
Prof. aa Dr. Ir. Joost-Pieter Katoen Datenstrukturen und Algorithmen SS Tutoriumslösung - Übung 4 (Abgabe 2..2) Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder Tutoraufgabe (Sortieralgorithmus):
Elementare Sortierverfahren
Algorithmen und Datenstrukturen I Elementare Sortierverfahren Fakultät für Informatik und Mathematik Hochschule München Letzte Änderung: 18.03.2018 18:16 Inhaltsverzeichnis Sortieren.......................................
Präzedenz von Operatoren
Präzedenz von Operatoren SWE-30 Die Präzedenz von Operatoren bestimmt die Struktur von Ausdrücken. Ein Operator höherer Präzedenz bindet die Operanden stärker als ein Operator geringerer Präzedenz. Mit
Vorlesung Datenstrukturen
Vorlesung Datenstrukturen Einleitung und Grundlagen Maike Buchin 18.4.2017 Verantwortliche Dozentin Organisation der Übungen Übungsleiter Korrekteure Maike Buchin [email protected] Raum NA 1/70 Sprechzeiten:
Datenstrukturen. Mariano Zelke. Sommersemester 2012
Datenstrukturen Mariano Zelke Sommersemester 2012 Mariano Zelke Datenstrukturen 2/19 Das Teilfolgenproblem: Algorithmus A 3 A 3 (i, j bestimmt den Wert einer maximalen Teilfolge für a i,..., a j. (1 Wenn
9. Rekursion. 1 falls n 1 n (n 1)!, andernfalls. Experiment: Die Türme von Hanoi. Links Mitte Rechts. Mathematische Rekursion
Experiment: Die Türme von Hanoi. Rekursion Mathematische Rekursion, Terminierung, der Aufrufstapel, Beispiele, Rekursion vs. Iteration Links Mitte Rechts Mathematische Rekursion Viele mathematische Funktionen
Konzepte der Informatik
Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Konzepte der Informatik Vorkurs Informatik zum WS 2013/2014 16.09. - 27.09.2013 Dr. Werner Struckmann / Hendrik Freytag 1. April 2010
Übungsklausur Algorithmen I
Jun.-Prof. Hofheinz, Jun.-Prof. Meyerhenke (ITI, KIT) 08.06.2015 Übungsklausur Algorithmen I Aufgabe 1. (Algorithm Engineering) Nennen Sie zwei Konzepte, die Algorithm Engineering im Gegensatz zu theoretischer
Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Rekursion
Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005 Rekursion Rekursion Neue Denkweise Wikipedia: Als Rekursion bezeichnet man den Aufruf
Kapitel 1: Algorithmen und ihre Analyse
LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS DATABASE Algorithmen und Datenstrukturen Kapitel 1: Algorithmen und ihre Analyse Skript zur Vorlesung Algorithmen und Datenstrukturen
4. Sortieren 4.1 Vorbemerkungen
. Seite 1/21 4. Sortieren 4.1 Vorbemerkungen allgemeines Sortierproblem spezielle Sortierprobleme Ordne a 1,..., a n so um, dass Elemente in aufsteigender Reihenfolge stehen. Die a i stammen aus vollständig
Datenstrukturen und Algorithmen (SS 2013) Prof. Dr. Leif Kobbelt Thomas Ströder, Fabian Emmes, Sven Middelberg, Michael Kremer
Präsenzübung Datenstrukturen und Algorithmen (SS 2013) Prof. Dr. Leif Kobbelt Thomas Ströder, Fabian Emmes, Sven Middelberg, Michael Kremer Dienstag, 28. Mai 2013 Nachname: Vorname: Matrikelnummer: Studiengang:
UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1. Übung 9. Sortieren
UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1 Übung 9 Sortieren Institut für Pervasive Computing Johannes Kepler Universität Linz Altenberger Straße 69, A-4040 Linz Sortieren :: Problemstellung
Vorlesung Datenstrukturen
Vorlesung Datenstrukturen Weitere Grundlagen Maike Buchin 20.4.2017 Wiederholung wir interessieren uns für effizienten Algorithmen und Datenstrukturen Laufzeiten messen wir asymptotisch in der Oh-Notation
Datenstrukturen sind neben Algorithmen weitere wichtige Bausteine in der Informatik
5. Datenstrukturen Motivation Datenstrukturen sind neben Algorithmen weitere wichtige Bausteine in der Informatik Eine Datenstruktur speichert gegebene Daten und stellt auf diesen bestimmte Operationen
3. Übungsblatt zu Algorithmen I im SoSe 2017
Karlsruher Institut für Technologie Prof. Dr. Jörn Müller-Quade Institut für Theoretische Informatik Björn Kaidel, Sebastian Schlag, Sascha Witt 3. Übungsblatt zu Algorithmen I im SoSe 2017 http://crypto.iti.kit.edu/index.php?id=799
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Prof. Martin Lercher Institut für Informatik Heinrich-Heine-Universität Düsseldorf Algorithmen und Datenstrukturen Teil 3 Suchen in Listen Version vom: 15. November 2016
Prof. Dr. Margarita Esponda
Algorithmen und Programmieren II Sortieralgorithmen imperativ Teil I Prof. Dr. Margarita Esponda Freie Universität Berlin Sortieralgorithmen Bubble-Sort Insert-Sort Selection-Sort Vergleichsalgorithmen
Elementare Konzepte von
Elementare Konzepte von Programmiersprachen Teil 2: Anweisungen (Statements) Kapitel 6.3 bis 6.7 in Küchlin/Weber: Einführung in die Informatik Anweisungen (statements) in Java Berechnung (expression statement)
Komplexität eines Algorithmus, Grössenordnung, Landau-Symbole, Beispiel einer Komplexitätsberechnung (Mergesort) 7. KOMPLEXITÄT
Komplexität eines Algorithmus, Grössenordnung, Landau-Symbole, Beispiel einer Komplexitätsberechnung (Mergesort) 7. KOMPLEXITÄT Komplexität eines Algorithmus Algorithmen verbrauchen Ressourcen Rechenzeit
2 Sortieren. Beispiel: Es seien n = 8 und a = i : a i : ϕ(i) : a ϕ(i) :
2 Sortieren Das Sortieren einer Datenfolge ist eines der am leichtesten zu verstehenden und am häufigsten auftretenden algorithmischen Probleme. In seiner einfachsten Form besteht das Problem darin, eine
AlgoDat Fragen zu Vorlesung und Klausur
AlgoDat Fragen zu Vorlesung und Klausur Hochschule Fulda FB AI Sommersemester 2018 http://ad.rz.hs-fulda.de Peter Klingebiel, HS Fulda, AI Vorab: Was ist wichtig? AlgoDat - Fragen - Peter Klingebiel -
Programmieren I. Kapitel 7. Sortieren und Suchen
Programmieren I Kapitel 7. Sortieren und Suchen Kapitel 7: Sortieren und Suchen Ziel: Varianten der häufigsten Anwendung kennenlernen Ordnung Suchen lineares Suchen Binärsuche oder Bisektionssuche Sortieren
