Systemprogrammierung
|
|
|
- Alma Franke
- vor 9 Jahren
- Abrufe
Transkript
1 IDateisystem IXI 3. Februar Februar 2011 WS 2010/11 1 / 56 1Überblick 1 Überblick Medien Speicherung von Dateien Freispeicherverwaltung Beispiele: Dateisysteme unter UNIX und Windows Dateisysteme mit Fehlererholung Datensicherung WS 2010/11 2 / 56
2 2 Medien 2.1 Festplatten 2Medien 2.1 Festplatten Häufigstes Medium zum Speichern von Dateien Aufbau einer Festplatte Schreib-, Lesekopf Sektoren Zylinder Plattenarme Kopf schwebt auf Luftpolster Spur WS 2010/11 3 / 56 2 Medien 2.1 Festplatten 2.1 Festplatten (2) Sektoraufbau Spur Sektor Lücke Breite der Spur: 5 10 µm Spuren pro Zentimeter: Breite einzelner Bits: 0,1 0,2 µm Zonen Schreib- Lesekopf Präambel 4096 Datenbits E nach Tanenbaum/Goodman 1999 Mehrere Zylinder (10 30) bilden eine Zone mit gleicher Sektorenanzahl (bessere Plattenausnutzung) WS 2010/11 4 / 56
3 2 Medien 2.1 Festplatten 2.1 Festplatten (3) Datenblätter von drei Beispielplatten Plattentyp Fujitsu M2344 (1987) Seagate heetah Seagate Barracuda Kapazität 690 MB 300 GB 400 GB Platten/Köpfe 8 / 28 4 / Zylinderzahl Sektoren ache - 4 MB 8 MB Posititionier -zeiten Spur zu Spur 4 ms 0,5 ms - mittlere 16 ms 5,3 ms 8 ms maximale 33 ms 10,3 ms - Transferrate 2,4 MB/s 320 MB/s -150 MB/s Rotationsgeschw U/min U/min U/min eine Plattenumdrehung 16 ms 6 ms 8 ms Stromaufnahme? W 12,8 W Januar 2011: Kapazität bis 3 TB, bis U/min, Transferrate bis 1,6 GB/s WS 2010/11 5 / 56 2 Medien 2.1 Festplatten 2.1 Festplatten (4) Zugriffsmerkmale blockorientierter und wahlfreier Zugriff Blockgröße zwischen 32 und 4096 Bytes (typisch 512 Bytes) Zugriff erfordert Positionierung des Schwenkarms auf den richtigen Zylinder und Warten auf den entsprechenden Sektor heutige Platten haben internen ache und verbergen die Hardware-Details Blöcke sind üblicherweise nummeriert früher getrennte Nummerierung: Zylindernummer, Sektornummer heute durchgehende Nummerierung der Blöcke Kompatibilität zu alten Betriebssystemen wird durch logical HS (ylinder/head/sector)-umrechnung hergestellt WS 2010/11 6 / 56
4 2 Medien 2.2 D-ROM 2.2 D-ROM Aufbau einer D Spirale, beginnend im Inneren Umdrehungen (600 pro mm) Gesamtlänge 5,6 km Pit Land Pit: Vertiefung, die von einem Laser abgetastet werden kann WS 2010/11 7 / 56 2 Medien 2.2 D-ROM 2.2 D-ROM (2) Kodierung Symbol: ein Byte wird mit 14 Bits kodiert (kann bereits bis zu zwei Bitfehler korrigieren) Frame: 42 Symbole werden zusammengefasst (192 Datenbits, 396 Fehlerkorrekturbits) Sektor: 98 Frames werden zusammengefasst (16 Bytes Präambel, 2048 Datenbytes, 288 Bytes Fehlerkorrektur) Effizienz: 7203 Bytes transportieren 2048 Nutzbytes Transferrate Single-Speed-Laufwerk: 75 Sektoren pro Sekunde ( Bytes pro Sekunde) 40-fach-Laufwerk: 3000 Sektoren pro Sekunde ( Bytes pro Sekunde) 52-fach-Laufwerk: Bytes pro Sekunde WS 2010/11 8 / 56
5 2 Medien 2.2 D-ROM 2.2 D-ROM (3) Kapazität ca. 650 MB Varianten D-R (Recordable): einmal beschreibbar D-RW (Rewritable): mehrfach beschreibbar DVD (Digital Versatile Disk) kleinere Pits, engere Spirale, andere Laserlichtfarbe einseitig oder zweiseitig beschrieben ein- oder zweischichtig beschrieben Kapazität: 4,7 bis 17 GB WS 2010/11 9 / 56 3Speicherung von Dateien 3.1 Kontinuierliche Speicherung Dateien benötigen oft mehr als einen Block auf der Festplatte Welche Blöcke werden für die Speicherung einer Datei verwendet? 3.1 Kontinuierliche Speicherung Datei wird in Blöcken mit aufsteigenden Blocknummern gespeichert Nummer des ersten Blocks und Anzahl der Folgeblöcke muss gespeichert werden Vorteile Zugriff auf alle Blöcke mit minimaler Positionierzeit des Schwenkarms Schneller direkter Zugriff auf bestimmter Dateiposition Einsatz z. B. bei Systemen mit Echtzeitanforderungen WS 2010/11 10 / 56
6 3.1 Kontinuierliche Speicherung (2) 3.1 Kontinuierliche Speicherung Probleme Finden des freien Platzes auf der Festplatte (Menge aufeinanderfolgender und freier Plattenblöcke) Fragmentierungsproblem (Verschnitt: nicht nutzbare Plattenblöcke; siehe auch Speicherverwaltung) Größe bei neuen Dateien oft nicht im Voraus bekannt Erweitern ist problematisch Umkopieren, falls kein freier angrenzender Block mehr verfügbar WS 2010/11 11 / Kontinuierliche Speicherung (3) 3.1 Kontinuierliche Speicherung Variation Unterteilen einer Datei in Folgen von Blöcken (hunks, Extents) Blockfolgen werden kontinuierlich gespeichert Pro Datei muss erster Block und Länge jedes einzelnen hunks gespeichert werden Problem Verschnitt innerhalb einer Folge (siehe auch Speicherverwaltung: interner Verschnitt bei Seitenadressierung) WS 2010/11 12 / 56
7 3.2 Verkettete Speicherung Blöcke einer Datei sind verkettet 3.2 Verkettete Speicherung z. B. ommodore Systeme (BM 64 etc.) Blockgröße 256 Bytes die ersten zwei Bytes bezeichnen Spur- und Sektornummer des nächsten Blocks wenn Spurnummer gleich Null: letzter Block 254 Bytes Nutzdaten Datei kann wachsen und verlängert werden WS 2010/11 13 / Verkettete Speicherung (2) 3.2 Verkettete Speicherung Probleme Speicher für Verzeigerung geht von den Nutzdaten im Block ab (ungünstig im Zusammenhang mit Paging: Seite würde immer aus Teilen von zwei Plattenblöcken bestehen) Fehleranfälligkeit: Datei ist nicht restaurierbar, falls einmal Verzeigerung fehlerhaft schlechter direkter Zugriff auf bestimmte Dateiposition häufiges Positionieren des Schreib-, Lesekopfs bei verstreuten Datenblöcken WS 2010/11 14 / 56
8 3.2 Verkettete Speicherung (3) 3.2 Verkettete Speicherung Verkettung wird in speziellen Plattenblocks gespeichert FAT-Ansatz (FAT: File Allocation Table), z. B. MS-DOS, Windows 95 FAT-Block Blöcke der Datei: 3, 8, 1, 9 erster Dateiblock Vorteile kompletter Inhalt des Datenblocks ist nutzbar (günstig bei Paging) mehrfache Speicherung der FAT möglich: Einschränkung der Fehleranfälligkeit WS 2010/11 15 / Verkettete Speicherung (4) 3.2 Verkettete Speicherung Probleme mindestens ein zusätzlicher Block muss geladen werden (aching der FAT zur Effizienzsteigerung nötig) FAT enthält Verkettungen für alle Dateien: das Laden der FAT-Blöcke lädt auch nicht benötigte Informationen aufwändige Suche nach dem zugehörigen Datenblock bei bekannter Position in der Datei häufiges Positionieren des Schreib-, Lesekopfs bei verstreuten Datenblöcken WS 2010/11 16 / 56
9 3.3 Indiziertes Speichern 3.3 Indiziertes Speichern Spezieller Plattenblock enthält Blocknummern der Datenblocks einer Datei Indexblock Blöcke der Datei: 3, 8, 1, erster Dateiblock Problem feste Anzahl von Blöcken im Indexblock Verschnitt bei kleinen Dateien Erweiterung nötig für große Dateien WS 2010/11 17 / Indiziertes Speichern (2) Beispiel UNIX Inode direkt 0 direkt Indiziertes Speichern Datenblöcke direkt 9... einfach indirekt zweifach indirekt dreifach indirekt WS 2010/11 18 / 56
10 3.3 Indiziertes Speichern (3) 3.3 Indiziertes Speichern Einsatz von mehreren Stufen der Indizierung Inode benötigt sowieso einen Block auf der Platte (Verschnitt unproblematisch bei kleinen Dateien) durch mehrere Stufen der Indizierung auch große Dateien adressierbar Nachteil mehrere Blöcke müssen geladen werden (nur bei langen Dateien) WS 2010/11 19 / 56 4Freispeicherverwaltung 4 Freispeicherverwaltung 3.3 Indiziertes Speichern Prinzipiell ähnlich wie Verwaltung von freiem Hauptspeicher Bitvektoren zeigen für jeden Block Belegung an verkettete Listen repräsentieren freie Blöcke Verkettung kann in den freien Blöcken vorgenommen werden Optimierung: aufeinanderfolgende Blöcke werden nicht einzeln aufgenommen, sondern als Stück verwaltet Optimierung: ein freier Block enthält viele Blocknummern weiterer freier Blöcke und evtl. die Blocknummer eines weiteren Blocks mit den Nummern freier Blöcke WS 2010/11 20 / 56
11 5 Beispiel: UNIX File Systems 5Beispiel: UNIX File Systems 5.1 System V File System 5.1 System V File System Blockorganisation isize Inodes Super Block Datenblöcke (Dateien, Kataloge, Indexblöcke) Boot Block Boot Block enthält Informationen zum Laden eines initialen Programms Super Block enthält Verwaltungsinformation für ein Dateisystem Anzahl der Blöcke, Anzahl der Inodes Anzahl und Liste freier Blöcke und freier Inodes Attribute (z.b. Modified flag) WS 2010/11 21 / 56 5 Beispiel: UNIX File Systems 5.2 BSD 4.2 (Berkeley Fast File System) 5.2 BSD 4.2 (Berkeley Fast File System) Blockorganisation erste Zylindergruppe zweite Zylindergruppe Boot Block Inodes Super Block ylinder Group Block Datenblöcke Zylindergruppe: Menge aufeinanderfolgender Zylinder (häufig 16) Kopie des Super Blocks in jeder Zylindergruppe freie Inodes u. freie Datenblöcke werden im ylinder Group Block gehalten eine Datei wird möglichst innerhalb einer Zylindergruppe gespeichert Vorteil: kürzere Positionierungszeiten WS 2010/11 22 / 56
12 5 Beispiel: UNIX File Systems 5.3 Linux EXT2 File System Blockorganisation erste Blockgruppe 5.3 Linux EXT2 File System zweite Blockgruppe Boot Block Super Block ylinder Group Block Inodes Datenblöcke Bitmaps (Blöcke, Inodes) Blockgruppe: Menge aufeinanderfolgender Blöcke Ähnliches Layout wie BSD FFS Blockgruppen unabhängig von Zylindern WS 2010/11 23 / 56 6Beispiel: Windows NT (NTFS) 5.3 Linux EXT2 File System Dateisystem für Windows NT Datei beliebiger Inhalt; für das Betriebssystem ist der Inhalt transparent Rechte verknüpft mit NT-Benutzern und -Gruppen Datei kann automatisch komprimiert oder verschlüsselt gespeichert werden große Dateien bis zu 2 64 Bytes lang Hard links: mehrere Einträge derselben Datei in verschiedenen Katalogen möglich Dateiinhalt: Sammlung von Streams Stream: einfache, unstrukturierte Folge von Bytes "normaler Inhalt" = unbenannter Stream (default stream) dynamisch erweiterbar Syntax: dateiname:streamname WS 2010/11 24 / 56
13 6.1 Dateiverwaltung 6.1 Dateiverwaltung Basiseinheit luster 512 Bytes bis 4 Kilobytes (beim Formatieren festgelegt) wird auf eine Menge von hintereinanderfolgenden Blöcken abgebildet logische luster-nummer als Adresse (LN) Basiseinheit Strom jede Datei kann mehrere (Daten-)Ströme speichern einer der Ströme wird für die eigentlichen Daten verwendet Dateiname, MS-DOS Dateiname, Zugriffsrechte, Attribute und Zeitstempel werden jeweils in eigenen Datenströmen gespeichert (leichte Erweiterbarkeit des Systems) WS 2010/11 25 / Dateiverwaltung (2) 6.1 Dateiverwaltung File-Reference Bezeichnet eindeutig eine Datei oder einen Katalog Sequenznummer Dateinummer Dateinummer ist Index in eine globale Tabelle (MFT: Master File Table) Sequenznummer wird hochgezählt, für jede neue Datei mit gleicher Dateinummer WS 2010/11 26 / 56
14 6.2 Master-File-Table 6.2 Master-File-Table Rückgrat des gesamten Systems große Tabelle mit gleich langen Elementen (1KB, 2KB oder 4KB groß, je nach lustergröße) kann dynamisch erweitert werden 0 Indexnummer entsprechender Eintrag für eine File-Reference enthält Informationen über bzw. die Streams der Datei Index in die Tabelle ist Teil der File-Reference WS 2010/11 27 / Master-File-Table (2) 6.2 Master-File-Table Eintrag für eine kurze Datei Standardinfo Dateiname Zugriffsrechte Daten leer Vorspann Streams Standard-Information (immer in der MFT) enthält Länge, Standard-Attribute, Zeitstempel, Anzahl der Hard links, Sequenznummer der gültigen File-Reference Dateiname (immer in der MFT) kann mehrfach vorkommen (Hard links) Zugriffsrechte (Security Descriptor ) Eigentliche Daten WS 2010/11 28 / 56
15 6.2 Master-File-Table (3) Eintrag für eine längere Datei 6.2 Master-File-Table Virtual luster Number (VN) 0 4 LN VN Anzahl d. luster LN Daten-Extents Extents werden außerhalb der MFT in aufeinanderfolgenden lustern gespeichert Lokalisierungsinformationen werden in einem eigenen Stream gespeichert WS 2010/11 29 / Master-File-Table (4) 6.2 Master-File-Table Mögliche weitere Streams (Attributes) Index Index über einen Attributschlüssel (z.b. Dateinamen) implementiert Katalog Indexbelegungstabelle Belegung der Struktur eines Index Attributliste (immer in der MFT) wird benötigt, falls nicht alle Streams in einen MFT Eintrag passen referenzieren weitere MFT Einträge und deren Inhalt Streams mit beliebigen Daten wird gerne zum Verstecken von Viren genutzt, da viele Standard- Werkzeuge von Windows nicht auf die Bearbeitung mehrerer Streams eingestellt sind (arbeiten nur mit dem unbenannten Stream) WS 2010/11 30 / 56
16 6.2 Master File Table (5) Eintrag für einen kurzen Katalog Standard- Information Index of files Katalog- Zugriffsrechte etc lib usr name File-Reference 6.2 Master-File-Table Belegungstabelle Dateiname Dateilänge Dateien des Katalogs werden mit File-References benannt Name und Standard-Attribute (z.b. Länge) der im Katalog enthaltenen Dateien und Kataloge werden auch im Index gespeichert (doppelter Aufwand beim Update; schnellerer Zugriff beim Kataloglisten) WS 2010/11 31 / Master File Table (6) Eintrag für einen längeren Katalog 6.2 Master-File-Table Standard- Information Daten-Extents Katalog- Zugriffsrechte name Index of files etc usr VN cd csh doc lib news 1024 LN Speicherung als B + -Baum (sortiert, schneller Zugriff) in einen luster passen zwischen 3 und 15 Dateien (im Bild nur eine) Belegungstabelle 10 tmp 128 Extents File reference Dateiname Dateilänge WS 2010/11 32 / 56
Systemprogrammierung. Speicherung von Dateien. Freispeicherverwaltung. Beispiele: Dateisysteme unter UNIX und Windows. Dateisysteme mit Fehlererholung
1Überblick Medien 1 Überblick Speicherung von Dateien IDateisystem IXI 3. Februar 2011 9. Februar 2011 Freispeicherverwaltung Beispiele: Dateisysteme unter UNIX und Windows Dateisysteme mit Fehlererholung
Systemprogrammierung
Systemprogrammierung Dateisystem 2./5. Februar 2009 Jürgen Kleinöder Universität Erlangen-Nürnberg Informatik 4, 2009 WS 2008/09 Systemprogrammierung (15-FS.fm 2009-02-02 09.02) A - 1 15 Implementierung
Betriebssysteme, Rechnernetze und verteilte Systeme 1 (BSRvS1) Dateisysteme.
Betriebssysteme, Rechnernetze und verteilte Systeme 1 (BSRvS1) Dateisysteme Olaf Spinczyk 1 Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund [email protected]
Betriebssysteme (BS)
Betriebssysteme (BS) Dateisysteme Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund [email protected] http://ess.cs.uni-dortmund.de/~os/ http://ess.cs.tu-dortmund.de/de/teaching/ss2011/bs/
Betriebssysteme (BS) Dateisysteme. Olaf Spinczyk.
Betriebssysteme (BS) Dateisysteme http://ess.cs.tu-dortmund.de/de/teaching/ss2016/bs/ Olaf Spinczyk [email protected] http://ess.cs.tu-dortmund.de/~os AG Eingebettete Systemsoftware Informatik
Betriebssysteme (BS)
Betriebssysteme (BS) Dateisysteme Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund [email protected] http://ess.cs.uni-dortmund.de/~os/ http://ess.cs.tu-dortmund.de/de/teaching/ss2013/bs/
Sektoraufbau. Überblick. Zonen. Datenblätter von drei Beispielplatten. Häufigstes Medium zum Speichern von Dateien
15 Implementierung von Dateien 15Implementierung von Dateien Überblick Medien Speicherung von Dateien Freispeicherverwaltung Beispiele: Detisysteme unter UNIX und Windows Dateisysteme mit Fehlererholung
3 Master File Table (2)
3 Master File Table Eintrag für eine kurze Datei Vorspann Standardinfo Dateiname Zugriffsrechte Daten leer Eintrag für eine längere Datei Virtual Cluster Number (VCN) LCN 17 131 VCN 1 2 3 5 6 7 Anzahl
Systeme 1. Kapitel 3 Dateisysteme WS 2009/10 1
Systeme 1 Kapitel 3 Dateisysteme WS 2009/10 1 Letzte Vorlesung Dateisysteme Hauptaufgaben Persistente Dateisysteme (FAT, NTFS, ext3, ext4) Dateien Kleinste logische Einheit eines Dateisystems Dateitypen
6.2 FAT32 Dateisystem
6.2 FAT32 Dateisystem Dateisystem für Windows 98 einige Unterschiede zum Linux-Dateisystem EXT2: keine Benutzeridentifikation für Dateien und Verzeichnisse! Partitionen werden durch Laufwerke repräsentiert,
6.2 Master-File-Table (3)
6.2 Master-File-Table (3) Eintrag für eine längere Datei Virtual Cluster Number (VCN) 0 4 LCN 107 131 VCN 0 1 2 3 4 5 6 7 4 4 Anzahl d. Cluster LCN 107 108 109 110 131 132 133 134 Daten-Extents Extents
Basiseinheit Cluster. Rückgrat des gesamten Systems. Basiseinheit Strom. entsprechender Eintrag für
1 Dateiverwaltung 2 Master-File-Table Basiseinheit Cluster 512 Bytes bis 4 Kilobytes (beim Formatieren festgelegt) wird auf eine Menge von hintereinanderfolgenden Blöcken abgebildet logische Cluster-Nummer
4 LCN VCN 0 1 2 3 4 5 6 7 LCN 107 108 109 110 131 132 133 134. Extents werden außerhalb der MFT gespeichert
3 Master File Table Eintrag für eine kurze Datei Standardinfo Dateiname Zugriffsrechte Daten leer Vorspann Eintrag für eine längere Datei Virtual Cluster Number (VCN) 0 LCN 107 131 VCN 0 1 2 3 5 6 7 LCN
Betriebssysteme K_Kap11B: Files, Filesysteme Datenstrukturen
Betriebssysteme K_Kap11B: Files, Filesysteme Datenstrukturen 1 Files als lineare Liste File angeordnet als verkette Liste von Blöcken Jeder Block enthält Zeiger zum Nachfolger Zeiger = Adresse des Blocks
F Implementierung von Dateien
1 Medien 1.1 estplatten Häufigstes Medium zum Speichern von Dateien Aufbau einer estplatte Implementierung von Dateien Schreib-, Lesekopf Sektoren Zylinder Spur Plattenarme Kopf schwebt auf Luftpolster
Betriebssysteme 1. Thomas Kolarz. Folie 1
Folie 1 Betriebssysteme I - Inhalt 0. Einführung, Geschichte und Überblick 1. Prozesse und Threads (die AbstrakFon der CPU) 2. Speicherverwaltung (die AbstrakFon des Arbeitsspeichers) 3. Dateisysteme (die
Grundlagen der Informatik für Ingenieure I. Background: 4. Dateisystem/Betriebssystemschnittstelle
Background: 4. Dateisystem/Betriebssystemschnittstelle 4.1 Überblick 4.2 Dateien 4.2.1 Dateiattribute 4.2.2 Operationen auf Dateien 4.3 Kataloge 4.3.1 Katalogattribute 4.3.2 Operationen auf Katalogen 4.4
Wiederholung: Realisierung von Dateien
Wiederholung: Realisierung von Dateien Zusammenhängende Belegung Datei A Datei C Datei E Datei G Datei B Datei D Datei F Belegung durch verkettete Listen (z.b. FAT) Dateiblock 0 Dateiblock 1 Dateiblock
Jeder Datenträger besitzt einen I-Node-Array. Jede Datei auf dem Datenträger hat einen I-Node-Eintrag.
Einführung in die Betriebssysteme Fallstudien zu Dateisystemen Seite 1 Unix-Dateisystem Der Adreßraum einer Datei wird in gleichlange Blöcke aufgeteilt. Ein Block hat die Länge von 1 oder mehreren Sektoren
Übersicht. UNIX-Dateisystem (ext2) Super-User unter Linux werden MSDOS: FAT16 und FAT32
Übersicht UNIX-Dateisystem (ext2) Super-User unter Linux werden MSDOS: FAT16 und FAT32 Die in diesem Teil vorgestellten Informationen stellen lediglich das Prinzip dar - im Detail ist alles etwas komplizierter...
Rechner muß unterschiedliche Geräte bedienen können. zeichenorientierte Geräte (character devices, unstructured devices)
Betriebssysteme Folie 6-1 6 Dateiverwaltung Rechner muß unterschiedliche Geräte bedienen können zeichenorientierte Geräte (character devices, unstructured devices) (z.b. Sichtgeräte, Drucker oder Übertragungsleitungen
Dateisysteme. Datei: Objekt zum Abspeichern von Daten Die Datei wird vom Dateisystem als Teil des Betriebssystems verwaltet. c~åüüçåüëåüìäé açêíãìåç
Dateisysteme Datei: Objekt zum Abspeichern von Daten Die Datei wird vom Dateisystem als Teil des Betriebssystems verwaltet. Die Datei hat einen eindeutigen Namen. 0 max Adressraum der Datei Dateilänge
Einführung FAT - File Allocation Table NTFS - New Technology Filesystem HFS - Hierachical Filesystem ext - Extended Filesystem Zusammenfassung
Lokale Dateisysteme Christine Arndt [email protected] Universität Hamburg - Studentin der Wirtschaftsinformatik 11. März 2011 Lokale Dateisysteme - Christine Arndt 1/34 Inhalt der Präsentation
Von der Platte zur Anwendung (Platte, Treiber, Dateisystem)
(Platte, Treiber, Dateisystem) 1. Einleitung 2. Dateisysteme 2.1. Logisches Dateisystem 2.2. Dateiorganisationsmodul 2.3. Basis Dateisystem 3. Festplattentreiber 3.1. Funktionsweise 3.2. Scheduling Verfahren
Verzeichnisbaum. Baumartige hierarchische Strukturierung Wurzelverzeichnis (root directory) Restliche Verzeichnisse baumartig angehängt
Verzeichnisbaum Baumartige hierarchische Strukturierung Wurzelverzeichnis (root directory) Restliche Verzeichnisse baumartig angehängt / tmp etc var usr lib home bin man lib meier mueller schulze 1 Verzeichnisse
Bedeutung der Metadateien. Alle Metadaten werden in Dateien gehalten. NTFS ist ein Journal-File-System
6 Beispiel: Windows NT (NTFS) 6.3 Metadaten 6 Beispiel: Windows NT (NTFS) 6.3 Metadaten 6.3 Metadaten 6.3 Metadaten (2) Alle Metadaten werden in Dateien gehalten Indexnummer 0 1 2 3 4 5 6 7 8 16 17 MFT
Dateisysteme. Erweiterte Anforderungen an Speicher
Erweiterte Anforderungen an Speicher Mehr Speicher als adressierbar ist. Daten sollen nach Beendigung des Prozesses zur Verfügung stehen Mehrere Prozesse sollen auf die Daten zugreifen können. Nutzung
Betriebssysteme I WS 2015/2016. Betriebssysteme / verteilte Systeme Tel.: 0271/ , Büro: H-B 8404
Betriebssysteme I WS 2015/2016 Betriebssysteme / verteilte Systeme [email protected] Tel.: 0271/740-4050, Büro: H-B 8404 Stand: 28. Januar 2016 Betriebssysteme / verteilte Systeme Betriebssysteme
Systeme I: Betriebssysteme Übungsblatt 3
Institut für Informatik Arbeitsgruppe Autonome Intelligente Systeme Freiburg, 10 November 2015 Systeme I: Betriebssysteme Übungsblatt 3 Aufgabe 1 (1,5 Punkte) Betrachten Sie die Befehle du, df, mount Lesen
Partitionieren und Formatieren
Partitionieren und Formatieren Auf eine Festplatte werden Partitionen angelegt, damit Daten an verschiedenen (relativ) unabhängigen Orten gespeichert werden können oder dass mehrere unabhängige Betriebssysteme
Alle Metadaten werden in Dateien gehalten
6 Beispiel: Windows NT (NTFS) 6.3 Metadaten 6.3 Metadaten Alle Metadaten werden in Dateien gehalten Indexnummer 0 1 2 3 4 5 6 7 8 16 17 MFT MFT Kopie (teilweise) Log File Volume Information Attributtabelle
Betriebssysteme Teil 16: Dateisysteme (Beispiele)
Betriebssysteme Teil 16: Dateisysteme (Beispiele) 21.01.16 1 Übersicht UNIX-Dateisystem (ext2) Super-User unter Linux werden MSDOS: FAT16 und FAT32 Die in diesem Teil vorgestellten Informationen stellen
Grundlagen der Betriebssysteme
Grundlagen der Betriebssysteme [CS2100] Sommersemester 2014 Heiko Falk Institut für Eingebettete Systeme/Echtzeitsysteme Ingenieurwissenschaften und Informatik Universität Ulm Kapitel 5 Filesysteme Folie
Betriebssysteme I WS 2017/18. Prof. Dr. Dirk Müller. 05a 64-/32-Bit-Architekturen
Betriebssysteme I 05a 64-/32-Bit-Architekturen Prof. Dr. Dirk Müller Begriff Eine n-bit-architektur ist eine Prozessorarchitektur mit einer Wortbreite von n Bit. meist Zweierpotenzen: 8-, 16-, 32-, 64-Bit-Architekturen
4.3 Hintergrundspeicher
4.3 Hintergrundspeicher Registers Instr./Operands Cache Blocks Memory Pages program 1-8 bytes cache cntl 8-128 bytes OS 512-4K bytes Upper Level faster Disk Tape Files user/operator Mbytes Larger Lower
Zwei Möglichkeiten die TLB zu aktualisieren
Zwei Möglichkeiten die TLB zu aktualisieren Die MMU kümmert sich um alles (Hardware-Lösung) sucht die p-entry wenn diese nicht da ist, behandelt direkt das TLB-miss zum Schluss wird die neue p-entry (virt
Betriebssysteme WS 2012/13 Peter Klingebiel, DVZ. Zusammenfassung Kapitel 4 - Datenträger/Dateiverwaltung
Betriebssysteme WS 2012/13 Peter Klingebiel, DVZ Zusammenfassung Kapitel 4 - Datenträger/Dateiverwaltung Zusammenfassung Kapitel 4 Dateiverwaltung 1 Datei logisch zusammengehörende Daten i.d.r. permanent
Dateisystem: Einführung
Dateisystem: Einführung Hauptaufgabe des Dateisystems ist der schnelle und zuverlässige Zugriff auf Dateien Problem: Entweder schneller Zugriff oder viel Redunanz beim speichern! Zusätzlich müssen Unterverzeichnisse
Dateisystem: Einführung
Dateisystem: Einführung Hauptaufgabe des Dateisystems ist der schnelle und zuverlässige Zugriff auf Dateien Problem: Entweder schneller Zugriff oder viel Redunanz beim speichern! Zusätzlich müssen Unterverzeichnisse
UNIX-Dateisysteme - Allgemeines
FACHHOCHSCHULE MUENCHEN FACHBEREICH ELEKTROTECHNIK UND INFORMATIONSTECHNIK FG TECHNISCHE INFORMATIK V BS 36 1 TH 7 ----------------------------------------------------------------------------------- UNIX-Dateisysteme
Alle Metadaten werden in Dateien gehalten
6 Beispiel: Windows NT (NTFS) 6.3 Metadaten 6.3 Metadaten Alle Metadaten werden in Dateien gehalten Indexnummer 0 1 2 3 4 5 6 7 8 16 17 MFT MFT Kopie (teilweise) Log File Volume Information Attributtabelle
Was ist ein Dateisystem? Wozu dient es? Lokale Dateisysteme. Speichergrößen. Inhalt der Präsentation
Was ist ein Dateisystem? Wozu dient es? Lokale Dateisysteme Christine Arndt [email protected] Universität Hamburg - Studentin der Wirtschaftsinformatik 11. März 2011 Schicht zwischen Betriebssystem
Halt! Wo bin ich überhaupt?... C:\
Halt! Wo bin ich überhaupt?... C:\ FAT32 und Co Dateisysteme Datenträger FAT Forensik Bootreihenfolge Einschalten BIOS -> Power-On Self Test (POST) BIOS -> Master Boot Record (MBR) Bootsektor Betriebssystem
Dateisysteme. Was ist ein Dateisystem?:
Partitionierung Dateisysteme Was ist ein Dateisystem?: Eine Zuordnung Dateiname zu Dateiinhalt Ein Dateisystem befndet sich auf einem Datenträger Ein Datenträger kann als Folge von Bytes gesehen werden
Einführung in Dateisysteme
Einführung in Dateisysteme Proseminar Speicher- und Dateisysteme Malte Hamann Sommersemester 2012 15.06.2012 Einführung Dateisysteme - Malte Hamann 1/29 Gliederung 1. Einführung 2. Grundlegendes Konzept
Lösung von Übungsblatt 4
Lösung von Übungsblatt 4 Aufgabe 1 (Fesplatten) 1. Was versteht man bei Festplatten unter Sektoren (= Blöcken)? Die Spuren sind in kleine logische Einheiten (Kreissegmente) unterteilt, die Blöcke oder
Wozu braucht man Dateisysteme? Benutzer muss sich nicht darum kümmern wie die Daten auf der Hardware abge- legt
Netzwerkspeicher und Dateisysteme Jedes Dokument, jedes Bild, jedes Musikstück - kurz, jedes Datum mit dem wir auf Com- putern tagtäglich hantieren wird irgendwo gespeichert. In den meisten Fällen liegt
Betriebssysteme. Tutorium 12. Philipp Kirchhofer
Betriebssysteme Tutorium 12 Philipp Kirchhofer [email protected] http://www.stud.uni-karlsruhe.de/~uxbtt/ Lehrstuhl Systemarchitektur Universität Karlsruhe (TH) 3. Februar 2010 Philipp
9. Dateisysteme. Betriebssysteme Harald Kosch Seite 164
9. Dateisysteme Eine Datei ist eine Abstraktion für ein Aggregat von Informationen (muß nicht eine Plattendatei sein). Aufbau eines Dateisystems: Katalog (Directory) Einzelne Dateien (Files) Zwei Aspekte
Konzepte von Betriebssystemkomponenten Disk-Caches und Dateizugriff
Konzepte von Betriebssystemkomponenten Disk-Caches und Dateizugriff von Athanasia Kaisa Grundzüge eines Zwischenspeichers Verschiedene Arten von Zwischenspeicher Plattenzwischenspeicher in LINUX Dateizugriff
Freispeicherverwaltung Martin Wahl,
Freispeicherverwaltung Martin Wahl, 17.11.03 Allgemeines zur Speicherverwaltung Der physikalische Speicher wird in zwei Teile unterteilt: -Teil für den Kernel -Dynamischer Speicher Die Verwaltung des dynamischen
7.2 Journaling-File-Systems (4)
7.2 Journaling-File-Systems (4) Log vollständig (Ende der Transaktion wurde protokolliert und steht auf Platte): Redo der Transaktion: alle Operationen werden wiederholt, falls nötig Log unvollständig
10. Implementierung von Dateisystemen
10. Implementierung von Dateisystemen Application Programs Logical Files System File Organization Module Input/Output Control Basic File System Devices Figure 60: Schichten eines Filesystems Betriebssysteme
5 Kernaufgaben eines Betriebssystems (BS)
5 Kernaufgaben eines Betriebssystems (BS) Betriebssystem ist eine Menge von Programmen, die die Abarbeitung anderer Programme auf einem Rechner steuern und überwachen, insbesondere verwaltet es die Hardware-Ressourcen
KV Betriebssysteme (Rudolf Hörmanseder, Michael Sonntag, Andreas Putzinger)
SS 2006 KV Betriebssysteme (Rudolf Hörmanseder, Michael Sonntag, Andreas Putzinger) Datenpersistenz in OS - Dateien und Dateisysteme 1 Inhalt Anatomie / Terminologie Festplatten Boot-Vorgang Datei und
Was machen wir heute? Betriebssysteme Tutorium 10. Frage 10.1.a. Frage 10.1.a
Was machen wir heute? Betriebssysteme Tutorium 10 Philipp Kirchhofer [email protected] http://www.stud.uni-karlsruhe.de/~uxbtt/ Lehrstuhl Systemarchitektur Universität Karlsruhe (TH) 1
BACKUP Datensicherung unter Linux
BACKUP Datensicherung unter Linux Von Anwendern Für Anwender: Datensicherung in Theorie und Praxis! Teil 4: Datenrettung Eine Vortragsreihe der Linux User Group Ingolstadt e.v. (LUG IN) in 4 Teilen Die
Kap. 8: Dateisysteme (E3 EXT2 Dateisystem) 1
Kap. 8: Dateisysteme (E3 EXT2 Dateisystem) 1 E 3 EXT2 Dateisystem Lernziele Aufbau des ext2-dateisystems kennenlernen Verwaltungsstrukturen auf dem Datenträger analysieren Hard- und Softlinks Übungsumgebung
5.2 Analyse des File Slack
5.2 Analyse des File Slack 109 Es gibt an vielen Stellen eines Betriebssystems Fundorte für Gebrauchsspuren oder Hinweise auf Auffälligkeiten. Diese Stellen sollten grundsätzlich aufgesucht und analysiert
Dateisystem: Einführung
Dateisystem: Einführung Hauptaufgabe des Dateisystems ist der schnelle und zuverlässige Zugriff auf Dateien Problem: Entweder schneller Zugriff oder viel Redundanz beim speichern! Zusätzlich müssen Unterverzeichnisse
Dateisystem: Einführung
Dateisystem: Einführung Hauptaufgabe des Dateisystems ist der schnelle und zuverlässige Zugriff auf Dateien Problem: Entweder schneller Zugriff oder viel Redundanz beim speichern! Zusätzlich müssen Unterverzeichnisse
Freispeicherverwaltung
Freispeicherverwaltung Allgemeine Techniken und Anwendung unter Linux Martin Wahl, 17.11.03 Freispeicherverwaltung 1 Überblick Allgemeines Suchstrategien Verwaltungsstrategien externer / interner Verschnitt
Übung Datenbanksysteme II Physische Speicherstrukturen. Thorsten Papenbrock
Übung Datenbanksysteme II Physische Speicherstrukturen Thorsten Papenbrock Organisatorisches: Übung Datenbanksysteme II 2 Übung Thorsten Papenbrock ([email protected]) Tutoren Alexander
Übungen zum Fach Betriebssysteme Kapitel 6
Übungen zum Fach Betriebssysteme Kapitel 6 Prof. Dr. Kern & Prof. Dr. Wienkop Dateiverwaltung 1 Abbildung Spur/Sektor FAT-Eintrag Auf einer einseitigen Diskette mit 80 Spuren (Nr. 0 bis 79) und 15 Sektoren
Betriebssysteme I WS 2014/2015. Betriebssysteme / verteilte Systeme [email protected] Tel.: 0271/740-4050, Büro: H-B 8404
Betriebssysteme I WS 2014/2015 Betriebssysteme / verteilte Systeme [email protected] Tel.: 0271/740-4050, Büro: H-B 8404 Stand: 15. Januar 2015 Betriebssysteme / verteilte Systeme Betriebssysteme
Proseminar Konzepte von Betriebssystem- Komponenten (KVBK) Vortrag zum Thema: Speicheraddressierung, Segmentierung, Paging
Proseminar Konzepte von Betriebssystem- Komponenten (KVBK) Vortrag zum Thema: Speicheraddressierung, Segmentierung, Paging Grundlegende Bedeutung von Speicheradressierung: Wie sind die Daten auf Dem Speicher
8. Massenspeicher und Dateisysteme
Abb. 8.1: Größenverhältnisse bei einer Festplatte Abb. 8.2: Festplattencontroller und Laufwerk Abb. 8.3: FM- und MFM-Format des Bytes 01101001 Datenbit RLL 2,7-Code 000 00100 10 0100 010 100100 0010 00100100
Das ext2-dateisystem
Das ext2-dateisystem 18. Februar 2004 Geschichte Linux wurde unter Minix entwickelt. Dieses Betriebssystem hatte ein einfaches Dateisystem, das zudem noch sehr gut getestet war. So war das erste Dateisystem,
Einführung in Dateisysteme
Proseminar Speicher- und Dateisysteme Agenda 1. Allgemeines 2. Grundlagen/ Konzeption eines Dateisystems 3. Strukturelle Konzepte von Dateisystemen/ Beispiele 4. Sicherheitsaspekte 5. Ausblick Seite 2
Linux booten. Jörg Ahrens
Linux booten Was passiert beim Einschalten eines PCs? Das BIOS Viele Bootsektoren Bootloader (Grub, LILO) Kernel Parameter und InitRD Feinheiten beim Plattenausfall Der Bootvorgang Beim Einschalten eines
Partitionierung unter Linux
Partitionierung unter Linux Die Struktur einer Festplatte Aufbau der Partitionstabelle und Regeln Programme zum Partitionieren Partitionslayouts Dateisysteme Volume Label Warum partitionieren? Mehrere
Einführung. Datei Verwaltung. Datei Verwaltung. Einführung. Einführung. Einführung. Einführung. Datei Verwaltung. Puffer Cache Verwaltung
Verwaltung des s Verwaltung des s A Anwenderprogramm B C Gerät Gerät Gerät Gerät A rufe PufferCacheVerwaltung Anwenderprogramm B PufferCacheVerwaltung rufe C Gerät Gerät Gerät Gerät PufferCacheVerwaltung
)$7)HVWSODWWHQ3DUWLWLRQ:HQLJHUNDQQPHKUVHLQ
)$7)HVWSODWWHQ3DUWLWLRQ:HQLJHUNDQQPHKUVHLQ Beim )$7'DWHLHQV\VWHP (File Allocation Table, Datei-Zuordnungstabelle) ist ein &OXVWHU die kleinste belegbare =XRUGQXQJVHLQKHLW. Je nach Partition werden ein
Implementierung von Dateisystemen
Implementierung von Dateisystemen Teil 2 Prof. Dr. Margarita Esponda WS 2011/2012 44 Effizienz und Leistungssteigerung Festplatten sind eine wichtige Komponente in jedem Rechnersystem und gleichzeitig
4.1 Datenträger/Partitionen
.1 Datenträger/Partitionen.1.1 Von Festplatten und anderen Speichern Bei der Partitionierung geht es um die Aufteilung von Hintergrundspeichern (auch Massenspeicher genannt). Heute sind das meistens Festplatten
Digitale Forensik Schulung Bundespolizeiakademie März 2009
Digitale Forensik Schulung Bundespolizeiakademie März 2009 Teil 15+17: NTFS und SRP-Analyse Dipl.-Inform. Markus Engelberth Dipl.-Inform. Christian Gorecki Universität Mannheim Lehrstuhl für Praktische
Übung Datenbanksysteme II Physische Speicherstrukturen. Maximilian Jenders. Folien basierend auf Thorsten Papenbrock
Übung Datenbanksysteme II Physische Speicherstrukturen Maximilian Jenders Folien basierend auf Thorsten Papenbrock Organisatorisches: Übung Datenbanksysteme II 2 Übung Maximilian Jenders ([email protected])
Computer-Systeme. Teil 16: Dateisysteme
Computer-Systeme Teil 16: Dateisysteme Computer-Systeme WS 12/13 - Teil 16/Dateisysteme 16.01.2013 1 Literatur (Auszug) [1] [2] [3] [4] [5] Rémy Card, Theodore Ts'o, Stephen Tweedie: Design and Implementation
Teil 2.3. Welche Hardware (Elektronik) benutzt ein Computer zum Speichern von Daten?
Speichern von Daten Teil 2.3 Welche Hardware (Elektronik) benutzt ein Computer zum Speichern von Daten? 1 von 23 Inhaltsverzeichnis 3... Speicher sind Wichtig! 4... Speicher Einheiten 7... Flüchtiger Speicher
RO-Tutorien 15 und 16
Tutorien zur Vorlesung Rechnerorganisation Tutorienwoche 10 am 29.06.2011 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft
Olga Perevalova Universität Hamburg 18-06-2015
Themeneinführung ext FAT NTFS ReFS HFS Fazit Lokale Dateisysteme Olga Perevalova Universität Hamburg 18-06-2015 1/22 Themeneinführung ext FAT NTFS ReFS HFS Fazit Themeneinführung Extended File System (ext/
PROGRAMMIEREN MIT UNIX/LINUX-SYSTEMAUFRUFEN
PROGRAMMIEREN MIT UNIX/LINUX-SYSTEMAUFRUFEN 3. UNIX/Linux-Dateisysteme und zugehörige Systemaufrufe und Kommandos (Teil I) Wintersemester 206/7 UNIX/Linux-Dateisystem(e) Systemaufrufe zur Dateiarbeit:
Was machen wir heute? Betriebssysteme Tutorium 12. Organisatorisches. Frage 12.1.a. Programmieraufgaben Vorstellung. Antwort
Was machen wir heute? Betriebssysteme Tutorium 12 1 Organisatorisches Philipp Kirchhofer [email protected] http://www.stud.uni-karlsruhe.de/~uxbtt/ Lehrstuhl Systemarchitektur Universität
GJU IT-forensics course
GJU IT-forensics course Harald Baier Analyse von FAT-Dateisystemen Inhalt Layout eines FAT-Dateisystems Metadaten eines FAT-Dateisystems Verzeichnisse im FAT-Dateisystem Harald Baier IT-forensics course
Moderne Betriebssysteme. 4., aktualisierte Aulage. Andrew S. Tanenbaum Herbert Bos
Moderne Betriebssysteme 4., aktualisierte Aulage Andrew S. Tanenbaum Herbert Bos 4.4 Dateisystemverwaltung und -optimierung Nähe des Plattenanfangs, somit beträgt die durchschnittliche Entfernung zwischen
Datenbank Objekte (Tabellen, Segemente, Extents, Blöcke)
Datenbank Objekte (, Segemente,, Blöcke) 5. Juni 2007 Datenbank Objekte (, Segemente,, Blöcke) Datenbank Objekte (, Segemente,, Blöcke) Aufbau eines Datenblocks Zeilenverkettung und -verschiebung Freispeicherverwaltung
Leichtgewichtsprozesse
Leichtgewichtsprozesse häufiger Prozeßwechsel stellt in einem Betriebssystem eine hohe Belastung dar; auch erfordert die Generierung eines neuen Prozesses viele System-Resourcen in vielen Anwendungen werden
J UNIX-Dateisystem. 1 Umwandlung: Pfad : Inode. J.1 Funktionalität. J.2 Directories (Kataloge) 1 Umwandlung: Pfad : Inode (2) J.
J UNIX-Dateisystem Umwandlung: Pfad : Inode J Inodes J Funktionalität Abstraktionen für Benutzersicht: Pfade, Dateinamen Dateibaum verdeckt mehrere Platten (bzw Partitionen) Dateien = unstrukturierte Byteströme
