Zwei Möglichkeiten die TLB zu aktualisieren

Größe: px
Ab Seite anzeigen:

Download "Zwei Möglichkeiten die TLB zu aktualisieren"

Transkript

1 Zwei Möglichkeiten die TLB zu aktualisieren Die MMU kümmert sich um alles (Hardware-Lösung) sucht die p-entry wenn diese nicht da ist, behandelt direkt das TLB-miss zum Schluss wird die neue p-entry (virt phys mapping) in der in das TLB eingetragen Die TLB wird direkt vom Betriebssystem verwaltet (Software-Lösung) ein TLB-miss verursacht ein Trap und wird vom Betriebssystem behandelt Das Betriebssystem sucht und ladet die neue p-entry ins TLB 49

2 Was passiert, wenn ein Prozess gestartet wird? Prozess (p) = n Seiten if at least n frames in VM available allocate n frames for p load one page of p in main memory put the entry on the page table of p else??????? Es gibt meistens eine Seitentabelle pro Prozess 50

3 Speicherschutz valid-invalid bit Mit Hilfe eines Bits pro Frame wird Speicherschutz gewährleistet valid = gültiger Speicherzugriff, weil die Adresse im Prozess- Adressraum ist invalid = die Adresse ist nicht im Prozess-Adressraum Seitengröße = 2048 Frame- Nummer Valid-invalid- Bit 0 1 Seite 0 Seite Seite 0 Seite 1 Seite 2 Seite 3 Seite v 2 v 3 v 5 v 6 v 0 i Seite 1 Seite 2 Seite 3 Seite i 7 0 i Seitentabelle address-space identifiers (ASIDs)

4 Verwendung gemeinsamer Seiten (pages) - Besonders gut geeignet für Timesharing-Systeme - Seiten von gemeinsamen Programmen wie zb - Windows-System - Datenbank-Systeme, - IPC - Texteditoren - Übersetzer, usw - müssen immer im gleichen Speicherbereich stehen - Privater Programmkode und Daten - kann in beliebigem Speicherbereich stehen 52

5 Verwendung gemeinsamer Seiten (pages) Editor 1 Editor 2 Editor 3 Daten 1 Prozess P 1 Editor 1 Editor 2 Editor 3 Daten 3 Seitentabelle von P Seitentabelle von P Editor 1 Editor 2 Editor 3 Daten 2 Prozess P 2 Seitentabelle von P Daten 1 Daten 3 Editor 1 Editor 2 Editor 3 Daten 2 physikalischer Speicher Prozess P 3

6 Verwendung gemeinsamer Seiten (pages) Stapel Stapel gemeinsame Bibliotheken gemeinsame Bibliotheken gemeinsame Bibliotheken Heap Data Code Heap Data Code Seiten von gemeinsamen Bibliotheken 54

7 Struktur von Seitentabellen Programme werden ständig größer und entsprechend die Seitentabellen auch Die meisten modernen Rechner stellen einen sehr großen logischen Adressraum zur Verfügung ( bis ) Wie viele Seiten? GB 4KB = 1,048,576 Seiten Es gibt drei Lösungen: - Die Seitentabellen selber werden in Seiten (pages) geteilt - Hashtabellen werden verwendet - invertierte Seitentabellen (inverted page table) 55

8 Hierarchische Seitentabellen Moderne Rechner arbeiten mit einem Adressraum zwischen 2 32 und 2 64 Beispiel Mit einem Adressraum = 2 32 Seitengröße = 4 KB = 2 12 Tabellengröße = 2 20 Einträge Wenn ein Tabelleneintrag = PTE = 4 Bytes Seitentabelle = 4 MB 100 Prozesse = 400 MB nur für die Seitentabellen! zu groß! 56

9 Hierarchische Seitentabellen Die Seitentabellen selber werden in Seiten geteilt Seitentabelle Seite der Seitentabelle Seitentabelle Speicher Bildquelle: Silverschatz, Galvin und Gagne

10 Hierarchische Seitentabellen Seitentabellen 0 1 page table # 2 page frame # Seitentabelle der Seitentabelle physikalischer Adresse frame # d frame # + d p 1 p 2 d logische Adresse physikalischer Speicher 58

11 Beispiel einer zweistufigen Seitenhierarchie Eine logische Adresse mit 32 Bits wird wie folgt geteilt : 22 Bits für die Seitennummer 10 Bits für die Verschiebung (Page Offset) Die Seitentabelle selber ist geteilt: 12 Bits Seitennummer in der Seitentabelle 10 Bits Seiten-Offset innerhalb der Seitentabelle Eine logische Adresse sieht wie folgt aus: page number page offset p 1 p 2 d wo p 1 der Index in der ersten Seitentabelle und p 2 die Verschiebung innerhalb der Seite der äußeren Seitentabelle ist 59

12 Beispiel einer zweistufigen Seitenhierarchie p 1 p 2 d p 1 Seitentabelle der Seitentabelle + p 2 + d Seitentabelle 60

13 CPU p 1 p 2 d Beispiel einer zweistufigen Seitenhierarchie p 1 TLB miss + p 1 p 2 f p 2 + d + TLB hit TLB 61

14 2 32 4KB 4KB Seitengroße Eine gute Teilung ist: p 1 p 2 d Beispiel einer dreistufigen Seitenhierarchie ab 2 64 schlecht! besser noch zu groß! 62

15 Seitentabellen mit Hilfe von Hash-Funktionen Werden oft verwendet mit Adressräumen größer als 32 Bits Eine logische Seitennummer wird mit Hilfe einer Hash-Funktion in der Seitentabelle abgebildet An dieser Position der Tabelle hängt eine verkettete Liste von Elementen, die zur selben Seitennummer abgebildet werden Die logische Seitennummer wird dann mit den Elementen der Liste verglichen Wenn die Seitennummer in der Liste ist, wird die entsprechende Frame-Nummer gewählt 63

16 Seitentabellen mit Hilfe von Hash-Funktionen logische Adresse p d r d physikalische Adresse Hashtabelle Hash- Funktion q s p r t u NULL physikalischer Speicher

17 Inverted Page Table Nur eine Seitentabelle existiert für das gesamte System Einen Speichereintrag für jede reale Speicherseite Die Prozess ID wird in die Tabelle gespeichert Es wird insgesamt weniger Speicherplatz für die Prozesstabellen verbraucht, aber die Zeit zum Suchen in der Tabelle wird größer Eine Hashtabelle wird verwendet, um die Suche zu beschleunigen Beispiele: 64-Bit UltraSPARC und PowerPC 65

18 Invertierte Seitentabelle CPU Logische Adresse pid p d i d physikalische Adresse physikalischer Speicher Suche i pid p Seitentabelle 66

19 Invertierte Seitentabelle CPU Logische Adresse pid p d j Verkettung d physikalische Adresse physikalischer Speicher Hash- Funktion p pid j Seitentabelle 67

20 Was ist die beste Seitengröße? Kleine Seiten kleine interne Fragmente, aber große Seitentabellen Nehmen wir an: Große Seiten große interne Fragmente, aber kleine Seitentabellen p = Länge des logischen Adressraums des Prozesses und s = Seitenlänge Dann ist p/s = Länge der Seitentabelle s/2 = mittlere Größe des internen Fragments (nur in der letzten Seite) Der relative Speicherverlust V ist V = (p/s + s/2)/p Daraus folgt durch Minimierung: Optimale Seitengröße = 2 p 68

21 Page Table Entries (PTEs) Mikroprozessor-Architektur abhängig V Valid-Bit Befindet sich die Seite im Hauptspeicher? M Modify-Bit Ist die Seite verändert worden? R Reference-Bit Ist die Seite verwendet worden (read/written) prot Protection-Bits Ist die Seite lesbar, veränderbar oder ausführbar? page frame number Physikalische Adresse im Hauptspeicher (RAM) 69

22 Segmentierung Segmentierung ist ein Speicherverwaltungsschema, das die logische Sichtweise des Benutzers unterstützt Programme werden in logische Segmente geteilt Beispiel: Hauptprogramm Funktion Methode Objekte lokale + globale Variablen Datenstrukturen Standard C-Bibliothek usw 70

23 Programm aus der Sichtweise eines Benutzers Hauptprogramm Stapel Symboltabelle Standard Bibliothek Funktion 1 Objekt 2 logischer Adressraum 71

24 Segmentierung aus einer logischen Benutzersichtweise Benutzer-Adressraum Physikalischer Adressraum 72

25 Segmentierung aus logischer Benutzersichtweise Eine logische Adresse ist ein zweistelliges Tupel: <Seitennummer, Offset> Segmenttabelle Jeder Segmenttabelleneintrag hat: Base = Start der physikalischen Adresse des Segments im Speicher Grenze = Größe des Segments Segment Table Base Register (STBR) = Zeiger auf die Segmenttabelle des Speichers Segment Table Length Register (STLR) =Anzahl der Segmente, die im Programm verwendet werden Eine Segmentnummer s ist legal, wenn s < STLR 73

26 Speicherschutz Jeder Segmenteintrag in der Tabelle hat: validation bit = 0 illegales Segment read/write/execute Zugriffsrechte Die Segmente haben Schutzbits Gemeinsame Codeverwendung auf Segment-Ebene Weil Segmente verschiedene Größen haben, ist dynamische Speicherallokation ein Problem 74

27 Hardwareunterstützung für Segmentierung s limit base Segmenttabelle physikalischer Speicher CPU s d < ja nein + Speicherzugriff Ausnahmefehler (trap) 75

28 Hardwareunterstützung für Segmentierung Hauptprogramm physikalischer Speicher Segment 0 Stapel Objekt 2 Segment 2 Symboltabelle Segment 1 Funktion 1 Standard Bibliothe k limit base Segmenttabelle Segment 0 Segment 1 Segment 2 logischer Adressraum 76

29 Das Intel-Pentium Die Hardware-Architektur des Intel-Pentium-CPU unterstützt pure Segmentierung oder Segmentierung kombiniert mit Paging Pentium Segmentierung - Segmente können bis zum 4 GB groß sein - Ein Prozess kann maximal 16 Segmente haben - Der Speicherraum des Prozesses hat zwei Partitionen - Erste Partition: private Segmente des Prozesses - Zweite Partition: gemeinsame Segmente für alle Prozesse - Information über die Partitionen: - local descriptor table LDT (Tabelle der ersten Partition) - global descriptor table GDT (Tabelle der zweiten Partition) 77

30 selector Pentium-Segmentierung segment number g 13 2 protection 0 = das Segment ist in GDT 1 = das Segment ist in LDT offset Von logischer in physikalische Adresse Physikalischer Speicher CPU logische Adresse segmentation unit lineare Adresse paging unit physikalische Adresse

31 Pentium Paging-Architektur Die Pentium-Architektur erlaubt zwei verschiedene Seitengrößen (4 KB oder 4 MB) Bei 4 KB-Seitengröße wird ein zweistufiges Seitenschema verwendet Seitennummer Dir Page offset 12 Jeder Prozess hat ein Seitenverzeichnis, das aus Bits-Einträgen besteht Jeder Eintrag in diesem Verzeichnis zeigt auf eine Seitentabelle, die wiederum aus Bits-Einträgen besteht 79

32 Pentium Segment- und Paging-Architektur logische Adresse selector offset descriptor table segment descriptor + Dir Page lineare Adresse Offset selektiertes Wort Dir Page 4 KB page Offset Seitenverzeichnis Seitentabelle Seitenrahmen

33 Pentium Segment- und Paging-Architektur logische Adresse selector offset descriptor table segment descriptor + page directory lineare Adresse offset selektiertes Wort Dir 4 MB page Offset Seitenverzeichnis Seitenrahmen

34 Linux in Pentium-Systemen Linux hat eine minimale Segmentierung-Unterstützung Nur 6 Segmente - kernel code - kernel data - user code - user data - task-state segment (TSS) - default LDT segment Dreistufige Seitentabelle in Linux Globales Verzeichnis Mittleres Verzeichnis Seitentabelle Offset

35 Dreistufige Seitenadressierung im Linux a + a + +

7. Speicherverwaltung

7. Speicherverwaltung 7. Speicherverwaltung Ziele Zuteilung des Arbeitsspeicher Abbildung der symbolischen Adresse auf die physikalische Adresse Adress-Transformation Symbolische Adresse verschiebbare Adresse physikalische

Mehr

Proseminar Konzepte von Betriebssystem- Komponenten (KVBK) Vortrag zum Thema: Speicheraddressierung, Segmentierung, Paging

Proseminar Konzepte von Betriebssystem- Komponenten (KVBK) Vortrag zum Thema: Speicheraddressierung, Segmentierung, Paging Proseminar Konzepte von Betriebssystem- Komponenten (KVBK) Vortrag zum Thema: Speicheraddressierung, Segmentierung, Paging Grundlegende Bedeutung von Speicheradressierung: Wie sind die Daten auf Dem Speicher

Mehr

Betriebssysteme Sommersemester Betriebssysteme. 5. Kapitel. Adressumsetzung. Dr. Peter Tröger / Prof. M. Werner. Professur Betriebssysteme

Betriebssysteme Sommersemester Betriebssysteme. 5. Kapitel. Adressumsetzung. Dr. Peter Tröger / Prof. M. Werner. Professur Betriebssysteme Betriebssysteme Sommersemester 2017 Betriebssysteme 5. Kapitel Adressumsetzung Dr. Peter Tröger / Prof. M. Werner Professur Betriebssysteme 5.1 Speicher schneller, teurer, kleiner Betriebssysteme Adressumsetzung

Mehr

Proseminar Konzepte von Betriebssystem-Komponenten (KVBK) Vortrag zum Thema: Speicheraddressierung, Segmentierung, Paging Von Christian Hubert

Proseminar Konzepte von Betriebssystem-Komponenten (KVBK) Vortrag zum Thema: Speicheraddressierung, Segmentierung, Paging Von Christian Hubert Proseminar Konzepte von Betriebssystem-Komponenten (KVBK) Vortrag zum Thema: Speicheraddressierung, Segmentierung, Paging Von Christian Hubert 1.: Speicherung und Adressierung von Daten Bei der Speicheradressierung

Mehr

Besprechung des 9. Übungsblattes Virtuelle Speicherverwaltung Aufgaben

Besprechung des 9. Übungsblattes Virtuelle Speicherverwaltung Aufgaben Themen heute Besprechung des 9. Übungsblattes Virtuelle Speicherverwaltung Aufgaben Besprechung des 9. Übungsblattes Aufgabe 2 Ist in einer Aufgabe wie hier keine explizite Wortbreite angegeben, nicht

Mehr

Tutorium Rechnerorganisation

Tutorium Rechnerorganisation Woche 11 Tutorien 3 und 4 zur Vorlesung Rechnerorganisation 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

RO-Tutorien 15 und 16

RO-Tutorien 15 und 16 Tutorien zur Vorlesung Rechnerorganisation Tutorienwoche 10 am 29.06.2011 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Virtueller Speicher und Memory Management

Virtueller Speicher und Memory Management Virtueller Speicher und Memory Management Speicher-Paradigmen Programmierer ein großer Adressraum linear adressierbar Betriebssystem eine Menge laufender Tasks / Prozesse read-only Instruktionen read-write

Mehr

Betriebssystemtechnik

Betriebssystemtechnik Betriebssystemtechnik Übung 2 - Den Speicher beseiten Daniel Danner Christian Dietrich Gabor Drescher May 19, 2015 Betriebssystemtechnik 1 13 Ziel dieser Übung Betriebssystemtechnik 2 13 Ziel dieser Übung

Mehr

Kapitel 6 Speicherverwaltung Seite 1 zum Teil nach: Silberschatz&Galbin, Operating System Concepts, Addison-Wesley)

Kapitel 6 Speicherverwaltung Seite 1 zum Teil nach: Silberschatz&Galbin, Operating System Concepts, Addison-Wesley) Kapitel 6 Speicherverwaltung Seite 1 6 Speicherverwaltung 6.1 Hintergrund Ein Programm muß zur Ausführung in den Hauptspeicher gebracht werden und in die Prozeßstruktur eingefügt werden. Dabei ist es in

Mehr

Hans-Georg Eßer, Hochschule München, Betriebssysteme I, SS Speicherverwaltung 1

Hans-Georg Eßer, Hochschule München, Betriebssysteme I, SS Speicherverwaltung 1 Sep 19 14:20:18 amd64 sshd[20494]: Accepted rsa for esser from ::ffff:87.234.201.207 port 61557 Sep 19 14:27:41 amd64 syslog-ng[7653]: STATS: dropped 0 Sep 20 01:00:01 amd64 /usr/sbin/cron[29278]: (root)

Mehr

Betriebssysteme Teil 10 B: Fragen rund um Seitenfehler

Betriebssysteme Teil 10 B: Fragen rund um Seitenfehler Betriebssysteme Teil 10 B: Fragen rund um Seitenfehler 1 Überlegungen Wenn wir einige Seiten eines Programms in den Speicher laden, brauchen wir eine Strategie, welche Seiten als nächstes geladen werden

Mehr

5.6 Segmentierter virtueller Speicher

5.6 Segmentierter virtueller Speicher 5.6 Segmentierter virtueller Speicher Zur Erinnerung: Virtueller Speicher ermöglicht effiziente und komfortable Nutzung des realen Speichers; Sharing ist problematisch. Segmentierung erleichtert Sharing,

Mehr

ggf. page fault virtuelle Adresse physikalische Adresse Hauptspeicher Seitenrahmen Register Seitentabelle logical address page number frame number

ggf. page fault virtuelle Adresse physikalische Adresse Hauptspeicher Seitenrahmen Register Seitentabelle logical address page number frame number Se 19 14:20:18 amd64 sshd[20494]: Acceted rsa or esser rom :::87.234.201.207 ort 61557 Se 19 14:27:41 amd64 syslog-ng[7653]: STATS: droed 0 Se 20 01:00:01 amd64 /usr/sbin/cron[29278]: (root) CMD (/sbin/evlogmgr

Mehr

Betriebssysteme. Speicherverwaltung - Grundlegende Konzepte. Sommersemester 2014 Prof. Dr. Peter Mandl. Prof. Dr. Peter Mandl Seite 1.

Betriebssysteme. Speicherverwaltung - Grundlegende Konzepte. Sommersemester 2014 Prof. Dr. Peter Mandl. Prof. Dr. Peter Mandl Seite 1. Speicherverwaltung - Grundlegende Konzepte Sommersemester 2014 Prof. Dr. Peter Mandl Prof. Dr. Peter Mandl Seite 1 Gesamtüberblick 1. Einführung in 2. Betriebssystemarchitekturen und Betriebsarten 3. Interruptverarbeitung

Mehr

Linker: Adreßräume verknüpfen. Informationen über einen Prozeß. Prozeß-Erzeugung: Verwandtschaft

Linker: Adreßräume verknüpfen. Informationen über einen Prozeß. Prozeß-Erzeugung: Verwandtschaft Prozeß: drei häufigste Zustände Prozeß: anatomische Betrachtung jeder Prozeß verfügt über seinen eigenen Adreßraum Sourcecode enthält Anweisungen und Variablen Compiler überträgt in Assembler bzw. Binärcode

Mehr

Technische Informatik 2 Speichersysteme, Teil 3

Technische Informatik 2 Speichersysteme, Teil 3 Technische Informatik 2 Speichersysteme, Teil 3 Prof. Dr. Miroslaw Malek Sommersemester 2004 www.informatik.hu-berlin.de/rok/ca Thema heute Virtueller Speicher (Fortsetzung) Translation Lookaside Buffer

Mehr

Technische Informatik II Wintersemester 2002/03 Sommersemester 2001. Heiko Holtkamp Heiko@rvs.uni-bielefeld.de

Technische Informatik II Wintersemester 2002/03 Sommersemester 2001. Heiko Holtkamp Heiko@rvs.uni-bielefeld.de Technische Informatik II Wintersemester 2002/03 Sommersemester 2001 Heiko Holtkamp Heiko@rvs.uni-bielefeld.de Speicher ist eine wichtige Ressource, die sorgfältig verwaltet werden muss. In der Vorlesung

Mehr

3 Schnittstelle zum Betriebssystem 3.1 Einleitung

3 Schnittstelle zum Betriebssystem 3.1 Einleitung 3.1 Einleitung 1 Anbindung zum Betriebssystem (BS) Aufgaben BS Schnittstelle zur Hardware Sicherstellung des Betriebs mit Peripherie Dienste erfüllen für Benutzung Rechner Dateiverwaltung (Kopieren, Verwalten,.)

Mehr

Wie groß ist die Page Table?

Wie groß ist die Page Table? Wie groß ist die Page Table? Im vorigen (typischen) Beispiel verwenden wir 20 Bits zum indizieren der Page Table. Typischerweise spendiert man 32 Bits pro Tabellen Zeile (im Vorigen Beispiel brauchten

Mehr

Kapitel VI. Speicherverwaltung. Speicherverwaltung

Kapitel VI. Speicherverwaltung. Speicherverwaltung Kapitel VI Speicherverwaltung 1 Speicherverwaltung Computer exekutiert Programme (mit Daten) im Hauptspeicher. Hauptspeicher: Großes Array von Wörtern (1 oder mehrere Bytes) Jedes Wort hat eine eigene

Mehr

Inhaltsübersicht. Speicherverwaltung Teil I. Motivation. Prinzipielle Arten der Speicherverwaltung

Inhaltsübersicht. Speicherverwaltung Teil I. Motivation. Prinzipielle Arten der Speicherverwaltung Speicherverwaltung Teil I Hard- und Software-Komponenten zur Speicherverwaltung Inhaltsübersicht Zusammenhängende Speicherzuteilung Partitionen fester Größe Partitionen variabler Größe Methoden zur Verwaltung

Mehr

Hauptspeicherverwaltung - Memory Management

Hauptspeicherverwaltung - Memory Management Hauptspeicherverwaltung - Memory Management Operating Systems I SS21 Prof. H.D.Clausen - unisal 1 Speicherhierarchie Verarbeitung cache Sekundär- Speicher Primär- Speicher ALU SS21 Prof. H.D.Clausen -

Mehr

Memory Management. Peter Puschner Institut für Technische Informatik peter@vmars.tuwien.ac.at

Memory Management. Peter Puschner Institut für Technische Informatik peter@vmars.tuwien.ac.at Memory Management Peter Puschner Institut für Technische Informatik peter@vmars.tuwien.ac.at 1 Speicherverwaltung Effektive Aufteilung und Verwaltung des Arbeitsspeichers für BS und Programme Anforderungen

Mehr

Prof. Dr. Sharam Gharaei. Inhaltsverzeichnis. 1 Einleitung 1. 2 Grundlage der Realisierung 2. 3 Die Realisierung 3. Literaturverzeichnis 7

Prof. Dr. Sharam Gharaei. Inhaltsverzeichnis. 1 Einleitung 1. 2 Grundlage der Realisierung 2. 3 Die Realisierung 3. Literaturverzeichnis 7 Prof. Dr. Sharam Gharaei Version 1.2.0, 07.04.2017 Inhaltsverzeichnis 1 Einleitung 1 1.1 Code-bezogene Aspekte 2 1.2 Speicherungsbezogene Aspekte 2 2 Grundlage der Realisierung 2 3 Die Realisierung 3 3.1

Mehr

Virtueller Speicher WS 2011/2012. M. Esponda-Argüero

Virtueller Speicher WS 2011/2012. M. Esponda-Argüero Virtueller Speicher WS / Virtuelle Speicher Bis jetzt sind wir davon ausgegangen, dass Prozesse komplett im Hauptspeicher gelagert werden. Speicherreferenzen sind nur logische Adressen, die dynamisch in

Mehr

Linux Paging, Caching und Swapping

Linux Paging, Caching und Swapping Linux Paging, Caching und Swapping Inhalte Paging Das Virtuelle Speichermodell Die Page Table im Detail Page Allocation und Page Deallocation Memory Mapping & Demand Paging Caching Die verschiedenen Caches

Mehr

Speicherverwaltung (Swapping und Paging)

Speicherverwaltung (Swapping und Paging) Speicherverwaltung (Swapping und Paging) Rückblick: Segmentierung Feste Einteilung des Speichers in einzelne Segmente 750k 0 Rückblick: Segmentierung Feste Einteilung des Speichers in einzelne Segmente

Mehr

Technische Informatik 1 - HS 2017

Technische Informatik 1 - HS 2017 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik 1 - HS 2017 Übung 11 Datum: 21. 22. 12. 2017 Virtueller Speicher 1 Performanz Gehen Sie von einem virtuellen

Mehr

Lösung von Übungsblatt 5

Lösung von Übungsblatt 5 Lösung von Übungsblatt 5 Aufgabe 1 (Speicherverwaltung) 1. Bei welchen Konzepten der Speicherpartitionierung entsteht interne Fragmentierung? Statische Partitionierung f Dynamische Partitionierung Buddy-Algorithmus

Mehr

Konzepte von Betriebssystemkomponenten Referat am Thema: Adressräume, Page Faults, Demand Paging, Copy on Write Referent: Johannes Werner

Konzepte von Betriebssystemkomponenten Referat am Thema: Adressräume, Page Faults, Demand Paging, Copy on Write Referent: Johannes Werner Konzepte von Betriebssystemkomponenten Referat am 24.11.2003 Thema: Adressräume, Page Faults, Demand Paging, Copy on Write Referent: Johannes Werner Gliederung Adressräume Page Faults Demand Paging Copy

Mehr

Paging. Einfaches Paging. Paging mit virtuellem Speicher

Paging. Einfaches Paging. Paging mit virtuellem Speicher Paging Einfaches Paging Paging mit virtuellem Speicher Einfaches Paging Wie bisher (im Gegensatz zu virtuellem Speicherkonzept): Prozesse sind entweder ganz im Speicher oder komplett ausgelagert. Im Gegensatz

Mehr

Übung zu Grundlagen der Betriebssysteme. 13. Übung 22.01.2012

Übung zu Grundlagen der Betriebssysteme. 13. Übung 22.01.2012 Übung zu Grundlagen der Betriebssysteme 13. Übung 22.01.2012 Aufgabe 1 Fragmentierung Erläutern Sie den Unterschied zwischen interner und externer Fragmentierung! Als interne Fragmentierung oder Verschnitt

Mehr

Wunschvorstellung der Entwickler vom Speicher

Wunschvorstellung der Entwickler vom Speicher Wunschvorstellung der Entwickler vom Speicher Unendlich groß Unendlich schnell Nicht flüchtig billig Obwohl sich der verfügbare Speicher laufend erhöht, wird immer mehr Speicher benötigt, als verfügbar

Mehr

Echtzeitbetriebssysteme

Echtzeitbetriebssysteme Speicherverwaltung (Memory Management) Aufgaben der Memory-Management-Unit ist l der Speicherschutz und l die Adressumsetzung Wird durch Hardware unterstützt l Memory Management Unit (MMU) l MMU wird vom

Mehr

Leichtgewichtsprozesse

Leichtgewichtsprozesse Leichtgewichtsprozesse häufiger Prozeßwechsel stellt in einem Betriebssystem eine hohe Belastung dar; auch erfordert die Generierung eines neuen Prozesses viele System-Resourcen in vielen Anwendungen werden

Mehr

Lösung von Übungsblatt 2

Lösung von Übungsblatt 2 Lösung von Übungsblatt 2 Aufgabe 1 (Digitale Datenspeicher) 1. Nennen Sie einen digitalen Datenspeicher, der mechanisch arbeitet. Lochstreifen, Lochkarte, CD/DVD beim Pressen. 2. Nennen Sie zwei rotierende

Mehr

Technische Informatik 2 Speichersysteme, Teil 2

Technische Informatik 2 Speichersysteme, Teil 2 Technische Informatik 2 Speichersysteme, Teil 2 Prof. Dr. Miroslaw Malek Sommersemester 2009 www.informatik.hu-berlin.de/rok/ca Thema heute Virtueller Speicher Virtueller Seitenspeicher Seitenregister

Mehr

Überschrift. Speicherverwaltung. Prof. Dr. Margarita Esponda Freie Universität Berlin 2011/2012

Überschrift. Speicherverwaltung. Prof. Dr. Margarita Esponda Freie Universität Berlin 2011/2012 Überschrift Speicherverwaltung Prof. Dr. Margarita Esponda Freie Universität Berlin 2011/2012 1 Hauptziele: Speicherverwaltung Speicher ist die zweite wichtigste Ressource, die das Betriebssystem verwalten

Mehr

Virtueller Speicher. SS 2012 Grundlagen der Rechnerarchitektur Speicher 44

Virtueller Speicher. SS 2012 Grundlagen der Rechnerarchitektur Speicher 44 Virtueller Speicher SS 2012 Grundlagen der Rechnerarchitektur Speicher 44 Die Idee Virtuelle Adressen Prozess 1 Speicherblock 0 Speicherblock 1 Speicherblock 2 Speicherblock 3 Speicherblock 4 Speicherblock

Mehr

Speicher- und Cacheverwaltung unter Linux. Ralf Petring & Guido Schaumann

Speicher- und Cacheverwaltung unter Linux. Ralf Petring & Guido Schaumann Speicher- und Cacheverwaltung unter Linux Ralf Petring & Guido Schaumann Übersicht Virtueller Adressraum Virtuelle Speicheraufteilung Reale Speicheraufteilung Speicherverwaltung Speicherzugriff Auslagerungsstrategien

Mehr

DOSEMU. Vortrag im Hauptseminar Konzepte und Techniken virtueller Maschinen und Emulatoren. Matthias Felix FAU. 13.

DOSEMU. Vortrag im Hauptseminar Konzepte und Techniken virtueller Maschinen und Emulatoren. Matthias Felix FAU. 13. DOSEMU Vortrag im Hauptseminar Konzepte und Techniken virtueller Maschinen und Emulatoren Matthias Felix filo@icip.de FAU 13. Juni 2007 Matthias Felix (FAU) DOSEMU 13. Juni 2007 1 / 22 Inhalt 1 Einführung

Mehr

RO-Tutorien 17 und 18

RO-Tutorien 17 und 18 RO-Tutorien 17 und 18 Tutorien zur Vorlesung Rechnerorganisation Christian A. Mandery TUTORIENWOCHE 12 AM 19.07.2012 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der

Mehr

Fachbericht Thema: Virtuelle Speicherverwaltung

Fachbericht Thema: Virtuelle Speicherverwaltung Fachbericht 15.10.99 1 HINTERGRÜNDE/ MOTIVATION 2 2 FUNKTIONEN DER SPEICHERVERWALTUNG 2 3 ARTEN DER SPEICHERVERWALTUNG 2 3.1 STATISCHE SPEICHERVERWALTUNG 2 3.2 DYNAMISCHE SPEICHERVERWALTUNG 3 3.2.1 REALER

Mehr

Aufgabe 4 : Virtueller Speicher

Aufgabe 4 : Virtueller Speicher Sommer 216 Technische Informatik I Lösungsvorschlag Seite 16 Aufgabe 4 : Virtueller Speicher (maximal 27 Punkte) 4.1: Generelle Funktionsweise (maximal 5 Punkte) (a) (1 Punkt) Nennen Sie zwei Gründe, weshalb

Mehr

Schreiben von Pages. Schreiben einer Page in den Swap Space ist sehr teuer (kostet millionen von CPU Zyklen).

Schreiben von Pages. Schreiben einer Page in den Swap Space ist sehr teuer (kostet millionen von CPU Zyklen). Schreiben von Pages Schreiben einer Page in den Swap Space ist sehr teuer (kostet millionen von CPU Zyklen). Write Through Strategie (siehe Abschnitt über Caching) ist hier somit nicht sinnvoll. Eine sinnvolle

Mehr

Intel x86 Bootstrapping

Intel x86 Bootstrapping Intel x86 Bootstrapping Meine CPU, mein Code! Andreas Galauner SigInt 2010 Democode Es gibt Democode: http://github.com/g33katwork/ SigInt10OSWorkshop git clone git://github.com/g33katwork/ SigInt10OSWorkshop.git

Mehr

Anbindung zum Betriebssystem (BS)

Anbindung zum Betriebssystem (BS) 5.1 Einleitung Anbindung zum Betriebssystem (BS) Aufgaben BS Schnittstelle zur Hardware Sicherstellung des Betriebs mit Peripherie Dienste erfüllen für Benutzung Rechner durch Verwaltung der Ressourcen

Mehr

Technische Informatik II (TI II) (8) Speicherverwaltung. Sebastian Zug Arbeitsgruppe: Embedded Smart Systems

Technische Informatik II (TI II) (8) Speicherverwaltung. Sebastian Zug Arbeitsgruppe: Embedded Smart Systems 1 Technische Informatik II (TI II) (8) Speicherverwaltung Sebastian Zug Arbeitsgruppe: Embedded Smart Systems 2 Fragen an die Veranstaltung Nach welchen Merkmalen lässt sich der Speicher in einem Rechner

Mehr

6 Speicherverwaltung

6 Speicherverwaltung 6 Speicherverwaltung 6.1 Hintergrund Ein Programm muß zur Ausführung in den Hauptspeicher gebracht werden und in die Prozeßstruktur eingefügt werden. Dabei ist es in mehreren Schritten zu modifizieren.

Mehr

(Cache-Schreibstrategien)

(Cache-Schreibstrategien) Übungsblatt 2 Aufgabe 1 (Digitale Datenspeicher) 1. Nennen Sie einen digitalen Datenspeicher, der mechanisch arbeitet. 2. Nennen Sie zwei rotierende magnetische digitale Datenspeicher. 3. Nennen Sie zwei

Mehr

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Version 21.12.2016 1 Inhalt Vorlesung Aufbau einfacher Rechner Überblick: Aufgabe, Historische Entwicklung, unterschiedliche Arten von Betriebssystemen

Mehr

Cache Blöcke und Offsets

Cache Blöcke und Offsets Cache Blöcke und Offsets Ein Cache Eintrag speichert in der Regel gleich mehrere im Speicher aufeinander folgende Bytes. Grund: räumliche Lokalität wird wie folgt besser ausgenutzt: Bei Cache Miss gleich

Mehr

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung. Maren Bennewitz

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung. Maren Bennewitz Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Maren Bennewitz Version 29.1.214 1 Inhalt Vorlesung Aufbau einfacher Rechner Überblick: Aufgabe, Historische Entwicklung, unterschiedliche Arten

Mehr

Wie schreibt man ein Betriebssystem?

Wie schreibt man ein Betriebssystem? Wie schreibt man ein Betriebssystem? Vom BIOS in den Userspace Andreas Galauner Easterhegg 2011 Democode Es gibt Democode: http://github.com/g33katwork/sigint10osworkshop git clone git://github.com/g33katwork/

Mehr

CA Übung 30.01.2006. Christian kann heute nicht kommen => ich bin heute da, Christian das nächste Mal wieder

CA Übung 30.01.2006. Christian kann heute nicht kommen => ich bin heute da, Christian das nächste Mal wieder CA Übung 30.01.2006 Hallo zusammen! Christian kann heute nicht kommen => ich bin heute da, Christian das nächste Mal wieder Adrian Schüpbach: scadrian@student.ethz.ch Christian Fischlin: cfischli@student.ethz.ch

Mehr

Lösungsvorschlag für Übung September 2009

Lösungsvorschlag für Übung September 2009 Universität Mannheim Vorlesung Betriebssysteme Lehrstuhl für Praktische Informatik 1 Herbstsemester 2009 Prof. Dr. Felix Freiling Dipl.-Inform. Jan Göbel Lösungsvorschlag für Übung 2 25. September 2009

Mehr

Kapitel 9 Hauptspeicherverwaltung

Kapitel 9 Hauptspeicherverwaltung Kapitel 9 Hauptspeicherverwaltung Einführung: Speicher als Betriebsmittel Speicherkapazität wächst ständig ein PC heute hat 1000 mal soviel Speicher wie 1965 der größte Computer der Welt Anwendungsprogramme

Mehr

Speicherverwaltung. Kapitel VI. Adressbindung (2) Adressbindung (1) Speicherverwaltung

Speicherverwaltung. Kapitel VI. Adressbindung (2) Adressbindung (1) Speicherverwaltung Speicherverwaltung Kapitel VI Speicherverwaltung Computer exekutiert Programme (mit Daten) im Hauptspeicher. Hauptspeicher: Großes Array von Wörtern ( oder mehrere Bytes) Jedes Wort hat eine eigene Adresse.

Mehr

Speicher Virtuelle Speicherverwaltung. Speicherverwaltung

Speicher Virtuelle Speicherverwaltung. Speicherverwaltung Speicherverwaltung Die Speicherverwaltung ist derjenige Teil eines Betriebssystems, der einen effizienten und komfortablen Zugriff auf den physikalischen Arbeitsspeicher eines Computer ermöglicht. Je nach

Mehr

Main Memory. Hauptspeicher. Memories. Speichermodule. SIMM: single inline memory module 72 Pins. DIMM: dual inline memory module 168 Pins

Main Memory. Hauptspeicher. Memories. Speichermodule. SIMM: single inline memory module 72 Pins. DIMM: dual inline memory module 168 Pins 5 Main Memory Hauptspeicher Memories 2 Speichermodule SIMM: single inline memory module 72 Pins DIMM: dual inline memory module 68 Pins 3 Speichermodule 4 Speichermodule 5 Speichermodule 6 2 Hauptspeicher

Mehr

2.3 Prozessverwaltung

2.3 Prozessverwaltung Realisierung eines Semaphors: Einem Semaphor liegt genau genommen die Datenstruktur Tupel zugrunde Speziell speichert ein Semaphor zwei Informationen: Der Wert des Semaphors (0 oder 1 bei einem binären

Mehr

(Prof. Dr. J. Schlichter, WS 2011 / 2012) Übungsleitung: Dr. Wolfgang Wörndl

(Prof. Dr. J. Schlichter, WS 2011 / 2012) Übungsleitung: Dr. Wolfgang Wörndl Übung zur Vorlesung Grundlagen Betriebssysteme und Systemsoftware (Prof. Dr. J. Schlichter, WS 2011 / 2012) Übungsleitung: Dr. Wolfgang Wörndl (gbs-ws11@mailschlichter.informatik.tu-muenchen.de) http://www11.in.tum.de/veranstaltungen/grundlagenbetriebssystemeundsystemsoftwarews1112

Mehr

Konzepte von Betriebssystemkomponenten

Konzepte von Betriebssystemkomponenten Konzepte von Betriebssystemkomponenten Systemstart und Programmausführung Seminarvortrag 15.12.2003, Michael Moese Übersicht 2. Systemstart 3. Programmausführung TEIL 1: Systemstart 1.1 Das BIOS 1.2 Der

Mehr

1. Speicher. Typische Nutzung eines Adreßraums. Systemsoftware. Textbereich relativ klein. Sehr großer Abstand zwischen Heap und Stack

1. Speicher. Typische Nutzung eines Adreßraums. Systemsoftware. Textbereich relativ klein. Sehr großer Abstand zwischen Heap und Stack 1. Speicher 1 Typische Nutzung eines Adreßraums Textbereich relativ klein Sehr großer Abstand zwischen Heap und Stack Keine Verunreinigungen durch: E/A-Bereiche nicht bestückte Adreßbereiche fremde Kontrollflüsse

Mehr

Technische Informatik 1

Technische Informatik 1 Technische Informatik 1 7 Prozesse und Threads Lothar Thiele Computer Engineering and Networks Laboratory Betriebssystem 7 2 7 3 Betriebssystem Anwendung Anwendung Anwendung Systemaufruf (syscall) Betriebssystem

Mehr

Einführung in die technische Informatik

Einführung in die technische Informatik Einführung in die technische Informatik Christopher Kruegel chris@auto.tuwien.ac.at http://www.auto.tuwien.ac.at/~chris Betriebssysteme Aufgaben Management von Ressourcen Präsentation einer einheitlichen

Mehr

Definitionen zum Verschnitt

Definitionen zum Verschnitt Definitionen zum Verschnitt Die absoluten Größen haben eine Einheit. Beim Bilden der Verhältnisgrößen wird die Einheit gekürzt. Man kann bei den Verhältnisgrößen die Größe durch die Anzahl vorgegebener

Mehr

Rechnergrundlagen SS Vorlesung

Rechnergrundlagen SS Vorlesung Rechnergrundlagen SS 2007 13. Vorlesung Inhalt Cache Lesen Schreiben Überschreiben Memory Management Unit (MMU) Translation Lookaside Buffer (TLB) Klausurvorbereitung Inhalte der Klausur Rechnergrundlagen

Mehr

Memory Management Units in High-Performance Processors

Memory Management Units in High-Performance Processors Memory Management Units in High-Performance Processors Ausgewählte Themen in Hardwareentwurf und Optik Seminar Universität Mannheim LS Rechnerarchitektur - Prof. Dr. U. Brüning WS 2003/2004 Frank Lemke

Mehr

Rechnernutzung in der Physik. Betriebssysteme

Rechnernutzung in der Physik. Betriebssysteme Rechnernutzung in der Physik Betriebssysteme 1 Betriebssysteme Anwendungsprogramme Betriebssystem Treiber BIOS Direkter Zugriff von Anwenderprogrammen auf Hardware nur in Ausnahmefällen sinnvoll / möglich:

Mehr

9) Speicherverwaltung

9) Speicherverwaltung Inhalte Speicherhierarchien Speicherzuteilung Adressbildung Lineare Adressbildung mit statischer/dynamischer Zuteilung (Segmentierung) Kompaktifizierung Lineare Adressbildung mit virtueller Adressierung

Mehr

Betriebssysteme SS Hans-Georg Eßer Dipl.-Math., Dipl.-Inform. SB 3 ( , v2) Speicherverwaltung Ein-/Ausgabegeräte und Schnittstellen

Betriebssysteme SS Hans-Georg Eßer Dipl.-Math., Dipl.-Inform. SB 3 ( , v2) Speicherverwaltung Ein-/Ausgabegeräte und Schnittstellen Betriebssysteme SS 2013 Hans-Georg Eßer Dipl.-Math., Dipl.-Inform. SB 3 (17.03.2013, v2) Speicherverwaltung Ein-/Ausgabegeräte und Schnittstellen 17.03.2013, v2 Modul 6: Betriebssysteme, SS 2013, Hans-Georg

Mehr

Vorlesung Betriebssysteme

Vorlesung Betriebssysteme Kapitel VI Speicherverwaltung Vorlesung Betriebssyst 1 Speicherverwaltung Computer exekutiert Programme (mit Daten) im Hauptspeicher. Hauptspeicher: Großes Array von Wörtern (1 oder mehrere Bytes) Jedes

Mehr

6.Vorlesung Grundlagen der Informatik

6.Vorlesung Grundlagen der Informatik Christian Baun 6.Vorlesung Grundlagen der Informatik Hochschule Darmstadt WS1112 1/42 6.Vorlesung Grundlagen der Informatik Christian Baun Hochschule Darmstadt Fachbereich Informatik christian.baun@h-da.de

Mehr

5.4 Segmentierung. Einfachstes Beispiel: 1 Code-Segment + 1 Datensegment. 0 codelength 0 datalength. bs-5.4 1

5.4 Segmentierung. Einfachstes Beispiel: 1 Code-Segment + 1 Datensegment. 0 codelength 0 datalength. bs-5.4 1 5.4 Segmentierung Adressraum besteht aus mehreren Segmenten (segments), die unabhängig voneinander manipulierbar sind. Segmentierungsstruktur ist festgelegt durch die Hardware den Adressumsetzer. Einfachstes

Mehr

Quiz. Gegeben sei ein 16KB Cache mit 32 Byte Blockgröße. Wie verteilen sich die Bits einer 32 Bit Adresse auf: Tag Index Byte Offset.

Quiz. Gegeben sei ein 16KB Cache mit 32 Byte Blockgröße. Wie verteilen sich die Bits einer 32 Bit Adresse auf: Tag Index Byte Offset. Quiz Gegeben sei ein 16KB Cache mit 32 Byte Blockgröße. Wie verteilen sich die Bits einer 32 Bit Adresse auf: Tag Index Byte Offset 32 Bit Adresse 31 3 29... 2 1 SS 212 Grundlagen der Rechnerarchitektur

Mehr

Enterprise Computing Einführung in das Betriebssystem z/os. Prof. Dr. Martin Bogdan Prof. Dr.-Ing. Wilhelm G. Spruth WS2012/13

Enterprise Computing Einführung in das Betriebssystem z/os. Prof. Dr. Martin Bogdan Prof. Dr.-Ing. Wilhelm G. Spruth WS2012/13 UNIVERSITÄT LEIPZIG Enterprise Computing Einführung in das Betriebssystem z/os Prof. Dr. Martin Bogdan Prof. Dr.-Ing. Wilhelm G. Spruth WS2012/13 Verarbeitungsgrundlagen Teil 2 Virtual Storage el0100 copyright

Mehr

Speicherverwaltung III

Speicherverwaltung III Speicherverwaltung III Andreas Görzen Marius Schultchen Benjamin Kotke Sascha Sternheim 26. Februar 2013 Inhaltsverzeichnis 1 Datenstruktur zur physikalischen Speicherverwaltung 2 1.1 Übersicht möglicher

Mehr

Betriebssysteme. Wintersemester Kapitel 3 Speicherverwaltung. Patrick Kendzo

Betriebssysteme. Wintersemester Kapitel 3 Speicherverwaltung. Patrick Kendzo Betriebssysteme Wintersemester 2015 Kapitel 3 Speicherverwaltung Patrick Kendzo ppkendzo@gmail.com Programm Inhalt Einleitung Prozesse und Threads Speicherverwaltung Ein- / Ausgabe und Dateisysteme Zusammenfassung

Mehr

Grundlagen der Informatik III Wintersemester 2010/2011

Grundlagen der Informatik III Wintersemester 2010/2011 Grundlagen der Informatik III Wintersemester 2010/2011 Wolfgang Heenes, atrik Schmittat 12. Aufgabenblatt 07.02.2011 Hinweis: Der Schnelltest und die Aufgaben sollen in den Übungsgruppen bearbeitet werden.

Mehr

Konzepte von Betriebssystem- Komponenten Olessia Usik 20. Juni 2005

Konzepte von Betriebssystem- Komponenten Olessia Usik 20. Juni 2005 Konzepte von Betriebssystem- Komponenten Olessia Usik olessia@freenet.de 20. Juni 2005 1 GROß 2 SCHNELL UNENDLICH Gliederung 1. Einleitung 2. Swapping 3. Virtuelle Speicherverwaltung 3.1 Segmentorientierter

Mehr

(Prüfungs-)Aufgaben zum Thema Speicherverwaltung

(Prüfungs-)Aufgaben zum Thema Speicherverwaltung (Prüfungs-)Aufgaben zum Thema Speicherverwaltung 1) Ein Betriebssystem mit virtueller Speicherverwaltung arbeite mit 32 Bit langen virtuellen Adressen einer Seitengröße von 4KB zweistufigem Paging, wobei

Mehr

Betriebssysteme 1. Thomas Kolarz. Folie 1

Betriebssysteme 1. Thomas Kolarz. Folie 1 Folie 1 Betriebssysteme I - Inhalt 0. Einführung, Geschichte und Überblick 1. Prozesse und Threads (die AbstrakFon der CPU) 2. Speicherverwaltung (die AbstrakFon des Arbeitsspeichers) 3. Dateisysteme (die

Mehr

Grundlagen der Informatik III Wintersemester 2010/2011

Grundlagen der Informatik III Wintersemester 2010/2011 Grundlagen der Informatik III Wintersemester 21/211 Wolfgang Heenes, atrik Schmittat 12. Aufgabenblatt mit Lösungsvorschlag 7.2.211 Hinweis: Der Schnelltest und die Aufgaben sollen in den Übungsgruppen

Mehr

Übung 4 - Betriebssysteme I

Übung 4 - Betriebssysteme I Prof. Dr. Th. Letschert FB MNI 9. Juni 2002 Übung 4 - Betriebssysteme I Aufgabe 1 1. Erläutern Sie die Begriffe der transparent und der virtuell mit ihrer in der Informatik üblichen Bedeutung. 2. Wie werden

Mehr

Vorlesung "Struktur von Mikrorechnern" (CBS)

Vorlesung Struktur von Mikrorechnern (CBS) 5 Entwicklung der Prozessorarchitekturen 5.1 Intel Prozessorenreihe i86 5.1.1 8088 und 8086 Prozessoren 5.1.3 80386 Prozessoren 5.1.5 Pentium Prozessoren 5.2 Vergleich von Prozessorarchitekturen unterschiedlicher

Mehr

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Version 11.01.2017 1 Inhalt Vorlesung Aufbau einfacher Rechner Überblick: Aufgabe, historische Entwicklung, unterschiedliche Arten von Betriebssystemen

Mehr

Freispeicherverwaltung Martin Wahl,

Freispeicherverwaltung Martin Wahl, Freispeicherverwaltung Martin Wahl, 17.11.03 Allgemeines zur Speicherverwaltung Der physikalische Speicher wird in zwei Teile unterteilt: -Teil für den Kernel -Dynamischer Speicher Die Verwaltung des dynamischen

Mehr

Rechnerorganisation. Überblick über den Teil 13

Rechnerorganisation. Überblick über den Teil 13 Rechnerorganisation Teil 3 9. Juni 2 KC Posch Überblick über den Teil 3 Arbiter: Wie können sich 2 aktive Partner vertragen? Direkter Speicherzugriff: Ein Ko Prozessor zum Daten Schaufeln Die Verbesserung

Mehr

wichtigstes Betriebsmittel - neben dem Prozessor: Speicher

wichtigstes Betriebsmittel - neben dem Prozessor: Speicher Speicherverwaltung Aufgaben der Speicherverwaltung wichtigstes Betriebsmittel - neben dem Prozessor: Speicher Sowohl die ausführbaren Programme selbst als auch deren Daten werden in verschiedenen Speicherbereichen

Mehr

Computeranwendung in der Chemie Informatik für Chemiker(innen) 3. Software

Computeranwendung in der Chemie Informatik für Chemiker(innen) 3. Software Computeranwendung in der Chemie Informatik für Chemiker(innen) 3. Software Jens Döbler 2003 "Computer in der Chemie", WS 2003-04, Humboldt-Universität VL3 Folie 1 Grundlagen Software steuert Computersysteme

Mehr

Dämon-Prozesse ( deamon )

Dämon-Prozesse ( deamon ) Prozesse unter UNIX - Prozessarten Interaktive Prozesse Shell-Prozesse arbeiten mit stdin ( Tastatur ) und stdout ( Bildschirm ) Dämon-Prozesse ( deamon ) arbeiten im Hintergrund ohne stdin und stdout

Mehr

Universität Bielefeld Technische Fakultät AG Rechnernetze und verteilte Systeme. Vorlesung 4: Memory. Wintersemester 2001/2002. Peter B.

Universität Bielefeld Technische Fakultät AG Rechnernetze und verteilte Systeme. Vorlesung 4: Memory. Wintersemester 2001/2002. Peter B. Universität Bielefeld Technische Fakultät AG Rechnernetze und verteilte Systeme Vorlesung 4: Memory Peter B. Ladkin Address Translation Die Adressen, die das CPU benutzt, sind nicht identisch mit den Adressen,

Mehr

Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 9 und Präsenzaufgaben Übung 10

Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 9 und Präsenzaufgaben Übung 10 Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 9 und Präsenzaufgaben Übung 10 Dominik Schoenwetter Lehrstuhl für Informatik 3 (Rechnerarchitektur) Friedrich-Alexander-Universität

Mehr

Bootvorgang des DSM-Systems Systems Plurix

Bootvorgang des DSM-Systems Systems Plurix Bootvorgang des DSM-Systems Systems Plurix Stefan Frenz Vortrag im Rahmen der Abteilungsbesprechung Voraussetzungen: CPU CPU-Modi Voraussetzungen: BIOS Rechner-Initialisierung durch das BIOS Interrupt

Mehr

Betriebssysteme I WS 2016/2017. Betriebssysteme / verteilte Systeme Tel.: 0271/ , Büro: H-B 8404

Betriebssysteme I WS 2016/2017. Betriebssysteme / verteilte Systeme Tel.: 0271/ , Büro: H-B 8404 Betriebssysteme I WS 2016/2017 Betriebssysteme / verteilte Systeme rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404 Stand: 2. Februar 2017 Betriebssysteme / verteilte Systeme Betriebssysteme

Mehr