Linux Paging, Caching und Swapping

Größe: px
Ab Seite anzeigen:

Download "Linux Paging, Caching und Swapping"

Transkript

1 Linux Paging, Caching und Swapping

2 Inhalte Paging Das Virtuelle Speichermodell Die Page Table im Detail Page Allocation und Page Deallocation Memory Mapping & Demand Paging Caching Die verschiedenen Caches Swapping Welche Pages eines Prozesses werden ausgelagert Der Kernel Swap Demon (kswapd) Freimachen von Speicherseiten

3 Prozeß VPFN 3 VPFN 2 VPFN VPFN 0 PFN 7 PFN 6 PFN 5 PFN 4 PFN 3 PFN 2 PFN PFN 0 Prozeß 2 VPFN 2 VPFN VPFN 0 Virtuelle Speicherseite eines Prozesses Physische Speicherseite eines Prozesses Physische Speicherseite die von mehreren Prozessen gemeinsam genutzt wird

4 Prozeß PFN 7 PFN 6 Prozeß 2 VPFN 3 VPFN 2 VPFN PFN 5 PFN 4 PFN 3 PFN 2 PFN VPFN 2 VPFN VPFN 0 PFN 0 Page Table Page Table VPFN 0 Virtuelle Speicherseite eines Prozesses Physische Speicherseite eines Prozesses Physische Speicherseite die von mehreren Prozessen gemeinsam genutzt wird Page Table

5 Virtuell Physisch Page-Größe bei ix86 Systemen beträgt 4 Kilobyte, also 0x000 B. Virtuelle Adresse 0x Prozessor extrahiert Offset und VPFN Physische Adresse 0x Prozessor generiert physische Adresse und greift darauf zu VPFN 0x484 Page Offset 0x456 Prozessor greift auf Page Table 0x484 zu PFN 0x89 Page Offset 0x456

6 Inhalt Paging Das Virtuelle Speichermodell Die Page Table im Detail Page Allocation und Page Deallocation Memory Mapping & Demand Paging Caching Die verschiedenen Caches Swapping Welche Pages eines Prozesses werden ausgelagert Der Kernel Swap Demon (kswapd) Freimachen von Speicherseiten

7 Ein einzelner Page Table Eintrag eines Prozesses V Zugriffsrechte D PFN Valid Flag Page Dirty Flag

8 Ein einzelner Page Table Eintrag eines Prozesses V Zugriffsrechte D PFN Valid Flag Page Dirty Flag Valid gesetzt & PFN gesetzt Seite vorhanden Valid gelöscht & PFN gelöscht Seite ungültig (Page fault)

9 Ein einzelner Page Table Eintrag eines Prozesses V Zugriffsrechte D PFN Valid Flag Page Dirty Flag Valid gesetzt & PFN gesetzt Seite vorhanden Valid gelöscht & PFN gelöscht Seite ungültig (Page fault) Valid gesetzt & PFN gelöscht Page fault: Demand Paging Valid gelöscht & PFN gesetzt Page fault: Seite im Swap

10 Ein einzelner Page Table Eintrag eines Prozesses V Zugriffsrechte D PFN Valid Flag Page Dirty Flag Eine neue Page wird geladen Page wird geändert (beschrieben) Page wird nicht beschrieben Page wird dringend für einen anderen Prozeß benötigt Page wird auf Datenträger ausgelagert in den Swap Bereich Seite wird verworfen

11 Level Level 2 Level 3 Byte in Seite PFN PFN PFN Adresse PGD Physische Seite PGD: Page Global Directory.Vom Kernel initialisiert. Weist auf den ersten Page Table Level.

12 Inhalt Paging Das Virtuelle Speichermodell Die Page Table im Detail Page Allocation und Page Deallocation Memory Mapping & Demand Paging Caching Die verschiedenen Caches Swapping Welche Pages eines Prozesses werden ausgelagert Der Kernel Swap Demon (kswapd) Freimachen von Speicherseiten

13 mem_map_t oder auch Page Struktur: count Anzahl der Benutzer, die die Seite benutzen age Alter der Seite. Entscheidet, ob die Seite verworfen bzw. ausgelagert wird, wenn wieder Speicherplatz benötigt wird. map_nr Physische PFN

14 free_area Vektor PFN 0 Freie Speicherseite im Hauptspeicher (nicht alloziert)

15 free_area Vektor 5 mem_map Struktur mem_map_t PFN 0 Freie Speicherseite im Hauptspeicher (nicht alloziert)

16 free_area Vektor 5 mem_map Struktur 4 map Bitmaps mem_map_t PFN 0 Freie Speicherseite im Hauptspeicher (nicht alloziert)

17 Inhalt Paging Das Virtuelle Speichermodell Die Page Table im Detail Page Allocation und Page Deallocation Memory Mapping und Demand Paging Caching Die verschiedenen Caches Swapping Welche Pages eines Prozesses werden ausgelagert Der Kernel Swap Demon (kswapd) Freimachen von Speicherseiten

18 mm_struct vm_area_struct vm_end vm_start vm_ops Virtueller Speicher des Prozesses z.b. Code z.b. initialisierte Daten (Variablen).. Demand Paging Valid gesetzt & PFN gelöscht

19 Inhalt Paging Das Virtuelle Speichermodell Die Page Table im Detail Page Allocation und Page Deallocation Memory Mapping & Demand Paging Caching Die verschiedenen Caches Swapping Welche Pages eines Prozesses werden ausgelagert Der Kernel Swap Demon (kswapd) Freimachen von Speicherseiten

20 Buffer Cache Page Cache Swap Cache Hardware Caches TLB (Translation Look-aside Buffers)

21 Buffer Cache Block-Gerätetreiber Block wird geladen Geräte-ID, Blocknummer 2 kb 2 kb 2 kb 2 kb 2 kb Hardware: Blockgerät (Festplatte)

22 Page Cache Page fault handling code Pointer auf mem_map_t Datei, Datenoffset page_hash_table (single-page read ahead) mem_map_t mem_map_t mem_map_t mem_map_t mem_map_t Page Page Page Page Page Festplatte

23 Swap Cache Seite wird aus Swap File gelesen Swap Cache erzeugt Page Table Entry (Swap File, Offset)

24 Swap Cache Seite wird aus Swap File gelesen Swap Cache erzeugt Page Table Entry (Swap File, Offset) Page wird geändert (beschrieben) Page wird nicht beschrieben Swap Cache löscht den Page Table Entry

25 Swap Cache Seite wird aus Swap File gelesen Swap Cache erzeugt Page Table Entry (Swap File, Offset) Page wird geändert (beschrieben) Page wird nicht beschrieben Swap Cache löscht den Page Table Entry Seite soll ins Swap File ausgelagert werden

26 Swap Cache Seite wird aus Swap File gelesen Swap Cache erzeugt Page Table Entry (Swap File, Offset) Page wird geändert (beschrieben) Page wird nicht beschrieben Swap Cache löscht den Page Table Entry Seite soll ins Swap File ausgelagert werden Seite nicht im Cache Page wird in Swap File geschrieben Seite im Cache Seite wird verworfen. Grosse Zeitersparnis

27 Hardware Caches TLB (Translation Look-aside Buffers) CPU (Prozessor) OS (Linux) TLB

28 Hardware Caches TLB (Translation Look-aside Buffers) CPU (Prozessor) Exception TLB miss OS (Linux) TLB neuer TLB

29 Hardware Caches TLB (Translation Look-aside Buffers) CPU (Prozessor) TLB exception bearbeitet OS (Linux)

30 Inhalt Paging Das Virtuelle Speichermodell Die Page Table im Detail Page Allocation und Page Deallocation Memory Mapping & Demand Paging Caching Die verschiedenen Caches Swapping Welche Pages eines Prozesses werden ausgelagert Der Kernel Swap Demon (kswapd) Freimachen von Speicherseiten

31 Prozess mit Seiten im physischen Speicher PFN 7 PFN 6 PFN 5 PFN 4 PFN 3 PFN 2 PFN PFN 0 Working Set eines Prozesses

32 Prozess mit Seiten im physischen Speicher PFN 7 PFN 6 PFN 5 PFN 4 PFN 3 PFN 2 PFN PFN 0 mem_map_t count age map_nr count age map_nr Working Set eines Prozesses

33 Prozess mit Seiten im physischen Speicher PFN 7 PFN 6 PFN 5 PFN 4 PFN 3 PFN 2 PFN PFN 0 mem_map_t count age map_nr count age map_nr Least Recently Used (LRU) Technik zur Bestimmung des Seitenalters Working Set eines Prozesses Linux

34 LRU im Detail: Seite wird alloziert Das Alter wird gesetzt auf: age = 3 Seitenzugriff Das Alter wird um 3 eröht, Maximalwert ist 20 kswapd prüft das Alter Das Alter wird um reduziert. Wenn 0 erreicht wird, gilt die Seite als alt.

35 Inhalt Paging Das Virtuelle Speichermodell Die Page Table im Detail Page Allocation und Page Deallocation Memory Mapping & Demand Paging Caching Die verschiedenen Caches Swapping Welche Pages eines Prozesses werden ausgelagert Der Kernel Swap Demon (kswapd) Freimachen von Speicherseiten

36 Systeminitialisierung kswapd wird geladen Kernel Swap Timer wird initialisiert free_pages_high und free_pages_low werden initialisiert

37 Systeminitialisierung kswapd wird geladen Kernel Swap Timer wird initialisiert free_pages_low und free_pages_high werden initialisiert Anzahl freier Seiten unter free_pages_low? nein

38 Systeminitialisierung kswapd wird geladen Kernel Swap Timer wird initialisiert free_pages_low und free_pages_high werden initialisiert Anzahl freier Seiten unter free_pages_low? nein Anzahl freier Seiten unter free_pages_high? nein

39 Systeminitialisierung kswapd wird geladen Kernel Swap Timer wird initialisiert free_pages_low und free_pages_high werden initialisiert Anzahl freier Seiten unter free_pages_low? nein Anzahl freier Seiten unter free_pages_high? nein Don t Panic

40 Systeminitialisierung kswapd wird geladen Kernel Swap Timer wird initialisiert free_pages_low und free_pages_high werden initialisiert Anzahl freier Seiten unter free_pages_low? nein Anzahl freier Seiten unter free_pages_high? ja nein Don t Panic

41 Systeminitialisierung kswapd wird geladen Kernel Swap Timer wird initialisiert free_pages_low und free_pages_high werden initialisiert Anzahl freier Seiten unter free_pages_low? nein Anzahl freier Seiten unter free_pages_high? ja nein 3 Seiten freimachen Don t Panic

42 Systeminitialisierung kswapd wird geladen Kernel Swap Timer wird initialisiert free_pages_low und free_pages_high werden initialisiert Anzahl freier Seiten unter free_pages_low? ja nein Anzahl freier Seiten unter free_pages_high? ja nein 3 Seiten freimachen Don t Panic

43 Systeminitialisierung kswapd wird geladen Kernel Swap Timer wird initialisiert free_pages_low und free_pages_high werden initialisiert ja Anzahl freier Seiten unter free_pages_low? nein 6 Seiten freimachen Nur halbe Zeitspanne schlafen Anzahl freier Seiten unter free_pages_high? ja nein 3 Seiten freimachen Don t Panic

44 Systeminitialisierung kswapd wird geladen Kernel Swap Timer wird initialisiert free_pages_low und free_pages_high werden initialisiert ja Anzahl freier Seiten unter free_pages_low? nein 6 Seiten freimachen Nur halbe Zeitspanne schlafen Anzahl freier Seiten unter free_pages_high? ja nein 3 Seiten freimachen Don t Panic Zuletzt benutzte Methode wiederbenutzen:.) Page- und Buffer-Cache Seiten reduzieren (z.b. Memory Mapped Files, Festplattendaten) 2.) System V Shared Memory Seiten auslagern (Swap File) 3.) Speicherseiten auslagern (Swap File)

45 Inhalt Paging Das Virtuelle Speichermodell Die Page Table im Detail Page Allocation und Page Deallocation Memory Mapping & Demand Paging Caching Die verschiedenen Caches Swapping Welche Pages eines Prozesses werden ausgelagert Der Kernel Swap Demon (kswapd) Freimachen von Speicherseiten

46 .) Page- und Buffer-Cache Seiten reduzieren (z.b. Memory Mapped Files, Festplattendaten) Kein Swapping (Datenträgerzugriff) nötig! mem_map mem_map_t Physische Seiten clock Algorithmus

47 2.) System V Shared Memory Seiten auslagern (Swap File) clock Algorithmus Physische Seiten Prozeß A Prozeß B Prozeß C

48 2.) System V Shared Memory Seiten auslagern (Swap File) clock Algorithmus Physische Seiten Page Tables Prozeß A Prozeß B Prozeß C

49 2.) System V Shared Memory Seiten auslagern (Swap File) clock Algorithmus Physische Seiten Page Tables Prozeß A Prozeß B Prozeß C Page Table Eintrag invalid setzen PFN auf Swapposition setzen (Datei, Offset) User Count für die Seite um reduzieren (mem_map_t) Wenn User Count = 0, dann Seite swappen

50 3.) Speicherseiten auslagern (Swap File) kswapd Darf Prozeß geswappt werden? Prozeß A Prozeß B Prozeß C

51 3.) Speicherseiten auslagern (Swap File) kswapd Darf Prozeß geswappt werden? Prozeß A Prozeß B Prozeß C Dürfen Seiten geswappt werden? (nicht locked / shared)

52 3.) Speicherseiten auslagern (Swap File) kswapd Darf Prozeß geswappt werden? Prozeß A Prozeß B Prozeß C Dürfen Seiten geswappt werden? (nicht locked / shared) Muß eine Seite geswappt werden oder kann man sie einfach verwerfen? (Können die Informationen anders wiederhergestellt werden?)

53 3.) Speicherseiten auslagern (Swap File) kswapd Darf Prozeß geswappt werden? Prozeß A Prozeß B Prozeß C Dürfen Seiten geswappt werden? (nicht locked / shared) Muß eine Seite geswappt werden oder kann man sie einfach verwerfen? (Können die Informationen anders wiederhergestellt werden?) Seite verwerfen Einige wenige Seiten wählen Seiten ins Swap File auslagern

54 Ende Linux Paging, Caching und Swapping

Quiz. Gegeben sei ein 16KB Cache mit 32 Byte Blockgröße. Wie verteilen sich die Bits einer 32 Bit Adresse auf: Tag Index Byte Offset.

Quiz. Gegeben sei ein 16KB Cache mit 32 Byte Blockgröße. Wie verteilen sich die Bits einer 32 Bit Adresse auf: Tag Index Byte Offset. Quiz Gegeben sei ein 16KB Cache mit 32 Byte Blockgröße. Wie verteilen sich die Bits einer 32 Bit Adresse auf: Tag Index Byte Offset 32 Bit Adresse 31 3 29... 2 1 SS 212 Grundlagen der Rechnerarchitektur

Mehr

Linux Memory Management für MySQL

Linux Memory Management für MySQL Linux Memory Management für MySQL SIG MySQL - Performance 13.03.2012 Marius Dorlöchter mdo@ordix.de www.ordix.de Vorstellung Marius Dorlöchter Consultant bei ORDIX seit 2006 Gruppe Systemintegration Betriebssysteme:

Mehr

Vorlesung: Rechnerstrukturen, Teil 2 (Modul IP7)

Vorlesung: Rechnerstrukturen, Teil 2 (Modul IP7) Vorlesung: Rechnerstrukturen, Teil 2 (Modul IP7) Vorlesung: Rechnerstrukturen, Teil 2 (Modul IP7) J. Zhang zhang@informatik.uni-hamburg.de Universität Hamburg AB Technische Aspekte Multimodaler Systeme

Mehr

RO-Tutorien 15 und 16

RO-Tutorien 15 und 16 Tutorien zur Vorlesung Rechnerorganisation Tutorienwoche 10 am 29.06.2011 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft

Mehr

8. Swapping und Virtueller Speicher

8. Swapping und Virtueller Speicher 8. Swapping und Virtueller Speicher Der physikalische Adreßraum wird weiter abgebildet auf Arbeitsspeicher und Plattenspeicher. Prozesse (deren benutzte Seiten) die nicht laufen (und bald nicht laufen)

Mehr

Virtueller Speicher und Memory Management

Virtueller Speicher und Memory Management Virtueller Speicher und Memory Management Speicher-Paradigmen Programmierer ein großer Adressraum linear adressierbar Betriebssystem eine Menge laufender Tasks / Prozesse read-only Instruktionen read-write

Mehr

Betriebssysteme Teil 10 B: Fragen rund um Seitenfehler

Betriebssysteme Teil 10 B: Fragen rund um Seitenfehler Betriebssysteme Teil 10 B: Fragen rund um Seitenfehler 1 Überlegungen Wenn wir einige Seiten eines Programms in den Speicher laden, brauchen wir eine Strategie, welche Seiten als nächstes geladen werden

Mehr

Speicherverwaltung (Swapping und Paging)

Speicherverwaltung (Swapping und Paging) Speicherverwaltung (Swapping und Paging) Rückblick: Segmentierung Feste Einteilung des Speichers in einzelne Segmente 750k 0 Rückblick: Segmentierung Feste Einteilung des Speichers in einzelne Segmente

Mehr

Cache Grundlagen. Schreibender Cache Zugriff. SS 2012 Grundlagen der Rechnerarchitektur Speicher 22

Cache Grundlagen. Schreibender Cache Zugriff. SS 2012 Grundlagen der Rechnerarchitektur Speicher 22 Cache Grundlagen Schreibender Cache Zugriff SS 212 Grundlagen der Rechnerarchitektur Speicher 22 Eine einfache Strategie Schreibt man nur in den Cache, werden Cache und darunter liegender Speicher inkonsistent.

Mehr

Tutorium Rechnerorganisation

Tutorium Rechnerorganisation Woche 11 Tutorien 3 und 4 zur Vorlesung Rechnerorganisation 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

Technische Informatik II Wintersemester 2002/03 Sommersemester 2001. Heiko Holtkamp Heiko@rvs.uni-bielefeld.de

Technische Informatik II Wintersemester 2002/03 Sommersemester 2001. Heiko Holtkamp Heiko@rvs.uni-bielefeld.de Technische Informatik II Wintersemester 2002/03 Sommersemester 2001 Heiko Holtkamp Heiko@rvs.uni-bielefeld.de Speicher ist eine wichtige Ressource, die sorgfältig verwaltet werden muss. In der Vorlesung

Mehr

Wunschvorstellung der Entwickler vom Speicher

Wunschvorstellung der Entwickler vom Speicher Wunschvorstellung der Entwickler vom Speicher Unendlich groß Unendlich schnell Nicht flüchtig billig Obwohl sich der verfügbare Speicher laufend erhöht, wird immer mehr Speicher benötigt, als verfügbar

Mehr

Virtueller Speicher WS 2011/2012. M. Esponda-Argüero

Virtueller Speicher WS 2011/2012. M. Esponda-Argüero Virtueller Speicher WS / Virtuelle Speicher Bis jetzt sind wir davon ausgegangen, dass Prozesse komplett im Hauptspeicher gelagert werden. Speicherreferenzen sind nur logische Adressen, die dynamisch in

Mehr

é Er ist software-transparent, d.h. der Benutzer braucht nichts von seiner Existenz zu wissen. Adreßbus Cache- Control Datenbus

é Er ist software-transparent, d.h. der Benutzer braucht nichts von seiner Existenz zu wissen. Adreßbus Cache- Control Datenbus 4.2 Caches é Cache kommt aus dem Französischen: cacher (verstecken). é Er kann durch ein Anwendungsprogramm nicht explizit adressiert werden. é Er ist software-transparent, d.h. der Benutzer braucht nichts

Mehr

Schreiben von Pages. Schreiben einer Page in den Swap Space ist sehr teuer (kostet millionen von CPU Zyklen).

Schreiben von Pages. Schreiben einer Page in den Swap Space ist sehr teuer (kostet millionen von CPU Zyklen). Schreiben von Pages Schreiben einer Page in den Swap Space ist sehr teuer (kostet millionen von CPU Zyklen). Write Through Strategie (siehe Abschnitt über Caching) ist hier somit nicht sinnvoll. Eine sinnvolle

Mehr

Wie groß ist die Page Table?

Wie groß ist die Page Table? Wie groß ist die Page Table? Im vorigen (typischen) Beispiel verwenden wir 20 Bits zum indizieren der Page Table. Typischerweise spendiert man 32 Bits pro Tabellen Zeile (im Vorigen Beispiel brauchten

Mehr

Cache Blöcke und Offsets

Cache Blöcke und Offsets Cache Blöcke und Offsets Ein Cache Eintrag speichert in der Regel gleich mehrere im Speicher aufeinander folgende Bytes. Grund: räumliche Lokalität wird wie folgt besser ausgenutzt: Bei Cache Miss gleich

Mehr

Zwei Möglichkeiten die TLB zu aktualisieren

Zwei Möglichkeiten die TLB zu aktualisieren Zwei Möglichkeiten die TLB zu aktualisieren Die MMU kümmert sich um alles (Hardware-Lösung) sucht die p-entry wenn diese nicht da ist, behandelt direkt das TLB-miss zum Schluss wird die neue p-entry (virt

Mehr

Echtzeitbetriebssysteme

Echtzeitbetriebssysteme Speicherverwaltung (Memory Management) Aufgaben der Memory-Management-Unit ist l der Speicherschutz und l die Adressumsetzung Wird durch Hardware unterstützt l Memory Management Unit (MMU) l MMU wird vom

Mehr

(Cache-Schreibstrategien)

(Cache-Schreibstrategien) Übungsblatt 2 Aufgabe 1 (Digitale Datenspeicher) 1. Nennen Sie einen digitalen Datenspeicher, der mechanisch arbeitet. 2. Nennen Sie zwei rotierende magnetische digitale Datenspeicher. 3. Nennen Sie zwei

Mehr

Lösung von Übungsblatt 2

Lösung von Übungsblatt 2 Lösung von Übungsblatt 2 Aufgabe 1 (Digitale Datenspeicher) 1. Nennen Sie einen digitalen Datenspeicher, der mechanisch arbeitet. Lochstreifen, Lochkarte, CD/DVD beim Pressen. 2. Nennen Sie zwei rotierende

Mehr

Speicher- und Cacheverwaltung unter Linux. Ralf Petring & Guido Schaumann

Speicher- und Cacheverwaltung unter Linux. Ralf Petring & Guido Schaumann Speicher- und Cacheverwaltung unter Linux Ralf Petring & Guido Schaumann Übersicht Virtueller Adressraum Virtuelle Speicheraufteilung Reale Speicheraufteilung Speicherverwaltung Speicherzugriff Auslagerungsstrategien

Mehr

Betriebssysteme BS-S SS Hans-Georg Eßer. Foliensatz S: Speicherverwaltung. Dipl.-Math., Dipl.-Inform. v1.0, 2015/04/14

Betriebssysteme BS-S SS Hans-Georg Eßer. Foliensatz S: Speicherverwaltung. Dipl.-Math., Dipl.-Inform. v1.0, 2015/04/14 BS-S Betriebssysteme SS 2015 Hans-Georg Eßer Dipl.-Math., Dipl.-Inform. Foliensatz S: Speicherverwaltung v1.0, 2015/04/14 Betriebssysteme, SS 2015 Hans-Georg Eßer Folie S-1 Übersicht: BS Praxis und BS

Mehr

, 2014W Übungsgruppen: Mo., Mi.,

, 2014W Übungsgruppen: Mo., Mi., VU Technische Grundlagen der Informatik Übung 7: Speichermanagement 183.579, 2014W Übungsgruppen: Mo., 12.01. Mi., 14.01.2015 Aufgabe 1: Cache-Adressierung Ein Prozessor mit einer Adresslänge von 20 Bit

Mehr

Konzepte von Betriebssystemkomponenten Referat am Thema: Adressräume, Page Faults, Demand Paging, Copy on Write Referent: Johannes Werner

Konzepte von Betriebssystemkomponenten Referat am Thema: Adressräume, Page Faults, Demand Paging, Copy on Write Referent: Johannes Werner Konzepte von Betriebssystemkomponenten Referat am 24.11.2003 Thema: Adressräume, Page Faults, Demand Paging, Copy on Write Referent: Johannes Werner Gliederung Adressräume Page Faults Demand Paging Copy

Mehr

Virtueller Speicher. SS 2012 Grundlagen der Rechnerarchitektur Speicher 44

Virtueller Speicher. SS 2012 Grundlagen der Rechnerarchitektur Speicher 44 Virtueller Speicher SS 2012 Grundlagen der Rechnerarchitektur Speicher 44 Die Idee Virtuelle Adressen Prozess 1 Speicherblock 0 Speicherblock 1 Speicherblock 2 Speicherblock 3 Speicherblock 4 Speicherblock

Mehr

Teil 2: Speicherstrukturen

Teil 2: Speicherstrukturen Inhalt Teil 2: Speicherstrukturen Hauptspeicher Cache Assoziativspeicher Speicherverwaltungseinheit ( Memory Management Unit ) 1 Virtueller Speicher Trennung von virtuellem Adreßraum (mit virtuellen Adressen)

Mehr

Lösung von Übungsblatt 2

Lösung von Übungsblatt 2 Lösung von Übungsblatt 2 Aufgabe 1 (Digitale Datenspeicher) 1. Nennen Sie einen digitalen Datenspeicher, der mechanisch arbeitet. Lochstreifen, Lochkarte, CD/DVD beim Pressen. 2. Nennen Sie zwei rotierende

Mehr

Konzepte von Betriebssystem- Komponenten Olessia Usik 20. Juni 2005

Konzepte von Betriebssystem- Komponenten Olessia Usik 20. Juni 2005 Konzepte von Betriebssystem- Komponenten Olessia Usik olessia@freenet.de 20. Juni 2005 1 GROß 2 SCHNELL UNENDLICH Gliederung 1. Einleitung 2. Swapping 3. Virtuelle Speicherverwaltung 3.1 Segmentorientierter

Mehr

Technische Realisierung (1)

Technische Realisierung (1) Technische Realisierung () Einfachstes Modell: Prozess (Daten+Code) befindet sich im Hintergrundspeicher Bei teilweise eingelagerten Prozessen: Zusätzlich Teile im Hauptspeicher Logische Adressen überdecken

Mehr

Assignment #2. Virtueller Speicher Virtual Memory WS 2012/2013 IAIK 1

Assignment #2. Virtueller Speicher Virtual Memory WS 2012/2013 IAIK 1 Assignment #2 Virtueller Speicher Virtual Memory WS 2012/2013 IAIK 1 Organisatorisches:Termine Ab Montag Tutorien 10.12.-14.12. Designdiskussionen 18.12. Abgabe Designdokument 18.1. Abgabe Implementierung

Mehr

7. Speicherverwaltung

7. Speicherverwaltung 7. Speicherverwaltung Ziele Zuteilung des Arbeitsspeicher Abbildung der symbolischen Adresse auf die physikalische Adresse Adress-Transformation Symbolische Adresse verschiebbare Adresse physikalische

Mehr

Hauptspeicherverwaltung - Memory Management

Hauptspeicherverwaltung - Memory Management Hauptspeicherverwaltung - Memory Management Operating Systems I SS21 Prof. H.D.Clausen - unisal 1 Speicherhierarchie Verarbeitung cache Sekundär- Speicher Primär- Speicher ALU SS21 Prof. H.D.Clausen -

Mehr

CPU. Memory. Highest. Fastest. Smallest. Memory. Biggest. Lowest

CPU. Memory. Highest. Fastest. Smallest. Memory. Biggest. Lowest Speed CPU Size Cost ($/bit) Fastest Memory Smallest Highest Memory Slowest Memory Biggest Lowest Processor Data are transferred CPU Levels in the memory hierarchy Level Level 2 Increasing distance from

Mehr

Speicherverwaltung. Design Digitaler Systeme. Prof. Dr.-Ing. Rainer Bermbach

Speicherverwaltung. Design Digitaler Systeme. Prof. Dr.-Ing. Rainer Bermbach Speicherverwaltung Design Digitaler Systeme Prof. Dr.-Ing. Rainer Bermbach Übersicht Speicherverwaltung Virtueller Speicher Memory Management Unit Segmentierung Paging Kombination Segmentierung/ Paging

Mehr

Rechnernetze und Organisation

Rechnernetze und Organisation Memory 1 Übersicht Motivation Speicherarten Register SRAM, DRAM Flash Speicherhierarchie Cache Virtueller Speicher 2 Motivation Speicher ist zentraler Bestandteil eines Computers neben Prozessor CPU Computer

Mehr

Besprechung des 9. Übungsblattes Virtuelle Speicherverwaltung Aufgaben

Besprechung des 9. Übungsblattes Virtuelle Speicherverwaltung Aufgaben Themen heute Besprechung des 9. Übungsblattes Virtuelle Speicherverwaltung Aufgaben Besprechung des 9. Übungsblattes Aufgabe 2 Ist in einer Aufgabe wie hier keine explizite Wortbreite angegeben, nicht

Mehr

Analyse aktueller Cache-Architekturen hinsichtlich Struktur und Effizienz. Markus Krause

Analyse aktueller Cache-Architekturen hinsichtlich Struktur und Effizienz. Markus Krause Analyse aktueller Cache-Architekturen hinsichtlich Struktur und Effizienz Markus Krause Dresden, Gliederung 1. Einführung 2. Problemstellung 3. Lösungen a) Miss Rate b) Miss Penalty c) Hit Time 4. Zusammenfassung

Mehr

Betriebssystemtechnik

Betriebssystemtechnik Betriebssystemtechnik Übung 2 - Den Speicher beseiten Daniel Danner Christian Dietrich Gabor Drescher May 19, 2015 Betriebssystemtechnik 1 13 Ziel dieser Übung Betriebssystemtechnik 2 13 Ziel dieser Übung

Mehr

Grundlagen der Informatik III Wintersemester 2010/2011

Grundlagen der Informatik III Wintersemester 2010/2011 Grundlagen der Informatik III Wintersemester 2010/2011 Wolfgang Heenes, atrik Schmittat 12. Aufgabenblatt 07.02.2011 Hinweis: Der Schnelltest und die Aufgaben sollen in den Übungsgruppen bearbeitet werden.

Mehr

(Prüfungs-)Aufgaben zum Thema Speicherverwaltung

(Prüfungs-)Aufgaben zum Thema Speicherverwaltung (Prüfungs-)Aufgaben zum Thema Speicherverwaltung 1) Ein Betriebssystem mit virtueller Speicherverwaltung arbeite mit 32 Bit langen virtuellen Adressen einer Seitengröße von 4KB zweistufigem Paging, wobei

Mehr

Abbilden von virtuellen auf physikalische Adressen

Abbilden von virtuellen auf physikalische Adressen Abbilden von virtuellen auf physikalische Adressen Virtuelle Adresse 31 30 29 28 27... 15 14 13 12 11 10 9 8... 3 2 1 0 Virtuelle Seitennummer Seiten Offset Translation Physikalische Adresse 29 28 27...

Mehr

Technische Informatik 2 Speichersysteme, Teil 3

Technische Informatik 2 Speichersysteme, Teil 3 Technische Informatik 2 Speichersysteme, Teil 3 Prof. Dr. Miroslaw Malek Sommersemester 2004 www.informatik.hu-berlin.de/rok/ca Thema heute Virtueller Speicher (Fortsetzung) Translation Lookaside Buffer

Mehr

Lösung von Übungsblatt 5

Lösung von Übungsblatt 5 Lösung von Übungsblatt 5 Aufgabe 1 (Speicherverwaltung) 1. Bei welchen Konzepten der Speicherpartitionierung entsteht interne Fragmentierung? Statische Partitionierung f Dynamische Partitionierung Buddy-Algorithmus

Mehr

Memory Management. Peter Puschner Institut für Technische Informatik peter@vmars.tuwien.ac.at

Memory Management. Peter Puschner Institut für Technische Informatik peter@vmars.tuwien.ac.at Memory Management Peter Puschner Institut für Technische Informatik peter@vmars.tuwien.ac.at 1 Speicherverwaltung Effektive Aufteilung und Verwaltung des Arbeitsspeichers für BS und Programme Anforderungen

Mehr

Betriebssysteme 1. Thomas Kolarz. Folie 1

Betriebssysteme 1. Thomas Kolarz. Folie 1 Folie 1 Betriebssysteme I - Inhalt 0. Einführung, Geschichte und Überblick 1. Prozesse und Threads (die AbstrakFon der CPU) 2. Speicherverwaltung (die AbstrakFon des Arbeitsspeichers) 3. Dateisysteme (die

Mehr

Rechnerarchitektur und Betriebssysteme (CS201): Virtual Memory

Rechnerarchitektur und Betriebssysteme (CS201): Virtual Memory Rechnerarchitektur und Betriebssysteme (CS2): Virtual Memory 19 November 23 Prof Dr Christian Tschudin Departement Mathematik und Informatik, Universität Basel Wiederholung / Diskussion 1 Was ist ein inode?

Mehr

Proseminar Konzepte von Betriebssystem- Komponenten (KVBK) Vortrag zum Thema: Speicheraddressierung, Segmentierung, Paging

Proseminar Konzepte von Betriebssystem- Komponenten (KVBK) Vortrag zum Thema: Speicheraddressierung, Segmentierung, Paging Proseminar Konzepte von Betriebssystem- Komponenten (KVBK) Vortrag zum Thema: Speicheraddressierung, Segmentierung, Paging Grundlegende Bedeutung von Speicheradressierung: Wie sind die Daten auf Dem Speicher

Mehr

Aufgabe 4 : Virtueller Speicher

Aufgabe 4 : Virtueller Speicher Sommer 216 Technische Informatik I Lösungsvorschlag Seite 16 Aufgabe 4 : Virtueller Speicher (maximal 27 Punkte) 4.1: Generelle Funktionsweise (maximal 5 Punkte) (a) (1 Punkt) Nennen Sie zwei Gründe, weshalb

Mehr

Übung zu Einführung in die Informatik # 10

Übung zu Einführung in die Informatik # 10 Übung zu Einführung in die Informatik # 10 Tobias Schill tschill@techfak.uni-bielefeld.de 15. Januar 2016 Aktualisiert am 15. Januar 2016 um 9:58 Erstklausur: Mi, 24.02.2016 von 10-12Uhr Aufgabe 1* a),

Mehr

Betriebssysteme. Speicherverwaltung - Grundlegende Konzepte. Sommersemester 2014 Prof. Dr. Peter Mandl. Prof. Dr. Peter Mandl Seite 1.

Betriebssysteme. Speicherverwaltung - Grundlegende Konzepte. Sommersemester 2014 Prof. Dr. Peter Mandl. Prof. Dr. Peter Mandl Seite 1. Speicherverwaltung - Grundlegende Konzepte Sommersemester 2014 Prof. Dr. Peter Mandl Prof. Dr. Peter Mandl Seite 1 Gesamtüberblick 1. Einführung in 2. Betriebssystemarchitekturen und Betriebsarten 3. Interruptverarbeitung

Mehr

, 2015W Übungsgruppen: Mo., Mi.,

, 2015W Übungsgruppen: Mo., Mi., VU Technische Grundlagen der Informatik Übung 7: Speichermanagement 183.579, 2015W Übungsgruppen: Mo., 11.01. Mi., 13.01.2016 Aufgabe 1: Cache-Adressierung Ihr Cachingsystem soll 32 GiB an Speicher auf

Mehr

Übung zu Grundlagen der Betriebssysteme. 14. Übung

Übung zu Grundlagen der Betriebssysteme. 14. Übung Übung zu Grundlagen der Betriebssysteme 14. Übung 29.01.2012 Aufgabe 1 Demand Paging a) Was wird unter dem Begriff Demand Paging verstanden? b) Was sind Vor- und Nachteile des Demand Paging? Bei Demand

Mehr

Übung Praktische Informatik II

Übung Praktische Informatik II Übung Praktische Informatik II FSS 2009 Benjamin Guthier Lehrstuhl für Praktische Informatik IV Universität Mannheim guthier@pi4.informatik.uni-mannheim.de 22.05.09 11-1 Heutige große Übung Ankündigung

Mehr

Systeme I: Betriebssysteme Kapitel 4 Prozesse. Wolfram Burgard

Systeme I: Betriebssysteme Kapitel 4 Prozesse. Wolfram Burgard Systeme I: Betriebssysteme Kapitel 4 Prozesse Wolfram Burgard Version 18.11.2015 1 Inhalt Vorlesung Aufbau einfacher Rechner Überblick: Aufgabe, Historische Entwicklung, unterschiedliche Arten von Betriebssystemen

Mehr

Main Memory. Hauptspeicher. Memories. Speichermodule. SIMM: single inline memory module 72 Pins. DIMM: dual inline memory module 168 Pins

Main Memory. Hauptspeicher. Memories. Speichermodule. SIMM: single inline memory module 72 Pins. DIMM: dual inline memory module 168 Pins 5 Main Memory Hauptspeicher Memories 2 Speichermodule SIMM: single inline memory module 72 Pins DIMM: dual inline memory module 68 Pins 3 Speichermodule 4 Speichermodule 5 Speichermodule 6 2 Hauptspeicher

Mehr

Grundlagen der Rechnerarchitektur. Speicher

Grundlagen der Rechnerarchitektur. Speicher Grundlagen der Rechnerarchitektur Speicher Übersicht Speicherhierarchie Cache Grundlagen Verbessern der Cache Performance Virtueller Speicher SS 2012 Grundlagen der Rechnerarchitektur Speicher 2 Speicherhierarchie

Mehr

Cache-Speicher. Design Digitaler Systeme. Prof. Dr.-Ing. Rainer Bermbach

Cache-Speicher. Design Digitaler Systeme. Prof. Dr.-Ing. Rainer Bermbach Cache-Speicher Design Digitaler Systeme Prof. Dr.-Ing. Rainer Bermbach Übersicht Cache-Speicher Warum Cache-Speicher? Cache-Strukturen Aufbau und Organisation von Caches Cache-Architekturen Cache-Strategien

Mehr

5.5 Virtueller Speicher

5.5 Virtueller Speicher 5.5 Virtueller Speicher Wenn der reale Speicher sogar für einzelne Prozesse zu klein ist : Virtueller Speicher (virtual memory), ist beliebig groß, nimmt alle Prozesse auf, ist in gleichgroße Teile Seiten

Mehr

Technische Informatik 1 - HS 2017

Technische Informatik 1 - HS 2017 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik 1 - HS 2017 Übung 11 Datum: 21. 22. 12. 2017 Virtueller Speicher 1 Performanz Gehen Sie von einem virtuellen

Mehr

Rechnergrundlagen SS Vorlesung

Rechnergrundlagen SS Vorlesung Rechnergrundlagen SS 2007 13. Vorlesung Inhalt Cache Lesen Schreiben Überschreiben Memory Management Unit (MMU) Translation Lookaside Buffer (TLB) Klausurvorbereitung Inhalte der Klausur Rechnergrundlagen

Mehr

Inhaltsübersicht. Speicherverwaltung Teil II. Speicherverwaltung verschiedener UNIX-Derivate. Speicherverwaltung unter UNIX

Inhaltsübersicht. Speicherverwaltung Teil II. Speicherverwaltung verschiedener UNIX-Derivate. Speicherverwaltung unter UNIX Speicherverwaltung Teil II Inhaltsübersicht Speicherverwaltung unter UNIX Speicher für Kernel-Objekte Virtueller Adreßraum Shared Memory Swapping Demand Paging Speicherverwaltung konkreter Systeme: UNIX

Mehr

Speicherhierarchie, Caches, Consistency Models

Speicherhierarchie, Caches, Consistency Models Speicherhierarchie, Caches, Consistency Models Maximilian Langknecht Lehrstuhl für Rechnerarchitektur Betreuer: Prof. Dr. Ulrich Brüning 1 Inhaltsverzeichnis Speicherhierarchie Warum gibt es Speicherhierarchie?

Mehr

CA Übung 30.01.2006. Christian kann heute nicht kommen => ich bin heute da, Christian das nächste Mal wieder

CA Übung 30.01.2006. Christian kann heute nicht kommen => ich bin heute da, Christian das nächste Mal wieder CA Übung 30.01.2006 Hallo zusammen! Christian kann heute nicht kommen => ich bin heute da, Christian das nächste Mal wieder Adrian Schüpbach: scadrian@student.ethz.ch Christian Fischlin: cfischli@student.ethz.ch

Mehr

5.5.5 Der Speicherverwalter

5.5.5 Der Speicherverwalter 5.5.5 Der Speicherverwalter Speicherverwalter (memory manager) reagiert auf = im einfachsten Fall ein Systemprozess, der für die Umlagerung der Seiten (page swapping) zuständig ist (analog zum Umlagerer/Swapper)

Mehr

Seminarvortrag Swapping Schwerpunkt Linux

Seminarvortrag Swapping Schwerpunkt Linux Seminarvortrag Swapping Schwerpunkt Linux Konzepte von Betriebssystem- Komponenten (KVBK) Thomas Mayer Betriebssystem-Komponenten KVBK 1 Gliederung Was ist Swapping? Aufbau eines Swapbereiches Swapcache

Mehr

Proseminar Konzepte von Betriebssystem-Komponenten (KVBK) Vortrag zum Thema: Speicheraddressierung, Segmentierung, Paging Von Christian Hubert

Proseminar Konzepte von Betriebssystem-Komponenten (KVBK) Vortrag zum Thema: Speicheraddressierung, Segmentierung, Paging Von Christian Hubert Proseminar Konzepte von Betriebssystem-Komponenten (KVBK) Vortrag zum Thema: Speicheraddressierung, Segmentierung, Paging Von Christian Hubert 1.: Speicherung und Adressierung von Daten Bei der Speicheradressierung

Mehr

Besprechung des 8. Übungsblattes Einführung in Caches Cache-Organisation Cache-Ersetzungsstrategien Aufgaben (an der Tafel) Testklausur

Besprechung des 8. Übungsblattes Einführung in Caches Cache-Organisation Cache-Ersetzungsstrategien Aufgaben (an der Tafel) Testklausur Themen heute Besprechung des 8. Übungsblattes Einführung in Caches Cache-Organisation Cache-Ersetzungsstrategien Aufgaben (an der Tafel) Testklausur Besprechung des 8. Übungsblattes Aufgabe 2.6. In diesem

Mehr

Betriebssysteme Kap J, Teil C: Paging, Pagereplacement

Betriebssysteme Kap J, Teil C: Paging, Pagereplacement Betriebssysteme Kap J, Teil C: Paging, Pagereplacement 1 Welche Seite soll ausgelagert werden? Ein- / Auslagern benötigt Zeit Kontextwechsel erforderlich» Wechsel zu einem BS-Prozess, welcher für das Management

Mehr

RO-Tutorien 17 und 18

RO-Tutorien 17 und 18 RO-Tutorien 17 und 18 Tutorien zur Vorlesung Rechnerorganisation Christian A. Mandery TUTORIENWOCHE 12 AM 19.07.2012 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der

Mehr

Grundlagen der Rechnerarchitektur. Speicher

Grundlagen der Rechnerarchitektur. Speicher Grundlagen der Rechnerarchitektur Speicher Übersicht Speicherhierarchie Cache Grundlagen Verbessern der Cache Performance Virtueller Speicher SS 2012 Grundlagen der Rechnerarchitektur Speicher 2 Speicherhierarchie

Mehr

Computer-Systeme Teil 15: Virtueller Speicher

Computer-Systeme Teil 15: Virtueller Speicher Computer-Systeme Teil 15: Virtueller Speicher Computer-Systeme WS 12/13 - Teil 15/Virtueller Speicher 14.01.2013 1 Übersicht Segmente Systemaufrufe Swapping Paging Computer-Systeme WS 12/13 - Teil 15/Virtueller

Mehr

Betriebssysteme I WS 2016/2017. Betriebssysteme / verteilte Systeme Tel.: 0271/ , Büro: H-B 8404

Betriebssysteme I WS 2016/2017. Betriebssysteme / verteilte Systeme Tel.: 0271/ , Büro: H-B 8404 Betriebssysteme I WS 2016/2017 Betriebssysteme / verteilte Systeme rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404 Stand: 2. Februar 2017 Betriebssysteme / verteilte Systeme Betriebssysteme

Mehr

Virtueller Speicher. Teil 2. Prof. Dr. Margarita Esponda-Argüero WS 2011/2012. M. Esponda-Argüero

Virtueller Speicher. Teil 2. Prof. Dr. Margarita Esponda-Argüero WS 2011/2012. M. Esponda-Argüero Virtueller Speicher Teil 2 Prof. Dr. Margarita Esponda-Argüero WS 2011/2012 1 Speicherzuteilung im Kernel Speicherverwaltung für Kernel-Threads wird getrennt von der Speicherverwaltung für Benutzer-Prozesse

Mehr

Betriebssysteme. Dipl.-Ing.(FH) Volker Schepper

Betriebssysteme. Dipl.-Ing.(FH) Volker Schepper Speicherverwaltung Real Mode Nach jedem starten eines PC befindet sich jeder x86 (8086, 80386, Pentium, AMD) CPU im sogenannten Real Mode. Datenregister (16Bit) Adressregister (20Bit) Dadurch lassen sich

Mehr

Betriebssysteme KU - Bewertung A2 - WS 15/16

Betriebssysteme KU - Bewertung A2 - WS 15/16 Betriebssysteme KU - Bewertung A2 - WS 15/16 TEAM:... Mögliche Punkte: 50 + Bonus Allgemein Design Design / PoC Implementation... Sonstiges/Abzüge +X Sonstiges / : Bewertung der einzelnen Gruppenmitglieder

Mehr

, SS2012 Übungsgruppen: Do., Mi.,

, SS2012 Übungsgruppen: Do., Mi., VU Technische Grundlagen der Informatik Übung 7: Speicher und Peripherie 183.579, SS2012 Übungsgruppen: Do., 31.05. Mi., 06.06.2012 Aufgabe 1: Ihre Kreativität ist gefragt! Um die Qualität der Lehrveranstaltung

Mehr

1. Von-Neumann-Architektur (7/66 Punkte)

1. Von-Neumann-Architektur (7/66 Punkte) Fakultät Informatik/Mathematik Seite 1/8 Datum: 23.12.2010 Name: Vorname: Arbeitszeit: 60 Minuten Matr.-Nr.: Hilfsmittel: alle eigenen Unterschrift: wird vom Prüfer ausgefüllt 1 2 3 4 5 6 7 8 9 Diese hat

Mehr

wichtigstes Betriebsmittel - neben dem Prozessor: Speicher

wichtigstes Betriebsmittel - neben dem Prozessor: Speicher Speicherverwaltung Aufgaben der Speicherverwaltung wichtigstes Betriebsmittel - neben dem Prozessor: Speicher Sowohl die ausführbaren Programme selbst als auch deren Daten werden in verschiedenen Speicherbereichen

Mehr

Betriebssysteme Sommersemester Betriebssysteme. 5. Kapitel. Adressumsetzung. Dr. Peter Tröger / Prof. M. Werner. Professur Betriebssysteme

Betriebssysteme Sommersemester Betriebssysteme. 5. Kapitel. Adressumsetzung. Dr. Peter Tröger / Prof. M. Werner. Professur Betriebssysteme Betriebssysteme Sommersemester 2017 Betriebssysteme 5. Kapitel Adressumsetzung Dr. Peter Tröger / Prof. M. Werner Professur Betriebssysteme 5.1 Speicher schneller, teurer, kleiner Betriebssysteme Adressumsetzung

Mehr

Linux. Memory-Verwaltung unter Linux - Mythen aus der Praxis. Thorsten Bruhns Solution Architect. OPITZ CONSULTING GmbH. Nürnberg,

Linux. Memory-Verwaltung unter Linux - Mythen aus der Praxis. Thorsten Bruhns Solution Architect. OPITZ CONSULTING GmbH. Nürnberg, Linux Memory-Verwaltung unter Linux - Mythen aus der Praxis Thorsten Bruhns Solution Architect OPITZ CONSULTING GmbH Nürnberg, 17.11.2016 OPITZ CONSULTING GmbH 2015 Seite 1 OPITZ CONSULTING GmbH 2015 Seite

Mehr

Konzepte von Betriebssystemkomponenten

Konzepte von Betriebssystemkomponenten Konzepte von Betriebssystemkomponenten Systemstart und Programmausführung Seminarvortrag 15.12.2003, Michael Moese Übersicht 2. Systemstart 3. Programmausführung TEIL 1: Systemstart 1.1 Das BIOS 1.2 Der

Mehr

Linker: Adreßräume verknüpfen. Informationen über einen Prozeß. Prozeß-Erzeugung: Verwandtschaft

Linker: Adreßräume verknüpfen. Informationen über einen Prozeß. Prozeß-Erzeugung: Verwandtschaft Prozeß: drei häufigste Zustände Prozeß: anatomische Betrachtung jeder Prozeß verfügt über seinen eigenen Adreßraum Sourcecode enthält Anweisungen und Variablen Compiler überträgt in Assembler bzw. Binärcode

Mehr

Grundlagen der Informatik III Wintersemester 2010/2011

Grundlagen der Informatik III Wintersemester 2010/2011 Grundlagen der Informatik III Wintersemester 21/211 Wolfgang Heenes, atrik Schmittat 12. Aufgabenblatt mit Lösungsvorschlag 7.2.211 Hinweis: Der Schnelltest und die Aufgaben sollen in den Übungsgruppen

Mehr

Grundlagen der Informatik III Wintersemester 2010/ Vorlesung Dr.-Ing. Wolfgang Heenes

Grundlagen der Informatik III Wintersemester 2010/ Vorlesung Dr.-Ing. Wolfgang Heenes Grundlagen der Informatik III Wintersemester 2010/2011 25. Vorlesung Dr.-Ing. Wolfgang Heenes int main() { printf("hello, world!"); return 0; } msg: main:.data.asciiz "Hello, world!".text.globl main la

Mehr

Hans-Georg Eßer, Hochschule München, Betriebssysteme I, SS Speicherverwaltung 1

Hans-Georg Eßer, Hochschule München, Betriebssysteme I, SS Speicherverwaltung 1 Sep 19 14:20:18 amd64 sshd[20494]: Accepted rsa for esser from ::ffff:87.234.201.207 port 61557 Sep 19 14:27:41 amd64 syslog-ng[7653]: STATS: dropped 0 Sep 20 01:00:01 amd64 /usr/sbin/cron[29278]: (root)

Mehr

(Prof. Dr. J. Schlichter, WS 2011 / 2012) Übungsleitung: Dr. Wolfgang Wörndl

(Prof. Dr. J. Schlichter, WS 2011 / 2012) Übungsleitung: Dr. Wolfgang Wörndl Übung zur Vorlesung Grundlagen Betriebssysteme und Systemsoftware (Prof. Dr. J. Schlichter, WS 2011 / 2012) Übungsleitung: Dr. Wolfgang Wörndl (gbs-ws11@mailschlichter.informatik.tu-muenchen.de) http://www11.in.tum.de/veranstaltungen/grundlagenbetriebssystemeundsystemsoftwarews1112

Mehr

Rechnerorganisation. Überblick über den Teil 13

Rechnerorganisation. Überblick über den Teil 13 Rechnerorganisation Teil 3 9. Juni 2 KC Posch Überblick über den Teil 3 Arbiter: Wie können sich 2 aktive Partner vertragen? Direkter Speicherzugriff: Ein Ko Prozessor zum Daten Schaufeln Die Verbesserung

Mehr

Betriebssysteme Betriebssysteme und. Netzwerke. Netzwerke Theorie und Praxis

Betriebssysteme Betriebssysteme und. Netzwerke. Netzwerke Theorie und Praxis Einführung Einführung in in Betriebssysteme Betriebssysteme und und Theorie und Praxis Theorie und Praxis Oktober 2006 Oktober 2006 Prof. Dr. G. Hellberg Prof. Dr. G. Hellberg Email: hellberg@drhellberg.de

Mehr

Universität Bielefeld Technische Fakultät AG Rechnernetze und verteilte Systeme. Vorlesung 4: Memory. Wintersemester 2001/2002. Peter B.

Universität Bielefeld Technische Fakultät AG Rechnernetze und verteilte Systeme. Vorlesung 4: Memory. Wintersemester 2001/2002. Peter B. Universität Bielefeld Technische Fakultät AG Rechnernetze und verteilte Systeme Vorlesung 4: Memory Peter B. Ladkin Address Translation Die Adressen, die das CPU benutzt, sind nicht identisch mit den Adressen,

Mehr

Leichtgewichtsprozesse

Leichtgewichtsprozesse Leichtgewichtsprozesse häufiger Prozeßwechsel stellt in einem Betriebssystem eine hohe Belastung dar; auch erfordert die Generierung eines neuen Prozesses viele System-Resourcen in vielen Anwendungen werden

Mehr

Leichtgewichtsprozesse

Leichtgewichtsprozesse Leichtgewichtsprozesse häufiger Prozeßwechsel stellt in einem Betriebssystem eine hohe Belastung dar; auch erfordert die Generierung eines neuen Prozesses viele System-Resourcen in vielen Anwendungen werden

Mehr

Memory Management, Virtual Memory Tanenbaum Kap. 3 Stallings Kap. 7, 8 Glatz Kap. 7

Memory Management, Virtual Memory Tanenbaum Kap. 3 Stallings Kap. 7, 8 Glatz Kap. 7 Memory Mangement Memory Management, Virtual Memory Tanenbaum Kap. 3 Stallings Kap. 7, 8 Glatz Kap. 7 1 1 Inhalt Lehrziele Memory Management Prozesse im Speicher logische / physikalische Adressen Swapping

Mehr