Grundlagen der Rechnerarchitektur. Speicher

Größe: px
Ab Seite anzeigen:

Download "Grundlagen der Rechnerarchitektur. Speicher"

Transkript

1 Grundlagen der Rechnerarchitektur Speicher

2 Übersicht Speicherhierarchie Cache Grundlagen Verbessern der Cache Performance Virtueller Speicher SS 2012 Grundlagen der Rechnerarchitektur Speicher 2

3 Speicherhierarchie SS 2012 Grundlagen der Rechnerarchitektur Speicher 3

4 Ein großer und schneller Speicher? Besonders schnelle Speicher sind besonders teuer Speichertechnologie Typische Zugriffszeiten $ per GB in 2008 SRAM 0,5 2,5 ns $2000 $5000 DRAM ns $20 $75 Magnetic Disk ns $0,2 $2 Schnellste Speicher müssen auch nahe am Prozessor sein. Beispiel: Signalausbreitungsgeschwindigkeit von etwa 0,3 * 10 9 m/s und Zugriffszeit von 500 ps ergibt eine Distanz von 15 cm. SS 2012 Grundlagen der Rechnerarchitektur Speicher 4

5 Brauchen wir immer den gesamten Speicher? Das Lokalitätsprinzip Zeitliche Lokalität Räumliche Lokalität Beispiel: wir schreiben ein Referat in der Bibliothek Beispiel: typisches Verhalten von Programmen Schleifen fördern zeitliche Lokalität Sequentielle Abarbeitung fördert räumliche Lokalität Sequentielle Abarbeitung von Instruktionen Iterativer Zugriff auf Daten; z.b. Array oder Record Elemente SS 2012 Grundlagen der Rechnerarchitektur Speicher 5

6 Idee: Speicherhierarchie Das Bild ist ein Beispiel; was ist z.b. mit Flash RAM? Die gesamten Daten stehen immer ganz unten Schichten darüber speichern immer eine Teilmenge der Daten der Schicht darunter Häufiger verwendete Daten stehen idealerweise in höherer Speicherschicht Aktuell verwendete Daten sind idealerweise ganz oben SS 2012 Grundlagen der Rechnerarchitektur Speicher 6

7 Terminologie Cache Caches werden meist mit ihrer Größe benannt; 4KB Cache Block (oder auch Line genannt) Hit und Miss Hit Rate und Miss Rate Hit Time und Miss Penalty Offensichtlich: Hit Time << Miss Penalty (Begriffe sind unabhängig von dem konkreten Level) SS 2012 Grundlagen der Rechnerarchitektur Speicher 7

8 Zusammengefasst Ziel: Zugriffszeit annähernd so schnell wie auf Level 1 bei Speichergröße so groß wie auf Level n. SS 2012 Grundlagen der Rechnerarchitektur Speicher 8

9 Cache Grundlagen SS 2012 Grundlagen der Rechnerarchitektur Speicher 9

10 Cache Grundlagen Lesender Cache Zugriff SS 2012 Grundlagen der Rechnerarchitektur Speicher 10

11 Beispiel: Cache vor und nach einem Miss Was macht die CPU während eines Cache Miss? CPU Stall. Im folgenden beantworten wir die folgenden Fragen: Wie stellt man fest, ob X n im Cache ist? Wie findet man X n überhaupt in dem Cache? SS 2012 Grundlagen der Rechnerarchitektur Speicher 11

12 Mögliche Lösung: Direct Mapped Cache Beispiel: Speicher mit 32 und Cache mit 8 Einträgen Mapping ist in der Regel (wie auch im obigen Beispiel) wie folgt: (Block Adresse) modulo (Anzahl Blocks im Cache) SS 2012 Grundlagen der Rechnerarchitektur Speicher 12

13 Problem: Speicherbereiche überlappen Lösung: Tags (markiere Cache Eintrag mit oberem Teil der Adresse) Beispiel: Adresse ergibt Cache Index 001 und Tag 10. Tag Index ergibt wieder SS 2012 Grundlagen der Rechnerarchitektur Speicher 13

14 Problem: ist der Cache Eintrag gültig? Lösung: Valid Bit (markiere jeden Cache Eintrag damit) Zu Beginn: alle Valid Bits sind 0 Nach erstem Zugriff auf den Cache Eintrag: Valid Bit ist 1 SS 2012 Grundlagen der Rechnerarchitektur Speicher 14

15 Ein Beispiel Index Valid Tag Daten Adresse des Zugriffs Daten Hit oder Miss SS 2012 Grundlagen der Rechnerarchitektur Speicher 15

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Speicher Übersicht Speicherhierarchie Cache Grundlagen Verbessern der Cache Performance Virtueller Speicher SS 2012 Grundlagen der Rechnerarchitektur Speicher 2 Speicherhierarchie

Mehr

Grundlagen der Rechnerarchitektur. Speicher

Grundlagen der Rechnerarchitektur. Speicher Grundlagen der Rechnerarchitektur Speicher Übersicht Speicherhierarchie Cache Grundlagen Verbessern der Cache Performance Virtueller Speicher SS 2012 Grundlagen der Rechnerarchitektur Speicher 2 Speicherhierarchie

Mehr

Cache Grundlagen. Schreibender Cache Zugriff. SS 2012 Grundlagen der Rechnerarchitektur Speicher 22

Cache Grundlagen. Schreibender Cache Zugriff. SS 2012 Grundlagen der Rechnerarchitektur Speicher 22 Cache Grundlagen Schreibender Cache Zugriff SS 212 Grundlagen der Rechnerarchitektur Speicher 22 Eine einfache Strategie Schreibt man nur in den Cache, werden Cache und darunter liegender Speicher inkonsistent.

Mehr

Quiz. Gegeben sei ein 16KB Cache mit 32 Byte Blockgröße. Wie verteilen sich die Bits einer 32 Bit Adresse auf: Tag Index Byte Offset.

Quiz. Gegeben sei ein 16KB Cache mit 32 Byte Blockgröße. Wie verteilen sich die Bits einer 32 Bit Adresse auf: Tag Index Byte Offset. Quiz Gegeben sei ein 16KB Cache mit 32 Byte Blockgröße. Wie verteilen sich die Bits einer 32 Bit Adresse auf: Tag Index Byte Offset 32 Bit Adresse 31 3 29... 2 1 SS 212 Grundlagen der Rechnerarchitektur

Mehr

Cache Blöcke und Offsets

Cache Blöcke und Offsets Cache Blöcke und Offsets Ein Cache Eintrag speichert in der Regel gleich mehrere im Speicher aufeinander folgende Bytes. Grund: räumliche Lokalität wird wie folgt besser ausgenutzt: Bei Cache Miss gleich

Mehr

Cache-Speicher. Design Digitaler Systeme. Prof. Dr.-Ing. Rainer Bermbach

Cache-Speicher. Design Digitaler Systeme. Prof. Dr.-Ing. Rainer Bermbach Cache-Speicher Design Digitaler Systeme Prof. Dr.-Ing. Rainer Bermbach Übersicht Cache-Speicher Warum Cache-Speicher? Cache-Strukturen Aufbau und Organisation von Caches Cache-Architekturen Cache-Strategien

Mehr

Grundlagen der Informationsverarbeitung:

Grundlagen der Informationsverarbeitung: Grundlagen der Informationsverarbeitung: Speicherhierarchie Prof. Dr.-Ing. habil. Ulrike Lucke Durchgeführt von Prof. Dr. rer. nat. habil. Mario Schölzel Maximaler Raum für Titelbild (wenn kleiner dann

Mehr

é Er ist software-transparent, d.h. der Benutzer braucht nichts von seiner Existenz zu wissen. Adreßbus Cache- Control Datenbus

é Er ist software-transparent, d.h. der Benutzer braucht nichts von seiner Existenz zu wissen. Adreßbus Cache- Control Datenbus 4.2 Caches é Cache kommt aus dem Französischen: cacher (verstecken). é Er kann durch ein Anwendungsprogramm nicht explizit adressiert werden. é Er ist software-transparent, d.h. der Benutzer braucht nichts

Mehr

Speicher. Speicher. Speicherhierarchie. Speicher. Interessante Zahlen:

Speicher. Speicher. Speicherhierarchie. Speicher. Interessante Zahlen: Übersicht 1 Einleitung Hauptspeicher 2 Hauptspeicher 3 Caches, Cache-Kohärenz Dr.-Ing. Volkmar Sieh Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2008/2009

Mehr

Technische Informatik 1 - HS 2017

Technische Informatik 1 - HS 2017 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik 1 - HS 2017 Übung 11 Datum: 21. 22. 12. 2017 Virtueller Speicher 1 Performanz Gehen Sie von einem virtuellen

Mehr

In heutigen Computern findet man schnellen/teuren als auch langsamen/billigen Speicher

In heutigen Computern findet man schnellen/teuren als auch langsamen/billigen Speicher Speicherhierarchie In heutigen Computern findet man schnellen/teuren als auch langsamen/billigen Speicher Register Speicherzellen, direkt mit der Recheneinheit verbunden Cache-Speicher Puffer-Speicher

Mehr

Wie groß ist die Page Table?

Wie groß ist die Page Table? Wie groß ist die Page Table? Im vorigen (typischen) Beispiel verwenden wir 20 Bits zum indizieren der Page Table. Typischerweise spendiert man 32 Bits pro Tabellen Zeile (im Vorigen Beispiel brauchten

Mehr

Rechnerorganisation. 1. Juni 201 KC Posch

Rechnerorganisation. 1. Juni 201 KC Posch .6.2 Rechnerorganisation. Juni 2 KC Posch .6.2 2 .6.2 Front Side Bus Accelerated Graphics Port 28 MHz Front Side Bus North Bridge RAM idge South Bri IDE USB PCI Bus 3 .6.2 Front Side Bus Front Side Bus

Mehr

Grob-Struktur des Prozessor-Speichersystems

Grob-Struktur des Prozessor-Speichersystems 2.3.2 Speicherstruktur (1) Grob-Struktur des Prozessor-Speichersystems Chipsatz (Erklärung s. später, Folie 104) 22.4.-27.5.2013, Folie 52 2.3.2 Speicherstruktur (2) Zugriff Prozessor zumeist auf schnelle

Mehr

Rechnerstrukturen. 5. Speicher. Inhalt. Vorlesung Rechnerstrukturen Wintersemester 2002/03. (c) Peter Sturm, Universität Trier 1.

Rechnerstrukturen. 5. Speicher. Inhalt. Vorlesung Rechnerstrukturen Wintersemester 2002/03. (c) Peter Sturm, Universität Trier 1. Rechnerstrukturen 5. Speicher 5.1 Motivation Speichertypen RAM / ROM Dynamisches RAM Inhalt Cache-Speicher Voll Assoziativ n-wege Assoziativ Direct Mapping 5.2 (c) Peter Sturm, Universität Trier 1 Der

Mehr

Vorlesung: Rechnerstrukturen, Teil 2 (Modul IP7)

Vorlesung: Rechnerstrukturen, Teil 2 (Modul IP7) Vorlesung: Rechnerstrukturen, Teil 2 (Modul IP7) Vorlesung: Rechnerstrukturen, Teil 2 (Modul IP7) J. Zhang zhang@informatik.uni-hamburg.de Universität Hamburg AB Technische Aspekte Multimodaler Systeme

Mehr

Schreiben von Pages. Schreiben einer Page in den Swap Space ist sehr teuer (kostet millionen von CPU Zyklen).

Schreiben von Pages. Schreiben einer Page in den Swap Space ist sehr teuer (kostet millionen von CPU Zyklen). Schreiben von Pages Schreiben einer Page in den Swap Space ist sehr teuer (kostet millionen von CPU Zyklen). Write Through Strategie (siehe Abschnitt über Caching) ist hier somit nicht sinnvoll. Eine sinnvolle

Mehr

Grundlagen der Informatik III Wintersemester 2010/ Vorlesung Dr.-Ing. Wolfgang Heenes

Grundlagen der Informatik III Wintersemester 2010/ Vorlesung Dr.-Ing. Wolfgang Heenes Grundlagen der Informatik III Wintersemester 2010/2011 15. Vorlesung Dr.-Ing. Wolfgang Heenes int main() { printf("hello, world!"); return 0; } msg: main:.data.asciiz "Hello, world!".text.globl main la

Mehr

Speicherorganisation

Speicherorganisation Speicherorganisation John von Neumann 1946 Ideal wäre ein unendlich großer, undendlich schneller und undendlich billiger Speicher, so dass jedes Wort unmittelbar, d.h. ohne Zeitverlust, zur Verfügung steht

Mehr

Analyse aktueller Cache-Architekturen hinsichtlich Struktur und Effizienz. Markus Krause

Analyse aktueller Cache-Architekturen hinsichtlich Struktur und Effizienz. Markus Krause Analyse aktueller Cache-Architekturen hinsichtlich Struktur und Effizienz Markus Krause Dresden, Gliederung 1. Einführung 2. Problemstellung 3. Lösungen a) Miss Rate b) Miss Penalty c) Hit Time 4. Zusammenfassung

Mehr

Schriftliche Prüfung. Aufgaben OTTO-VON-GUERICKE-UNIVERSITÄT MAGDEBURG FAKULTÄT FÜR INFORMATIK. Technische Informatik II. am:

Schriftliche Prüfung. Aufgaben OTTO-VON-GUERICKE-UNIVERSITÄT MAGDEBURG FAKULTÄT FÜR INFORMATIK. Technische Informatik II. am: OTTO-VON-GUERICKE-UNIVERSITÄT MAGDEBURG FAKULTÄT FÜR INFORMATIK Schriftliche Prüfung im Fach: Studiengang: Technische Informatik II Informatik am: 11. 02. 2005 Bearbeitungszeit: 180 min zugelassene Hilfsmittel:

Mehr

Cache-Kohärenz und -Konsistenz. Betreuer: Prof. Brüning Veton Kajtazi Mat.-Nr.: Universität Heidelberg

Cache-Kohärenz und -Konsistenz. Betreuer: Prof. Brüning Veton Kajtazi Mat.-Nr.: Universität Heidelberg Cache-Kohärenz und -Konsistenz Betreuer: Prof. Brüning Veton Kajtazi Mat.-Nr.: 3220501 Universität Heidelberg Inhaltsverzeichnis Wozu Caches? Unterschied Kohärenz und Konsistenz MESI-Protokoll Fazit 2

Mehr

6 Exkurs: Assoziativspeicher

6 Exkurs: Assoziativspeicher 6 Exkurs: Assoziativspeicher alternative Möglichkeit der Speicherung von Informationen in einem Computer: Assoziativspeicher (inhaltsadressierbarer Speicher bzw. CAM = Content Addressable Memory) : bei

Mehr

6 Exkurs: Assoziativspeicher (2) 6 Exkurs: Assoziativspeicher. 7.1 Speicherhierarchie. 7 Caches

6 Exkurs: Assoziativspeicher (2) 6 Exkurs: Assoziativspeicher. 7.1 Speicherhierarchie. 7 Caches 6 Exkurs: Assoziativspeicher alternative Möglichkeit der Speicherung von Informationen in einem Computer: Assoziativspeicher (inhaltsadressierbarer Speicher bzw. CAM = Content Addressable Memory) : bei

Mehr

Erweiterung von Adressraum und Bit Tiefe

Erweiterung von Adressraum und Bit Tiefe Erweiterung von Adressraum und Bit Tiefe Erweiterung des vorigen Beispiels ist offensichtlich: Vergrößerung des Adressraums (in der Größenordnung 2 n ): Füge eine Adressleitung hinzu und verdoppele die

Mehr

2. Ansatzpunkt: Reduktion der Penalty Early Restart und critical word first

2. Ansatzpunkt: Reduktion der Penalty Early Restart und critical word first 2. Ansatzpunkt: Reduktion der Penalty 2.1. Early Restart und critical word first Beide Techniken basieren darauf, die Wartezeit der CPU auf das Mindestmaß zu beschränken. Early restart lädt den Block wie

Mehr

Schriftliche Prüfung

Schriftliche Prüfung OTTO VON GUERICKE UNIVERSITÄT MAGOEBURG FAKULTÄT FÜR INFORMATIK Schriftliche Prüfung im Fach: Technische Informatik I Studiengang: B (PF IF/IngIF;WPF CV/WIF), M (WPF DigiEng) am: Bearbeitungszeit: 24.

Mehr

Speicherarchitektur (1)

Speicherarchitektur (1) Speicherarchitektur () Die 3 wichtigsten Speichertechnologien: Technologie Typische Zugriffszeiten $ pro Megabyte 997 SRAM 5 25 ns $00 $250 DRAM 60 20 ns $5 $0 Magnetplatten 0 20 Millionen ns $0,0 $0,20

Mehr

Rechnernetze und Organisation

Rechnernetze und Organisation Memory 1 Übersicht Motivation Speicherarten Register SRAM, DRAM Flash Speicherhierarchie Cache Virtueller Speicher 2 Motivation Speicher ist zentraler Bestandteil eines Computers neben Prozessor CPU Computer

Mehr

Grundlagen der Rechnerarchitektur. Ein und Ausgabe

Grundlagen der Rechnerarchitektur. Ein und Ausgabe Grundlagen der Rechnerarchitektur Ein und Ausgabe Übersicht Grundbegriffe Hard Disks und Flash RAM Zugriff auf IO Geräte RAID Systeme SS 2012 Grundlagen der Rechnerarchitektur Ein und Ausgabe 2 Grundbegriffe

Mehr

Speicherhierarchie, Caches, Consistency Models

Speicherhierarchie, Caches, Consistency Models Speicherhierarchie, Caches, Consistency Models Maximilian Langknecht Lehrstuhl für Rechnerarchitektur Betreuer: Prof. Dr. Ulrich Brüning 1 Inhaltsverzeichnis Speicherhierarchie Warum gibt es Speicherhierarchie?

Mehr

, 2014W Übungsgruppen: Mo., Mi.,

, 2014W Übungsgruppen: Mo., Mi., VU Technische Grundlagen der Informatik Übung 7: Speichermanagement 183.579, 2014W Übungsgruppen: Mo., 12.01. Mi., 14.01.2015 Aufgabe 1: Cache-Adressierung Ein Prozessor mit einer Adresslänge von 20 Bit

Mehr

4.2 Verbesserung der Leistungsfähigkeit von Caches

4.2 Verbesserung der Leistungsfähigkeit von Caches 12 4.2 Verbesserung der Leistungsfähigkeit von Caches Peter Marwedel Informatik 12 TU Dortmund 2014/05/02 Cache-Performanz Bewertungsmaß für die Leistungsfähigkeit einer Speicherhierarchie: Mittlere Zugriffszeit

Mehr

Speicher Typen. TI-Übung 5. Speicher SRAM. Speicher DRAM. SRAM vs. DRAM (EEP)ROM, NV-RAM, Flash,... Speicher, Caches

Speicher Typen. TI-Übung 5. Speicher SRAM. Speicher DRAM. SRAM vs. DRAM (EEP)ROM, NV-RAM, Flash,... Speicher, Caches Speicher Typen TI-Übung 5 Speicher, Caches Andreas I. Schmied (andreas.schmied@uni-ulm.de) AspectIX-Team Abteilung Verteilte Systeme Universität Ulm WS2005 SRAM vs. DRAM (EEP)ROM, NV-RAM, Flash,... Charakteristik

Mehr

1. räumliche Lokalität - Nach dem Zugriff auf eine bestimmte Adresse erfolgt in naher Zukunft ein erneuter Zugriff auf ein dazu benachbartes Datum.

1. räumliche Lokalität - Nach dem Zugriff auf eine bestimmte Adresse erfolgt in naher Zukunft ein erneuter Zugriff auf ein dazu benachbartes Datum. Aufgabe 1 a) Warum besitzen nahezu alle modernen Prozessoren einen Cache? Zur Überbrückung der Prozessor-Speicher-Lücke. Geschwindigkeit des Arbeitsspeichers ist nicht in gleichem Maße gestiegen wie die

Mehr

Ein konfigurierbarer, visueller Cache-Simulator unter spezieller Berücksichtigung komponenten- basierter Modellierung mit Java Beans

Ein konfigurierbarer, visueller Cache-Simulator unter spezieller Berücksichtigung komponenten- basierter Modellierung mit Java Beans Ein konfigurierbarer, visueller Simulator unter spezieller Berücksichtigung komponenten- basierter Modellierung mit Java Beans Holger 6. März 2001 Universität Wilhelm-Schickard-Institut für dieser Arbeit

Mehr

Rechnerarchitektur. Vorlesungsbegleitende Unterlagen. WS 2003/2004 Klaus Waldschmidt

Rechnerarchitektur. Vorlesungsbegleitende Unterlagen. WS 2003/2004 Klaus Waldschmidt Rechnerarchitektur Vorlesungsbegleitende Unterlagen WS 2003/2004 Klaus Waldschmidt Teil 15 Speicherhierarchie und s Seite 1 Speicherhierarchie: Der Speicherraum wird in einzelne Schichten unterteilt, die

Mehr

Rechnerstrukturen Winter SPEICHER UND CACHE. (c) Peter Sturm, University of Trier 1

Rechnerstrukturen Winter SPEICHER UND CACHE. (c) Peter Sturm, University of Trier 1 9. SPEICHER UND CACHE (c) Peter Sturm, University of Trier 1 Inhalt Grundlagen Speichertypen RAM / ROM Dynamisches RAM Cache- Speicher Voll AssoziaNv n- Wege AssoziaNv Direct Mapping Beispiel: 8 Bit- Register

Mehr

technische universität dortmund fakultät für informatik informatik 12 Speicherhierarchie Peter Marwedel Informatik /05/18

technische universität dortmund fakultät für informatik informatik 12 Speicherhierarchie Peter Marwedel Informatik /05/18 Speicherhierarchie Peter Marwedel Informatik 3/5/8 Kontext Prozessor Leitwerk Rechenwerk Speicherarchitektur Externe Kommunikation Interne Kommunikation, 3 - - Die Realität: Kosten/Mbyte und Zugriffszeiten

Mehr

Speicher. Rechnerarchitektur (RA) Sommersemester Prof. Dr. Jian-Jia Chen 2016/06/15. technische universität dortmund

Speicher. Rechnerarchitektur (RA) Sommersemester Prof. Dr. Jian-Jia Chen 2016/06/15. technische universität dortmund 2 Rechnerarchitektur (RA) Sommersemester 26 Speicher Prof. Dr. Jian-Jia Chen 26/6/5 Kontext Prozessor Leitwerk Rechenwerk Speicherarchitektur Externe Kommunikation Interne Kommunikation Die Wissenschaft

Mehr

Betriebssysteme BS-S SS Hans-Georg Eßer. Foliensatz S: Speicherverwaltung. Dipl.-Math., Dipl.-Inform. v1.0, 2015/04/14

Betriebssysteme BS-S SS Hans-Georg Eßer. Foliensatz S: Speicherverwaltung. Dipl.-Math., Dipl.-Inform. v1.0, 2015/04/14 BS-S Betriebssysteme SS 2015 Hans-Georg Eßer Dipl.-Math., Dipl.-Inform. Foliensatz S: Speicherverwaltung v1.0, 2015/04/14 Betriebssysteme, SS 2015 Hans-Georg Eßer Folie S-1 Übersicht: BS Praxis und BS

Mehr

Quantitative Prinzipien im Hardwareentwurf. 1. Small is fast

Quantitative Prinzipien im Hardwareentwurf. 1. Small is fast Quantitative Prinzipien im Hardwareentwurf 1. Small is fast Kleine Hardwareeinheiten schalten in der Regel schneller als größere. Kleine Transistoren bilden an ihren Gates kleinere Kapazitäten die Source-Drain

Mehr

CPU. Memory. Highest. Fastest. Smallest. Memory. Biggest. Lowest

CPU. Memory. Highest. Fastest. Smallest. Memory. Biggest. Lowest Speed CPU Size Cost ($/bit) Fastest Memory Smallest Highest Memory Slowest Memory Biggest Lowest Processor Data are transferred CPU Levels in the memory hierarchy Level Level 2 Increasing distance from

Mehr

Technische Informatik 1 - Übung & 22. Dezember Philipp Miedl

Technische Informatik 1 - Übung & 22. Dezember Philipp Miedl Technische Informatik 1 - Übung 11 21. & 22. Dezember 2017 Philipp Miedl Philipp Miedl 21.12.2017 22.12.2017 1 Motivation Aufteilen des Hauptspeichers auf mehrere Prozesse Philipp Miedl 21.12.2017 22.12.2017

Mehr

Die Sicht eines Sysadmins auf DB systeme

Die Sicht eines Sysadmins auf DB systeme Die Sicht eines Sysadmins auf DB systeme Robert Meyer 21. Oktober 2016 Robert Meyer Die Sicht eines Sysadmins auf DB systeme 21. Oktober 2016 1 / 20 Inhaltsverzeichnis 1 Einleitung 2 IO unter Linux typische

Mehr

Enterprise Computing Einführung in das Betriebssystem z/os. Prof. Dr. Martin Bogdan Prof. Dr.-Ing. Wilhelm G. Spruth WS2012/13

Enterprise Computing Einführung in das Betriebssystem z/os. Prof. Dr. Martin Bogdan Prof. Dr.-Ing. Wilhelm G. Spruth WS2012/13 UNIVERSITÄT LEIPZIG Enterprise Computing Einführung in das Betriebssystem z/os Prof. Dr. Martin Bogdan Prof. Dr.-Ing. Wilhelm G. Spruth WS2012/13 Verarbeitungsgrundlagen Teil 4 Cache el0100 copyright W.

Mehr

Das Konzept der Speicherhierarchie

Das Konzept der Speicherhierarchie Das Konzept der Speicherhierarchie Small is fast, daher sind kleine Speicher schneller (und kosten mehr pro Byte). Vergrößerung von Speichern und schnellerer Zugriff sind aber Schlüsselfunktionen in der

Mehr

, 2015W Übungsgruppen: Mo., Mi.,

, 2015W Übungsgruppen: Mo., Mi., VU Technische Grundlagen der Informatik Übung 7: Speichermanagement 183.579, 2015W Übungsgruppen: Mo., 11.01. Mi., 13.01.2016 Aufgabe 1: Cache-Adressierung Ihr Cachingsystem soll 32 GiB an Speicher auf

Mehr

Grundlagen der Datenbanksysteme 2 (M-DB2) Dr. Karsten Tolle

Grundlagen der Datenbanksysteme 2 (M-DB2) Dr. Karsten Tolle Grundlagen der Datenbanksysteme 2 (M-DB2) Dr. Karsten Tolle Vorwissen und so SQL Umgang mit MySQL (Workbench) Beispieldaten zum Spielen: http://download.geonames.org/export/dump/ 2 Tuningpotential DB-Interna;

Mehr

Aufgabe 4 : Virtueller Speicher

Aufgabe 4 : Virtueller Speicher Sommer 216 Technische Informatik I Lösungsvorschlag Seite 16 Aufgabe 4 : Virtueller Speicher (maximal 27 Punkte) 4.1: Generelle Funktionsweise (maximal 5 Punkte) (a) (1 Punkt) Nennen Sie zwei Gründe, weshalb

Mehr

Cache. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011

Cache. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 Cache Dr.-Ing. Volkmar Sieh Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 Cache 1/53 2012-02-29 Einleitung Hauptspeicherzugriffe sind langsam die

Mehr

N Bit Binärzahlen. Stelle: Binär-Digit:

N Bit Binärzahlen. Stelle: Binär-Digit: N Bit Binärzahlen N Bit Binärzahlen, Beispiel 16 Bit: Stelle: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Binär-Digit: 0 0 1 0 1 0 0 1 1 1 0 0 1 0 0 0 Least Significant Bit (LSB) und Most Significant Bit (MSB)

Mehr

Daten Bank. 6. Vorlesung

Daten Bank. 6. Vorlesung Daten Bank 6. Vorlesung Klausur PRG-2 Klausur am Freitag den 25. Juli Start: 9:00 Uhr Wo: Hörsaalgebäude Bockenheim Vorlesungsräume HIV, HVI und HIII Studierendenausweis mitbringen! Dr. Karsten Tolle PRG2

Mehr

Konzepte und Methoden der Systemsoftware. Aufgabe 1: Polling vs Interrupts. SoSe bis P

Konzepte und Methoden der Systemsoftware. Aufgabe 1: Polling vs Interrupts. SoSe bis P SoSe 2014 Konzepte und Methoden der Systemsoftware Universität Paderborn Fachgebiet Rechnernetze Präsenzübung 3(Musterlösung) 2014-05-05 bis 2014-05-09 Aufgabe 1: Polling vs Interrupts (a) Erläutern Sie

Mehr

Speicherarchitektur (16)

Speicherarchitektur (16) Zuweisungsstrategien für Cacheblocks: direct-mapped Speicherarchitektur (16) voll-assoziativ mengen-assoziativ Beispiel: Vorlesung Rechnersysteme SS `09 E. Nett 15 Speicherarchitektur (16) Konfigurationsmöglichkeiten

Mehr

Virtueller Speicher und Memory Management

Virtueller Speicher und Memory Management Virtueller Speicher und Memory Management Speicher-Paradigmen Programmierer ein großer Adressraum linear adressierbar Betriebssystem eine Menge laufender Tasks / Prozesse read-only Instruktionen read-write

Mehr

Vorlesung: Rechnerstrukturen, Teil 2 (Modul IP7)

Vorlesung: Rechnerstrukturen, Teil 2 (Modul IP7) Vorlesung: Rechnerstrukturen, Teil 2 (Modul IP7) Vorlesung: Rechnerstrukturen, Teil 2 (Modul IP7) J. Zhang zhang@informatik.uni-hamburg.de Universität Hamburg AB Technische Aspekte Multimodaler Systeme

Mehr

Digital Design Entwicklung der DRAMs. Richard Roth / FB Informatik und Mathematik Speicher 1

Digital Design Entwicklung der DRAMs. Richard Roth / FB Informatik und Mathematik Speicher 1 Entwicklung der DRAMs Richard Roth / FB Informatik und Mathematik Speicher 1 Entwicklung der DRAMs in Zukunft Richard Roth / FB Informatik und Mathematik Speicher 2 DRAM Speicherzelle (Trench Technology)

Mehr

Tutorium Rechnerorganisation

Tutorium Rechnerorganisation Woche 11 Tutorien 3 und 4 zur Vorlesung Rechnerorganisation 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

Einführung in die Programmiersprache C

Einführung in die Programmiersprache C Einführung in die Programmiersprache C 6 Cache-freundliche Programmierung (1) Alexander Sczyrba Robert Homann Georg Sauthoff Universität Bielefeld, Technische Fakultät Quadratische Matrizen Musterlösung

Mehr

Verbesserung der Leistungsfähigkeit von Caches

Verbesserung der Leistungsfähigkeit von Caches 12 Verbesserung der Leistungsfähigkeit von Caches Peter Marwedel Informatik 12 TU Dortmund 2013/05/20 Verbesserung der Leistungsfähigkeit von Caches ($,, ): Übersicht Beeinflussende Größen (Kapitel 5.2,

Mehr

Ergänzung: RAM und ROM. SS 2012 Grundlagen der Rechnerarchitektur Speicher 72

Ergänzung: RAM und ROM. SS 2012 Grundlagen der Rechnerarchitektur Speicher 72 Ergänzung: RAM und ROM SS 2012 Grundlagen der Rechnerarchitektur Speicher 72 Speichern eines Bits versus viele MB Wir wissen wie wir einzelne Bits speichern können (Erinnerung: Latches, Flip Flops) Mehrere

Mehr

Vorlesung Rechnerarchitektur. Speicher V 1.2

Vorlesung Rechnerarchitektur. Speicher V 1.2 Speicher V 1.2 Speicheranbindung früher und heute Bei der MU0 wurde der Speicher in einem Taktzyklus gelesen und geschrieben Dieses Verhalten war für ältere Rechner charakteristisch und stimmt auch noch

Mehr

Linux Paging, Caching und Swapping

Linux Paging, Caching und Swapping Linux Paging, Caching und Swapping Inhalte Paging Das Virtuelle Speichermodell Die Page Table im Detail Page Allocation und Page Deallocation Memory Mapping & Demand Paging Caching Die verschiedenen Caches

Mehr

One of the few resources increasing faster than the speed of computer hardware is the amount of data to be processed. Bin Hu

One of the few resources increasing faster than the speed of computer hardware is the amount of data to be processed. Bin Hu Bin Hu Algorithmen und Datenstrukturen 2 Arbeitsbereich fr Algorithmen und Datenstrukturen Institut fr Computergraphik und Algorithmen Technische Universität Wien One of the few resources increasing faster

Mehr

Neue Speichermedien für Datenbanken

Neue Speichermedien für Datenbanken Projektpräsentation im Wahlmodul Datenbank Implementierungstechniken 10. Juli 2015 Inhalt 1 Flash Memory (SSD) vs. Main Memory (DRAM) 2 Auswirkungen auf DBS-System 3 Kennzahlen 4 Aspekte von Green IT 5

Mehr

1 Organisationsaspekte RISC- und CISC-Prozessoren Ausnutzen von Cache-Effekten

1 Organisationsaspekte RISC- und CISC-Prozessoren Ausnutzen von Cache-Effekten McFarling [1989] konnte Cache Misses um 75% in 8KB direkt abbildenden Caches durch Softwaremaßnahmen senken. Instruktionen Umordnen im Speicher, um Conflict-Misses zu reduzieren Profiling : spezielle Konfliktvermeidungsmaßnahmen

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. Blatt Nr. 07 Übung zur Vorlesung Einsatz und Realisierung von Datenbanksystemen im SoSe16 Moritz Kaufmann

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Ein und Ausgabe Übersicht Grundbegriffe Hard Disks und Flash RAM Zugriff auf IO Geräte RAID Systeme SS 2012 Grundlagen der Rechnerarchitektur Ein und Ausgabe 2 Grundbegriffe

Mehr

Vorlesung 4: DATENSTRUKTUREN UND ALGORITHMEN

Vorlesung 4: DATENSTRUKTUREN UND ALGORITHMEN Vorlesung 4: DATENSTRUKTUREN UND ALGORITHMEN 107 Wiederholung zur Speicherhierarchie! EM- bzw. I/O-Modell: Übergang der Ebenen universell! Blockweise Abarbeitung unter Ausnutzung von Lokalität Chip On-/off-Chip,

Mehr

Betriebssysteme. Speicherverwaltung - Grundlegende Konzepte. Sommersemester 2014 Prof. Dr. Peter Mandl. Prof. Dr. Peter Mandl Seite 1.

Betriebssysteme. Speicherverwaltung - Grundlegende Konzepte. Sommersemester 2014 Prof. Dr. Peter Mandl. Prof. Dr. Peter Mandl Seite 1. Speicherverwaltung - Grundlegende Konzepte Sommersemester 2014 Prof. Dr. Peter Mandl Prof. Dr. Peter Mandl Seite 1 Gesamtüberblick 1. Einführung in 2. Betriebssystemarchitekturen und Betriebsarten 3. Interruptverarbeitung

Mehr

Zusatzskript Datenmanagement: physische Strukturen B+- und B*-Baum B+-Baum

Zusatzskript Datenmanagement: physische Strukturen B+- und B*-Baum B+-Baum Seite 1 Zusatzskript Datenmanagement: physische Strukturen B+- und B*-Baum B+-Baum Bild-1 Dargestellt ist die Speicherung der Personentabelle als B+-Baum anhand der Personen-Nummer (PersNr). Die Blattebene

Mehr

Grundlagen der Informatik III Wintersemester 2010/2011

Grundlagen der Informatik III Wintersemester 2010/2011 Grundlagen der Informatik III Wintersemester 2010/2011 Wolfgang Heenes, Patrik Schmittat 6. Aufgabenblatt mit Lösungsvorschlag 06.12.2010 Hinweis: Der Schnelltest und die Aufgaben sollen in den Übungsgruppen

Mehr

Grundlagen von Caching-Mechanismen beim Zusammenspiel von Mikroprozessor und Betriebssystem. Klaus Kusche Dezember 2015

Grundlagen von Caching-Mechanismen beim Zusammenspiel von Mikroprozessor und Betriebssystem. Klaus Kusche Dezember 2015 Grundlagen von Caching-Mechanismen beim Zusammenspiel von Mikroprozessor und Betriebssystem Klaus Kusche Dezember 2015 Inhalt Ziele & Voraussetzungen Grundidee & Beispiele von Caches Bedeutung effizienter

Mehr

Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 9 und Präsenzaufgaben Übung 10

Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 9 und Präsenzaufgaben Übung 10 Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 9 und Präsenzaufgaben Übung 10 Dominik Schoenwetter Lehrstuhl für Informatik 3 (Rechnerarchitektur) Friedrich-Alexander-Universität

Mehr

Speicherarchitektur (23) Suchen einer Seite:

Speicherarchitektur (23) Suchen einer Seite: Speicherarchitektur (23) Suchen einer Seite: Vorlesung Rechnersysteme SS `09 E. Nett 7 Speicherarchitektur (24) Adressschema inklusive Seitenfehler: Vorlesung Rechnersysteme SS `09 E. Nett 8 Speicherarchitektur

Mehr

Experimente. Zahlenbeispiel. Cache-Optimale Algorithmen. Warum Funktionieren Caches? Cache-Oblivious Speichermodell. Characterisierung von Caches

Experimente. Zahlenbeispiel. Cache-Optimale Algorithmen. Warum Funktionieren Caches? Cache-Oblivious Speichermodell. Characterisierung von Caches M=10 9, B=10 6 Zahlenbeispiel Für c=1/7 folgt daraus Experimente 20 Millionen Operationen auf Priority Queue mit verschiedenen Implementierungen Datenstrukturen ohne Rücksicht auf Paging-Effekte (Fibonacci

Mehr

Verbesserung der Leistungsfähigkeit von Caches

Verbesserung der Leistungsfähigkeit von Caches 2 Verbesserung der Leistungsfähigkeit von Caches Peter Marwedel Informatik 2 TU Dortmund 2/5/2 Vier Fragen für Caches. Wo kann ein Speicherblock im Cache abgelegt werden (block placement) 2. Wie wird ein

Mehr

Besprechung des 8. Übungsblattes Einführung in Caches Cache-Organisation Cache-Ersetzungsstrategien Aufgaben (an der Tafel) Testklausur

Besprechung des 8. Übungsblattes Einführung in Caches Cache-Organisation Cache-Ersetzungsstrategien Aufgaben (an der Tafel) Testklausur Themen heute Besprechung des 8. Übungsblattes Einführung in Caches Cache-Organisation Cache-Ersetzungsstrategien Aufgaben (an der Tafel) Testklausur Besprechung des 8. Übungsblattes Aufgabe 2.6. In diesem

Mehr

Technische Informatik 2 Speichersysteme, Teil 3

Technische Informatik 2 Speichersysteme, Teil 3 Technische Informatik 2 Speichersysteme, Teil 3 Prof. Dr. Miroslaw Malek Sommersemester 2004 www.informatik.hu-berlin.de/rok/ca Thema heute Virtueller Speicher (Fortsetzung) Translation Lookaside Buffer

Mehr

Besprechung des 9. Übungsblattes Virtuelle Speicherverwaltung Aufgaben

Besprechung des 9. Übungsblattes Virtuelle Speicherverwaltung Aufgaben Themen heute Besprechung des 9. Übungsblattes Virtuelle Speicherverwaltung Aufgaben Besprechung des 9. Übungsblattes Aufgabe 2 Ist in einer Aufgabe wie hier keine explizite Wortbreite angegeben, nicht

Mehr

1. Übersicht zu den Prozessorfamilien 2 2. Grundlagen der Rechnerorganisation 3

1. Übersicht zu den Prozessorfamilien 2 2. Grundlagen der Rechnerorganisation 3 1. Übersicht zu den Prozessorfamilien 2 2. Grundlagen der Rechnerorganisation 3 2.1. Aufbau eines Rechners in Ebenen 3 2.2. Die Ebene der elektronischen Bauelemente 5 2.3. Die Gatterebene 5 2.3.1 Einfache

Mehr

Rechnerarchitektur (RA)

Rechnerarchitektur (RA) 12 Rechnerarchitektur (RA) Sommersemester 2016 Verbesserung der Leistungsfähigkeit von Caches Jian-Jia Chen Informatik 12 jian-jia.chen@tu-.. http://ls12-www.cs.tu-.de/daes/ Tel.: 0231 755 6078 2016/06/21

Mehr

, SS2012 Übungsgruppen: Do., Mi.,

, SS2012 Übungsgruppen: Do., Mi., VU Technische Grundlagen der Informatik Übung 7: Speicher und Peripherie 183.579, SS2012 Übungsgruppen: Do., 31.05. Mi., 06.06.2012 Aufgabe 1: Ihre Kreativität ist gefragt! Um die Qualität der Lehrveranstaltung

Mehr

Wichtige Rechnerarchitekturen

Wichtige Rechnerarchitekturen Wichtige Rechnerarchitekturen Teil 5 INMOS Transputer, CSP/Occam 1 INMOS Transputer 1983 vorgestellt von der Firma INMOS (Bristol) (Entwicklung seit 1978) Der Name Transputer entstand als Kunstwort aus

Mehr

Kapitel II. Einführung: Hardware und Software. VO Betriebssysteme

Kapitel II. Einführung: Hardware und Software. VO Betriebssysteme Kapitel II Einführung: Hardware und Software V 1 Computersysteme (1) omputer haben viele verschiedene Devices: Input/Output Devices Speicher Prozessor(en) Monitor auteile eines einfachen PCs Bus Computersysteme

Mehr

G. Caches. G.1.1 Kontext & Orientierung

G. Caches. G.1.1 Kontext & Orientierung G.1.1 Kontext & Orientierung G. Caches Caches sind kleine, aber schnelle Zwischen- bzw. Pufferspeicher. Assoziative Adressierung anstelle von direkter Adressierung. Für Code, Daten & virtuelle Adressen.

Mehr

7.1 Einleitung. 4 Kapitel 7 Speicherhierarchie

7.1 Einleitung. 4 Kapitel 7 Speicherhierarchie 4 Kapitel 7 Speicherhierarchie 7.1 Einleitung Seit den Anfängen des Computers wünschen sich Programmierer unbegrenzt viel und unendlich schnellen Speicher. Die Konzepte dieses Kapitels helfen, dem Benutzer

Mehr

Klausuraufgaben: Hardware (1.) Notieren Sie die Namen der Schnittstellen!

Klausuraufgaben: Hardware (1.) Notieren Sie die Namen der Schnittstellen! Klausuraufgaben: Hardware - Seite 1 Klausuraufgaben: Hardware (1.) Notieren Sie die Namen der Schnittstellen! (2.) Beschriften Sie die Namen der Komponenten im PC! 9 Klausuraufgaben: Hardware - Seite 2

Mehr

Modul IP7: Rechnerstrukturen

Modul IP7: Rechnerstrukturen 64-040 Modul IP7: 4 Speicherhierarchie Norman Hendrich Universität Hamburg MIN Fakultät, Department Informatik Vogt-Kölln-Str. 30, D-22527 Hamburg hendrich@informatik.uni-hamburg.de WS 203/204 Norman Hendrich

Mehr

Naiver Ansatz. Blöcke und Seiten. Betriebssysteme I Sommersemester 2009 Kapitel 6: Speicherverwaltung und Dateisysteme

Naiver Ansatz. Blöcke und Seiten. Betriebssysteme I Sommersemester 2009 Kapitel 6: Speicherverwaltung und Dateisysteme Betriebssysteme I Sommersemester 2009 Kapitel 6: Speicherverwaltung und Dateisysteme Hans-Georg Eßer Hochschule München Teil 3: Zusammenhängende Speicherzuordnung 06/2009 Hans-Georg Eßer Hochschule München

Mehr

Abbilden von virtuellen auf physikalische Adressen

Abbilden von virtuellen auf physikalische Adressen Abbilden von virtuellen auf physikalische Adressen Virtuelle Adresse 31 30 29 28 27... 15 14 13 12 11 10 9 8... 3 2 1 0 Virtuelle Seitennummer Seiten Offset Translation Physikalische Adresse 29 28 27...

Mehr

Rechnergrundlagen SS Vorlesung

Rechnergrundlagen SS Vorlesung Rechnergrundlagen SS 2007 13. Vorlesung Inhalt Cache Lesen Schreiben Überschreiben Memory Management Unit (MMU) Translation Lookaside Buffer (TLB) Klausurvorbereitung Inhalte der Klausur Rechnergrundlagen

Mehr

Lehrveranstaltung: PR Rechnerorganisation Blatt 10. Thomas Aichholzer

Lehrveranstaltung: PR Rechnerorganisation Blatt 10. Thomas Aichholzer Aufgabe 10.1 Gegeben sei folgendes Code-Fragment, das zwei geschachtelte Schleifen implementiert: addi $t0, $a0, 100 outer: addi $t1, $a1, 200 inner: lw $t4, 0($t0) lw $t5, 0($t1) add $t2, $t0, $t1 add

Mehr

Betriebssysteme Teil 10 B: Fragen rund um Seitenfehler

Betriebssysteme Teil 10 B: Fragen rund um Seitenfehler Betriebssysteme Teil 10 B: Fragen rund um Seitenfehler 1 Überlegungen Wenn wir einige Seiten eines Programms in den Speicher laden, brauchen wir eine Strategie, welche Seiten als nächstes geladen werden

Mehr

Speicher (1) zur Realisierung eines Rechnerspeichers benötigt man eine Materie mit physikalischen Eigenschaften, die

Speicher (1) zur Realisierung eines Rechnerspeichers benötigt man eine Materie mit physikalischen Eigenschaften, die Speicher (1) Definition: Speichern ist die kurz- oder langfristige Änderung einer oder mehrerer physikalischer Eigenschaften einer Materie durch ein externes Ereignis. zur Realisierung eines Rechnerspeichers

Mehr