Paging. Einfaches Paging. Paging mit virtuellem Speicher

Größe: px
Ab Seite anzeigen:

Download "Paging. Einfaches Paging. Paging mit virtuellem Speicher"

Transkript

1 Paging Einfaches Paging Paging mit virtuellem Speicher

2 Einfaches Paging Wie bisher (im Gegensatz zu virtuellem Speicherkonzept): Prozesse sind entweder ganz im Speicher oder komplett ausgelagert. Im Gegensatz zu Partitionierung werden Prozessen nicht notwendigerweise zusammenhängende Speicherbereiche zugeordnet. Hauptspeicher aufgeteilt in viele gleichgroße Seitenrahmen. Speicher eines Prozesses aufgeteilt in Seiten derselben Größe. Zuordnung von Seiten zu Seitenrahmen beim Laden von Prozessen Logische Adressen der Form Seitennummer, Offset Pro Prozess eine Seitentabelle Seitentabelle übersetzt Seitennummern in Nummern von Seitenrahmen im physikalischen Speicher Interne Fragmentierung nur bei letzter Seite eines Prozesses

3 Einfaches Paging: Beispiel Rahmennummer Hauptspeicher Hauptspeicher Hauptspeicher Hauptspeicher Prozess A geladen Prozess B geladen Prozess C geladen A. A. A. A. A. A. A. A. A. A. A. A. B. B. B. B. B. B. C. C. C. C. Prozess D mit 6 Seiten soll jetzt geladen werden!

4 Einfaches Paging: Beispiel Datenstrukturen zum aktuellen Zeitpunkt: Rahmennummer Hauptspeicher A. A. A. A. C. C. C. C Hauptspeicher A. A. A. A. D. D. D. C. C. C. C. D. D.4 Seitentabelle Prozess A Seitentabelle Prozess C Seitentabelle Prozess B Seitentabelle Prozess D Prozess B ausgelagert Prozess D geladen 4 Liste der freien Rahmen

5 Einfaches Paging Berechnung von physikalischen Adressen aus logischen Adressen: Voraussetzung: Länge der Seiten ist eine Zweierpotenz Logische Adresse besteht aus Seitennummer und Offset. Absolute Adresse wird durch Hardware auf Grundlage der Seitentabelle des Prozesses berechnet.

6 Einfaches Paging Beispiel: logische Adresse der Länge 6 Bit 6-Bit-Seitennummer -Bit-Offset Der Prozess kann somit bis zu 6 verschiedene Seiten haben, die über die Seitentabelle des Prozesses auf Seitenrahmen im Hauptspeicher abgebildet werden. Jede Seite besteht aus = 4 Bytes. Berechnung der physikalischen Adresse:

7 Einfaches Paging 6-Bit-Seitennummer -Bit-Offset = =478 Seitentabelle des Prozesses Seitenrahmen Nr. 47 (=<>) Speicherzelle Nr. 478 (= <>) innerhalb des Seitenrahmens. => Reale Adresse:

8 Einfaches Paging Entfernen eines Prozesses aus dem Speicher: Lagere Prozess auf Hintergrundspeicher aus (z.b. Festplatte). Über Seitentabelle kann man feststellen, welche Seitenrahmen dem Prozess gehören. Füge diese Rahmen zur Liste der freien Rahmen hinzu. (Keine zusätzlichen Datenstrukturen des Betriebssystems benötigt.)

9 Paging mit virtuellem Speicher Grundidee: Wenn man im Zusammenhang mit Auslagern sowieso mit Hintergrundspeicher arbeitet, dann hat man auch die Möglichkeit, nur Teile der Daten von Prozessen ein- bzw. auszulagern. Das Programm kann momentan weiter ausgeführt werden, wenn die aktuell benötigten Informationen (Code und Daten) im Speicher sind. Wird auf Informationen zugegriffen, die ausgelagert (auf der Festplatte) sind, so müssen diese nachgeladen werden. Bezeichnungen: Hauptspeicher = realer Speicher Hauptspeicher + Hintergrundspeicher = virtueller Speicher

10 Paging mit virtuellem Speicher Vorteile: Mehr aktive Prozesse im Speicher (=> Pseudoparallelismus!) Tatsächlicher Speicherplatzbedarf eines Prozesses muss nicht von vornherein feststehen. Adressraum eines Prozesses kann jetzt größer sein als verfügbarer Hauptspeicher. Nachteil: Bei Zugriff auf Code/Daten, die nicht im Hauptspeicher vorhanden sind, muss das Betriebssystem die entsprechenden Seiten nachladen. Dabei müssen evtl. andere Seiten ausgelagert werden, um Platz zu schaffen.

11 Lokalität Kann das überhaupt effizient funktionieren? Antwort: meistens! Grund: Räumliche und zeitliche Lokalität von Programmen, d.h. Abarbeitung während kürzerer Zeit bewegt sich häufig in engen Adressbereichen. Abarbeitung von Schleifen In zeitlich engem Abstand Zugriff auf gleiche Daten Zugriffe auf benachbarte Daten => Aufgabe des Programmierers

12 Lokalität: Beispiel Matrix mit N x N Elementen. Arbeitsspeicher -dimensional, daher: Ordne jede Zeile nacheinander im Speicher an. Zugriff auf Element (i,j) (i-te Spalte in Zeile j): j * N + i

13 Lokalität: Beispiel Zugriffsmuster Beispiel : Initalisiere alle Elemente Variante // jede Zeile for(j = ; j < N; j++) { // jede Spalte for(i = ; i < N; i++) { pos = j * N + i; element[pos] = ; } } Für N = auf einer aktuellen Intel CPU (IA): ~.48 s

14 Lokalität: Beispiel Zugriffsmuster Beispiel : Initalisiere alle Elemente Variante : Vertausche Zeilenindex mit Spaltenindex // jede Spalte for(j = ; j < N; j++) { // jede Zeile for(i = ; i < N; i++) { pos = i * N + j; element[pos] = ; } } Für N = auf einer aktuellen Intel CPU (IA): ~.6 s

15 Lokalität: Beispiel Zugriffsmuster Beispiel : Matrixmultiplikation Variante : for (i = ; i < N; ++i) { for (j = ; j < N; ++j) { for (k = ; k < N; ++k) { res[i][j] += ma[i][k] * mb[k][j]; } } }

16 Lokalität: Beispiel Zugriffsmuster Beispiel : Matrixmultiplikation Variante : Transponiere Matrix // transponiere Matrix B in temporäre Matrix for (i = ; i < N; ++i) { for (j = ; j < N; ++j) { tmp[i][j] = mb[j][i]; } } for (i = ; i < N; ++i) { for (j = ; j < N; ++j) { for (k = ; k < N; ++k) { res[i][j] += ma[i][k] * tmp[j][k]; } } }

17 Lokalität: Beispiel Zugriffsmuster Beispiel : Matrixmultiplikation Test mit N = (Intel Core Duo 666 Mhz) Variante : CPU Zyklen Variante :.9.7. CPU Zyklen Relativer Gewinn: >7%!!! Analyse: Variante benötigt zusätzlichen Speicher für die transponierte Matrix. Zudem müssen N*N Elemente kopiert werden. Dennoch: Die nicht-sequentiellen Zugriffe (Matrix B) in Variante sind wesentlich teurer. In Variante kann über beide Matrizen sequentiell iteriert werden. Anmerkung: In diesem Beispiel wirken Cache-Effekte. Die Datenmenge zu klein, um in den Hintergrundspeicher ausgelagert zu werden. Dennoch ähnlicher Effekt, da Cache-Speicher um ein Vielfaches schneller als Hauptspeicher.

18 Lokalität Paging mit virtuellem Speicher ist nur dann effizient, wenn Lokalität gegeben. Falls nicht: Ständiges Aus- und Einlagern von Seiten zwischen Hauptspeicher und Festplatte Bezeichnung: Seitenflattern ( thrashing )

19 Technische Realisierung Technische Realisierung von Paging mit virtuellem Speicher: Die Daten des Prozesses befinden sich im Hintergrundspeicher (Festplatte), bei nicht komplett ausgelagerten Prozessen zusätzlich noch Teile im Speicher Wie bei einfachem Paging: Trennung der logischen Adressen in Seitennummer und Offset, z.b.: Im Gegensatz zu einfachem Paging: -Bit- Seitennummer -Bit-Offset Logische Adressen überdecken kompletten virtuellen Adressraum, z.b. -Bit- / 64-Bit-Adressen Pro Prozess eine Seitentabelle zur Übersetzung Seitennummer => Seitenrahmen

20 Technische Realisierung Logische Adresse: -Bit- Seitennummer Seitentabelleneintrag: P M Weitere Bits -Bit-Offset Seitenrahmennummer Present-Bit P: Seite ist im Hauptspeicher Modify-Bit M: Seite wurde verändert Weitere Bits für Schutzrechte und gemeinsame Nutzung Seitentabelle liegt im Hauptspeicher Umsetzung der virtuellen Adressen in reale Adressen mit Hardwareunterstützung (Memory Managment Unit (MMU) des Prozessors)

21 Adressumsetzung Virtuelle Adresse Reale Adresse Seitennr. Offset Register Seitentabellenzeiger + Seitennummer Rahmennr. Seitentabelle Rahmennr. Offset Offset Seitenrahmen Programm Paging-Verfahren Hauptspeicher

22 Seitentabelle Seitenrahmen Seitenrahmen Seite Seite Seite Seitenrahmen Seitenrahmen Hauptspeicher Seite Seite 4 Seite 5 Seite 6 Seite 7 virtueller Adressraum Seitennr. 4 5 P Rahmennr. 6 7 Seitentabelle des Prozesses im Hauptspeicher

23 Seitenfehler Was passiert beim Zugriff auf eine Seite, die sich nicht im Hauptspeicher befindet? Hardware (MMU) stellt anhand des present bits fest, dass angefragte Seite nicht im Hauptspeicher ist (=> Seitenfehler bzw. page fault ). Auslösen einer Unterbrechung ( Interrupt ) durch die Hardware Behandlung des Interrupts: Laufendes Programm wird unterbrochen, Sichern des aktuellen Programmzustandes durch Hardware (Stand des Programmzählers!) Routine zur Interruptbehandlung wird aufgerufen Feststellen des Grundes der Unterbrechung (hier: page fault) Behandlung abhängig vom Grund der Unterbrechung, hier: Betriebssystem lädt die entsprechende Seite von der Festplatte in einen freien Seitenrahmen Wenn kein Seitenrahmen frei: Vorheriges Verdrängen eines belegten Seitenrahmens Aktualisierung der Seitentabelle Danach: Laufendes Programm wird wieder fortgesetzt

24 Seitenfehler Welche Informationen benötigt das Betriebssystem zum Einlagern von Seiten (d.h. während der Behandlung einer Unterbrechung wegen eines page faults)? Abbildung Seitennummer --> Festplattenadresse, um die gesuchte Seite auf der Festplatte zu finden Liste freier Seitenrahmen

25 Seitenfehler Seitenrahmen Seitenrahmen Seite Seite Seite Seitenrahmen Seitenrahmen Hauptspeicher Seite Seite 4 Seite 5 Seite 6 Seite 7 virtueller Adressraum Seitennr. 4 5 P Rahmennr. Festplatten-Adresse A D B X Y C 6 E 7 F Seitentabelle des Prozesses im Hauptspeicher

26 Verdrängung Wenn kein freier Seitenrahmen vorhanden: Verdrängen von Seitenrahmen => Festplatte. Je nach Betriebssystem: Alle Seitenrahmen sind Kandidaten für Verdrängung oder Nur Seitenrahmen des eigenen Prozesses Entscheidung unter diesen Kandidaten gemäß Verdrängungsstrategie (Ziel: gute Ausnutzung von Lokalität). Ist das Modify-Bit M gesetzt, dann muss Seite im entsprechenden Rahmen auf Festplatte zurückgeschreiben werden. Nach Verdrängen eines Seitenrahmens muss die Seitentabelle des zugehörigen Prozesses aktualisiert werden. Da Seitentabellen meist nur dünn besetzt: Suchen des verdrängten Seitenrahmens in Seitentabelle des Prozesses ineffizient Abbildung Seitenrahmennummer --> (Prozessnummer, Seitennummer) hilfreich

27 Verdrängung Seitenrahmen soll freigeräumt werden. Seite Seite Seite Seite Seite 4 Seite 5 Seite 6 Seite 7 Seite P Seitenrahmen Seitenrahmen Seitenrahmen Seitenrahmen Rahme n Hauptspeicher Seite P Rahme n Seite Seite Seite Seite Seite 4 Seite 5 Seite 6 Seite 7 virtueller Adressraum Prozess Seite 6 von Prozess soll ausgelagert werten => P= 7 7 Seitentabelle von Prozess Seitentabelle von Prozess

28 Verdrängung Seite Seite Seite Seite Seite 4 Seite 5 Seite 6 Seite 7 Seitenrahmen Seitenrahmen Seitenrahmen Seitenrahmen Hauptspeicher Seite Seite Seite Seite Seite 4 Seite 5 Seite 6 Seite 7 Rahmen Prozess Seite 6 4 Abbildung Seitenrahmennummer -> (Prozessnummer, Seitennummer)

Technische Realisierung (1)

Technische Realisierung (1) Technische Realisierung () Einfachstes Modell: Prozess (Daten+Code) befindet sich im Hintergrundspeicher Bei teilweise eingelagerten Prozessen: Zusätzlich Teile im Hauptspeicher Logische Adressen überdecken

Mehr

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung. Maren Bennewitz

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung. Maren Bennewitz Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Maren Bennewitz Version 29.1.214 1 Inhalt Vorlesung Aufbau einfacher Rechner Überblick: Aufgabe, Historische Entwicklung, unterschiedliche Arten

Mehr

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Version 16.1.217 1 Inhalt Vorlesung Aufbau einfacher Rechner Überblick: Aufgabe, historische Entwicklung, unterschiedliche Arten von Betriebssystemen

Mehr

Tutorium Rechnerorganisation

Tutorium Rechnerorganisation Woche 11 Tutorien 3 und 4 zur Vorlesung Rechnerorganisation 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

RO-Tutorien 15 und 16

RO-Tutorien 15 und 16 Tutorien zur Vorlesung Rechnerorganisation Tutorienwoche 10 am 29.06.2011 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Echtzeitbetriebssysteme

Echtzeitbetriebssysteme Speicherverwaltung (Memory Management) Aufgaben der Memory-Management-Unit ist l der Speicherschutz und l die Adressumsetzung Wird durch Hardware unterstützt l Memory Management Unit (MMU) l MMU wird vom

Mehr

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung. Maren Bennewitz

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung. Maren Bennewitz Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Maren Bennewitz Version 5.2.214 1 Inhalt Vorlesung Aufbau einfacher Rechner Überblick: Aufgabe, Historische Entwicklung, unterschiedliche Arten von

Mehr

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Version 27.1.216 1 Klausur Termin: 1. März 216, 13: Uhr Raum: Audimax, KG 2 4 ECTS Punkte 2 Klausuranmeldung Anmeldefrist: 31.1.216 (Ausnahme: Biologie-Module)

Mehr

Übung Praktische Informatik II

Übung Praktische Informatik II Übung Praktische Informatik II FSS 2009 Benjamin Guthier Lehrstuhl für Praktische Informatik IV Universität Mannheim guthier@pi4.informatik.uni-mannheim.de 22.05.09 11-1 Heutige große Übung Ankündigung

Mehr

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Version 8.3.217 1 Inhalt Vorlesung Aufbau einfacher Rechner Überblick: Aufgabe, historische Entwicklung, unterschiedliche Arten von Betriebssystemen

Mehr

Betriebssysteme Teil 10 B: Fragen rund um Seitenfehler

Betriebssysteme Teil 10 B: Fragen rund um Seitenfehler Betriebssysteme Teil 10 B: Fragen rund um Seitenfehler 1 Überlegungen Wenn wir einige Seiten eines Programms in den Speicher laden, brauchen wir eine Strategie, welche Seiten als nächstes geladen werden

Mehr

Leichtgewichtsprozesse

Leichtgewichtsprozesse Leichtgewichtsprozesse häufiger Prozeßwechsel stellt in einem Betriebssystem eine hohe Belastung dar; auch erfordert die Generierung eines neuen Prozesses viele System-Resourcen in vielen Anwendungen werden

Mehr

Leichtgewichtsprozesse

Leichtgewichtsprozesse Leichtgewichtsprozesse häufiger Prozeßwechsel stellt in einem Betriebssystem eine hohe Belastung dar; auch erfordert die Generierung eines neuen Prozesses viele System-Resourcen in vielen Anwendungen werden

Mehr

Virtueller Speicher und Memory Management

Virtueller Speicher und Memory Management Virtueller Speicher und Memory Management Speicher-Paradigmen Programmierer ein großer Adressraum linear adressierbar Betriebssystem eine Menge laufender Tasks / Prozesse read-only Instruktionen read-write

Mehr

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung. Maren Bennewitz

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung. Maren Bennewitz Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Maren Bennewitz Version 13.2.213 1 Inhalt Vorlesung Aufbau einfacher Rechner Überblick: Aufgabe, Historische Entwicklung, unterschiedliche Arten

Mehr

Konzepte von Betriebssystemkomponenten Referat am Thema: Adressräume, Page Faults, Demand Paging, Copy on Write Referent: Johannes Werner

Konzepte von Betriebssystemkomponenten Referat am Thema: Adressräume, Page Faults, Demand Paging, Copy on Write Referent: Johannes Werner Konzepte von Betriebssystemkomponenten Referat am 24.11.2003 Thema: Adressräume, Page Faults, Demand Paging, Copy on Write Referent: Johannes Werner Gliederung Adressräume Page Faults Demand Paging Copy

Mehr

Teil 2: Speicherstrukturen

Teil 2: Speicherstrukturen Inhalt Teil 2: Speicherstrukturen Hauptspeicher Cache Assoziativspeicher Speicherverwaltungseinheit ( Memory Management Unit ) 1 Virtueller Speicher Trennung von virtuellem Adreßraum (mit virtuellen Adressen)

Mehr

Besprechung des 9. Übungsblattes Virtuelle Speicherverwaltung Aufgaben

Besprechung des 9. Übungsblattes Virtuelle Speicherverwaltung Aufgaben Themen heute Besprechung des 9. Übungsblattes Virtuelle Speicherverwaltung Aufgaben Besprechung des 9. Übungsblattes Aufgabe 2 Ist in einer Aufgabe wie hier keine explizite Wortbreite angegeben, nicht

Mehr

Technische Informatik II Wintersemester 2002/03 Sommersemester 2001. Heiko Holtkamp Heiko@rvs.uni-bielefeld.de

Technische Informatik II Wintersemester 2002/03 Sommersemester 2001. Heiko Holtkamp Heiko@rvs.uni-bielefeld.de Technische Informatik II Wintersemester 2002/03 Sommersemester 2001 Heiko Holtkamp Heiko@rvs.uni-bielefeld.de Speicher ist eine wichtige Ressource, die sorgfältig verwaltet werden muss. In der Vorlesung

Mehr

Betriebssysteme BS-S SS Hans-Georg Eßer. Foliensatz S: Speicherverwaltung. Dipl.-Math., Dipl.-Inform. v1.0, 2015/04/14

Betriebssysteme BS-S SS Hans-Georg Eßer. Foliensatz S: Speicherverwaltung. Dipl.-Math., Dipl.-Inform. v1.0, 2015/04/14 BS-S Betriebssysteme SS 2015 Hans-Georg Eßer Dipl.-Math., Dipl.-Inform. Foliensatz S: Speicherverwaltung v1.0, 2015/04/14 Betriebssysteme, SS 2015 Hans-Georg Eßer Folie S-1 Übersicht: BS Praxis und BS

Mehr

2.3 Prozessverwaltung

2.3 Prozessverwaltung Realisierung eines Semaphors: Einem Semaphor liegt genau genommen die Datenstruktur Tupel zugrunde Speziell speichert ein Semaphor zwei Informationen: Der Wert des Semaphors (0 oder 1 bei einem binären

Mehr

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Version 21.12.2016 1 Inhalt Vorlesung Aufbau einfacher Rechner Überblick: Aufgabe, Historische Entwicklung, unterschiedliche Arten von Betriebssystemen

Mehr

Lösung von Übungsblatt 2

Lösung von Übungsblatt 2 Lösung von Übungsblatt 2 Aufgabe 1 (Digitale Datenspeicher) 1. Nennen Sie einen digitalen Datenspeicher, der mechanisch arbeitet. Lochstreifen, Lochkarte, CD/DVD beim Pressen. 2. Nennen Sie zwei rotierende

Mehr

5 Kernaufgaben eines Betriebssystems (BS)

5 Kernaufgaben eines Betriebssystems (BS) 5 Kernaufgaben eines Betriebssystems (BS) Betriebssystem ist eine Menge von Programmen, die die Abarbeitung anderer Programme auf einem Rechner steuern und überwachen, insbesondere verwaltet es die Hardware-Ressourcen

Mehr

Speicherverwaltung (Swapping und Paging)

Speicherverwaltung (Swapping und Paging) Speicherverwaltung (Swapping und Paging) Rückblick: Segmentierung Feste Einteilung des Speichers in einzelne Segmente 750k 0 Rückblick: Segmentierung Feste Einteilung des Speichers in einzelne Segmente

Mehr

Lösung von Übungsblatt 2

Lösung von Übungsblatt 2 Lösung von Übungsblatt 2 Aufgabe 1 (Digitale Datenspeicher) 1. Nennen Sie einen digitalen Datenspeicher, der mechanisch arbeitet. Lochstreifen, Lochkarte, CD/DVD beim Pressen. 2. Nennen Sie zwei rotierende

Mehr

Übung zu Einführung in die Informatik # 10

Übung zu Einführung in die Informatik # 10 Übung zu Einführung in die Informatik # 10 Tobias Schill tschill@techfak.uni-bielefeld.de 15. Januar 2016 Aktualisiert am 15. Januar 2016 um 9:58 Erstklausur: Mi, 24.02.2016 von 10-12Uhr Aufgabe 1* a),

Mehr

Grundlagen der Informatik III Wintersemester 2010/2011

Grundlagen der Informatik III Wintersemester 2010/2011 Grundlagen der Informatik III Wintersemester 2010/2011 Wolfgang Heenes, atrik Schmittat 12. Aufgabenblatt 07.02.2011 Hinweis: Der Schnelltest und die Aufgaben sollen in den Übungsgruppen bearbeitet werden.

Mehr

Speicher Virtuelle Speicherverwaltung. Speicherverwaltung

Speicher Virtuelle Speicherverwaltung. Speicherverwaltung Speicherverwaltung Die Speicherverwaltung ist derjenige Teil eines Betriebssystems, der einen effizienten und komfortablen Zugriff auf den physikalischen Arbeitsspeicher eines Computer ermöglicht. Je nach

Mehr

5.5 Virtueller Speicher

5.5 Virtueller Speicher 5.5 Virtueller Speicher Wenn der reale Speicher sogar für einzelne Prozesse zu klein ist : Virtueller Speicher (virtual memory), ist beliebig groß, nimmt alle Prozesse auf, ist in gleichgroße Teile Seiten

Mehr

Übung zu Grundlagen der Betriebssysteme. 14. Übung

Übung zu Grundlagen der Betriebssysteme. 14. Übung Übung zu Grundlagen der Betriebssysteme 14. Übung 29.01.2012 Aufgabe 1 Demand Paging a) Was wird unter dem Begriff Demand Paging verstanden? b) Was sind Vor- und Nachteile des Demand Paging? Bei Demand

Mehr

Betriebssysteme I WS 2016/2017. Betriebssysteme / verteilte Systeme Tel.: 0271/ , Büro: H-B 8404

Betriebssysteme I WS 2016/2017. Betriebssysteme / verteilte Systeme Tel.: 0271/ , Büro: H-B 8404 Betriebssysteme I WS 2016/2017 Betriebssysteme / verteilte Systeme rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404 Stand: 2. Februar 2017 Betriebssysteme / verteilte Systeme Betriebssysteme

Mehr

Speicherverwaltung. Design Digitaler Systeme. Prof. Dr.-Ing. Rainer Bermbach

Speicherverwaltung. Design Digitaler Systeme. Prof. Dr.-Ing. Rainer Bermbach Speicherverwaltung Design Digitaler Systeme Prof. Dr.-Ing. Rainer Bermbach Übersicht Speicherverwaltung Virtueller Speicher Memory Management Unit Segmentierung Paging Kombination Segmentierung/ Paging

Mehr

Speicherverwaltung und Cache Erläuterungen

Speicherverwaltung und Cache Erläuterungen theoretischen Grundlagen der Lernmaterial zum Modul - 31231 - der Fernuniversität Hagen Inhaltsverzeichnis 1 Speicherverwaltung 5 Erklärung.......................................... 5 1.1 Seitentabelle

Mehr

5.5.5 Der Speicherverwalter

5.5.5 Der Speicherverwalter 5.5.5 Der Speicherverwalter Speicherverwalter (memory manager) reagiert auf = im einfachsten Fall ein Systemprozess, der für die Umlagerung der Seiten (page swapping) zuständig ist (analog zum Umlagerer/Swapper)

Mehr

Zwei Möglichkeiten die TLB zu aktualisieren

Zwei Möglichkeiten die TLB zu aktualisieren Zwei Möglichkeiten die TLB zu aktualisieren Die MMU kümmert sich um alles (Hardware-Lösung) sucht die p-entry wenn diese nicht da ist, behandelt direkt das TLB-miss zum Schluss wird die neue p-entry (virt

Mehr

RO-Tutorien 17 und 18

RO-Tutorien 17 und 18 RO-Tutorien 17 und 18 Tutorien zur Vorlesung Rechnerorganisation Christian A. Mandery TUTORIENWOCHE 12 AM 19.07.2012 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der

Mehr

Fachbericht Thema: Virtuelle Speicherverwaltung

Fachbericht Thema: Virtuelle Speicherverwaltung Fachbericht 15.10.99 1 HINTERGRÜNDE/ MOTIVATION 2 2 FUNKTIONEN DER SPEICHERVERWALTUNG 2 3 ARTEN DER SPEICHERVERWALTUNG 2 3.1 STATISCHE SPEICHERVERWALTUNG 2 3.2 DYNAMISCHE SPEICHERVERWALTUNG 3 3.2.1 REALER

Mehr

Virtueller Speicher WS 2011/2012. M. Esponda-Argüero

Virtueller Speicher WS 2011/2012. M. Esponda-Argüero Virtueller Speicher WS / Virtuelle Speicher Bis jetzt sind wir davon ausgegangen, dass Prozesse komplett im Hauptspeicher gelagert werden. Speicherreferenzen sind nur logische Adressen, die dynamisch in

Mehr

Lösungsvorschlag zur 6. Übung

Lösungsvorschlag zur 6. Übung rof. Frederik Armknecht Sascha Müller Daniel Mäurer Grundlagen der Informatik 3 Wintersemester 9/1 Lösungsvorschlag zur 6. Übung 1 räsenzübungen 1.1 Schnelltest a) Caches und virtueller Speicher können

Mehr

4. Übung - Rechnerarchitektur/Betriebssysteme

4. Übung - Rechnerarchitektur/Betriebssysteme 4. Übung - Rechnerarchitektur/Betriebssysteme 1. Aufgabe: Caching Informatik I für Verkehrsingenieure Aufgaben inkl. Beispiellösungen a) Was ist ein Cache? Wann kommt Caching zum Einsatz? b) Welchen Vorteil

Mehr

Betriebssysteme. Wintersemester Kapitel 3 Speicherverwaltung. Patrick Kendzo

Betriebssysteme. Wintersemester Kapitel 3 Speicherverwaltung. Patrick Kendzo Betriebssysteme Wintersemester 2015 Kapitel 3 Speicherverwaltung Patrick Kendzo ppkendzo@gmail.com Programm Inhalt Einleitung Prozesse und Threads Speicherverwaltung Ein- / Ausgabe und Dateisysteme Zusammenfassung

Mehr

Grundlagen der Informatik III Wintersemester 2010/2011

Grundlagen der Informatik III Wintersemester 2010/2011 Grundlagen der Informatik III Wintersemester 21/211 Wolfgang Heenes, atrik Schmittat 12. Aufgabenblatt mit Lösungsvorschlag 7.2.211 Hinweis: Der Schnelltest und die Aufgaben sollen in den Übungsgruppen

Mehr

Definitionen zum Verschnitt

Definitionen zum Verschnitt Definitionen zum Verschnitt Die absoluten Größen haben eine Einheit. Beim Bilden der Verhältnisgrößen wird die Einheit gekürzt. Man kann bei den Verhältnisgrößen die Größe durch die Anzahl vorgegebener

Mehr

Vorlesung: Rechnerstrukturen, Teil 2 (Modul IP7)

Vorlesung: Rechnerstrukturen, Teil 2 (Modul IP7) Vorlesung: Rechnerstrukturen, Teil 2 (Modul IP7) Vorlesung: Rechnerstrukturen, Teil 2 (Modul IP7) J. Zhang zhang@informatik.uni-hamburg.de Universität Hamburg AB Technische Aspekte Multimodaler Systeme

Mehr

Kapitel VI. Speicherverwaltung. Speicherverwaltung

Kapitel VI. Speicherverwaltung. Speicherverwaltung Kapitel VI Speicherverwaltung 1 Speicherverwaltung Computer exekutiert Programme (mit Daten) im Hauptspeicher. Hauptspeicher: Großes Array von Wörtern (1 oder mehrere Bytes) Jedes Wort hat eine eigene

Mehr

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Version 11.01.2017 1 Inhalt Vorlesung Aufbau einfacher Rechner Überblick: Aufgabe, historische Entwicklung, unterschiedliche Arten von Betriebssystemen

Mehr

Betriebssysteme Kap J, Teil C: Paging, Pagereplacement

Betriebssysteme Kap J, Teil C: Paging, Pagereplacement Betriebssysteme Kap J, Teil C: Paging, Pagereplacement 1 Welche Seite soll ausgelagert werden? Ein- / Auslagern benötigt Zeit Kontextwechsel erforderlich» Wechsel zu einem BS-Prozess, welcher für das Management

Mehr

Lösungsvorschlag für Übung September 2009

Lösungsvorschlag für Übung September 2009 Universität Mannheim Vorlesung Betriebssysteme Lehrstuhl für Praktische Informatik 1 Herbstsemester 2009 Prof. Dr. Felix Freiling Dipl.-Inform. Jan Göbel Lösungsvorschlag für Übung 2 25. September 2009

Mehr

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Version 13.01.2015 1 Klausur Termin: 10. März 2016, 13:00 Uhr Raum: Audimax, KG 2 4 ECTS Punkte 3 Klausuranmeldung Anmeldefrist: 31.01.2016 (Ausnahme:

Mehr

(Cache-Schreibstrategien)

(Cache-Schreibstrategien) Übungsblatt 2 Aufgabe 1 (Digitale Datenspeicher) 1. Nennen Sie einen digitalen Datenspeicher, der mechanisch arbeitet. 2. Nennen Sie zwei rotierende magnetische digitale Datenspeicher. 3. Nennen Sie zwei

Mehr

Linker: Adreßräume verknüpfen. Informationen über einen Prozeß. Prozeß-Erzeugung: Verwandtschaft

Linker: Adreßräume verknüpfen. Informationen über einen Prozeß. Prozeß-Erzeugung: Verwandtschaft Prozeß: drei häufigste Zustände Prozeß: anatomische Betrachtung jeder Prozeß verfügt über seinen eigenen Adreßraum Sourcecode enthält Anweisungen und Variablen Compiler überträgt in Assembler bzw. Binärcode

Mehr

wichtigstes Betriebsmittel - neben dem Prozessor: Speicher

wichtigstes Betriebsmittel - neben dem Prozessor: Speicher Speicherverwaltung Aufgaben der Speicherverwaltung wichtigstes Betriebsmittel - neben dem Prozessor: Speicher Sowohl die ausführbaren Programme selbst als auch deren Daten werden in verschiedenen Speicherbereichen

Mehr

Speicher- und Cacheverwaltung unter Linux. Ralf Petring & Guido Schaumann

Speicher- und Cacheverwaltung unter Linux. Ralf Petring & Guido Schaumann Speicher- und Cacheverwaltung unter Linux Ralf Petring & Guido Schaumann Übersicht Virtueller Adressraum Virtuelle Speicheraufteilung Reale Speicheraufteilung Speicherverwaltung Speicherzugriff Auslagerungsstrategien

Mehr

Lösung von Übungsblatt 5

Lösung von Übungsblatt 5 Lösung von Übungsblatt 5 Aufgabe 1 (Speicherverwaltung) 1. Bei welchen Konzepten der Speicherpartitionierung entsteht interne Fragmentierung? Statische Partitionierung f Dynamische Partitionierung Buddy-Algorithmus

Mehr

Technische Informatik 1 - HS 2017

Technische Informatik 1 - HS 2017 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik 1 - HS 2017 Übung 11 Datum: 21. 22. 12. 2017 Virtueller Speicher 1 Performanz Gehen Sie von einem virtuellen

Mehr

Betriebssysteme I WS 2013/2014. Betriebssysteme / verteilte Systeme rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404

Betriebssysteme I WS 2013/2014. Betriebssysteme / verteilte Systeme rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404 Betriebssysteme I WS 213/214 Betriebssysteme / verteilte Systeme rolanda.dwismuellera@duni-siegena.de Tel.: 271/74-45, Büro: H-B 844 Stand: 2. Januar 214 Betriebssysteme / verteilte Systeme Betriebssysteme

Mehr

(a) Wie unterscheiden sich synchrone und asynchrone Unterbrechungen? (b) In welchen drei Schritten wird auf Unterbrechungen reagiert?

(a) Wie unterscheiden sich synchrone und asynchrone Unterbrechungen? (b) In welchen drei Schritten wird auf Unterbrechungen reagiert? SoSe 2014 Konzepte und Methoden der Systemsoftware Universität Paderborn Fachgebiet Rechnernetze Präsenzübung 2 2014-04-28 bis 2014-05-02 Aufgabe 1: Unterbrechungen (a) Wie unterscheiden sich synchrone

Mehr

Wunschvorstellung der Entwickler vom Speicher

Wunschvorstellung der Entwickler vom Speicher Wunschvorstellung der Entwickler vom Speicher Unendlich groß Unendlich schnell Nicht flüchtig billig Obwohl sich der verfügbare Speicher laufend erhöht, wird immer mehr Speicher benötigt, als verfügbar

Mehr

Einführung in die technische Informatik

Einführung in die technische Informatik Einführung in die technische Informatik Christopher Kruegel chris@auto.tuwien.ac.at http://www.auto.tuwien.ac.at/~chris Betriebssysteme Aufgaben Management von Ressourcen Präsentation einer einheitlichen

Mehr

4. Übung - Rechnerarchitektur/Betriebssysteme

4. Übung - Rechnerarchitektur/Betriebssysteme 4. Übung - Rechnerarchitektur/Betriebssysteme 1. Aufgabe: Caching Informatik I für Verkehrsingenieure Aufgaben inkl. Beispiellösungen a) Was ist ein Cache? Wann kommt Caching zum Einsatz? b) Welchen Vorteil

Mehr

Betriebssysteme. Speicherverwaltung - Grundlegende Konzepte. Sommersemester 2014 Prof. Dr. Peter Mandl. Prof. Dr. Peter Mandl Seite 1.

Betriebssysteme. Speicherverwaltung - Grundlegende Konzepte. Sommersemester 2014 Prof. Dr. Peter Mandl. Prof. Dr. Peter Mandl Seite 1. Speicherverwaltung - Grundlegende Konzepte Sommersemester 2014 Prof. Dr. Peter Mandl Prof. Dr. Peter Mandl Seite 1 Gesamtüberblick 1. Einführung in 2. Betriebssystemarchitekturen und Betriebsarten 3. Interruptverarbeitung

Mehr

Überschrift. Speicherverwaltung. Prof. Dr. Margarita Esponda Freie Universität Berlin 2011/2012

Überschrift. Speicherverwaltung. Prof. Dr. Margarita Esponda Freie Universität Berlin 2011/2012 Überschrift Speicherverwaltung Prof. Dr. Margarita Esponda Freie Universität Berlin 2011/2012 1 Hauptziele: Speicherverwaltung Speicher ist die zweite wichtigste Ressource, die das Betriebssystem verwalten

Mehr

6.Vorlesung Grundlagen der Informatik

6.Vorlesung Grundlagen der Informatik Christian Baun 6.Vorlesung Grundlagen der Informatik Hochschule Darmstadt WS1112 1/42 6.Vorlesung Grundlagen der Informatik Christian Baun Hochschule Darmstadt Fachbereich Informatik christian.baun@h-da.de

Mehr

Betriebssysteme Studiengang Informatik / SAT

Betriebssysteme Studiengang Informatik / SAT Betriebssysteme Studiengang Informatik / SAT Dipl.-Inf., Dipl.-Ing. (FH) Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik mwilhelm@hs-harz.de http://www.miwilhelm.de Raum 2.202 Tel. 03943

Mehr

(Prof. Dr. J. Schlichter, WS 2011 / 2012) Übungsleitung: Dr. Wolfgang Wörndl

(Prof. Dr. J. Schlichter, WS 2011 / 2012) Übungsleitung: Dr. Wolfgang Wörndl Übung zur Vorlesung Grundlagen Betriebssysteme und Systemsoftware (Prof. Dr. J. Schlichter, WS 2011 / 2012) Übungsleitung: Dr. Wolfgang Wörndl (gbs-ws11@mailschlichter.informatik.tu-muenchen.de) http://www11.in.tum.de/veranstaltungen/grundlagenbetriebssystemeundsystemsoftwarews1112

Mehr

Quiz. Gegeben sei ein 16KB Cache mit 32 Byte Blockgröße. Wie verteilen sich die Bits einer 32 Bit Adresse auf: Tag Index Byte Offset.

Quiz. Gegeben sei ein 16KB Cache mit 32 Byte Blockgröße. Wie verteilen sich die Bits einer 32 Bit Adresse auf: Tag Index Byte Offset. Quiz Gegeben sei ein 16KB Cache mit 32 Byte Blockgröße. Wie verteilen sich die Bits einer 32 Bit Adresse auf: Tag Index Byte Offset 32 Bit Adresse 31 3 29... 2 1 SS 212 Grundlagen der Rechnerarchitektur

Mehr

Übung zu Grundlagen der Betriebssysteme. 13. Übung 22.01.2012

Übung zu Grundlagen der Betriebssysteme. 13. Übung 22.01.2012 Übung zu Grundlagen der Betriebssysteme 13. Übung 22.01.2012 Aufgabe 1 Fragmentierung Erläutern Sie den Unterschied zwischen interner und externer Fragmentierung! Als interne Fragmentierung oder Verschnitt

Mehr

virtueller Speicher - Trennung des logischen Speichers der Anwendung vom physikalischen Speicher.

virtueller Speicher - Trennung des logischen Speichers der Anwendung vom physikalischen Speicher. Kapitel 9 virtueller Speicher Seite 1 Kapitel 9: virtueller Speicher - Seiten-Swap Hintergrund virtueller Speicher - Trennung des logischen Speichers der Anwendung vom physikalischen Speicher. - Der Adressraum

Mehr

(Prof. Dr. J. Schlichter, WS 2011 / 2012) Übungsleitung: Dr. Wolfgang Wörndl (gbs-ws11@mailschlichter.informatik.tu-muenchen.de)

(Prof. Dr. J. Schlichter, WS 2011 / 2012) Übungsleitung: Dr. Wolfgang Wörndl (gbs-ws11@mailschlichter.informatik.tu-muenchen.de) Übung zur Vorlesung Grundlagen Betriebssysteme und Systemsoftware (Prof. Dr. J. Schlichter, WS 2011 / 2012) Übungsleitung: Dr. Wolfgang Wörndl (gbs-ws11@mailschlichter.informatik.tu-muenchen.de) http://www11.in.tum.de/veranstaltungen/grundlagenbetriebssystemeundsystemsoftwarews1112

Mehr

Speicherverwaltung. Kapitel VI. Adressbindung (2) Adressbindung (1) Speicherverwaltung

Speicherverwaltung. Kapitel VI. Adressbindung (2) Adressbindung (1) Speicherverwaltung Speicherverwaltung Kapitel VI Speicherverwaltung Computer exekutiert Programme (mit Daten) im Hauptspeicher. Hauptspeicher: Großes Array von Wörtern ( oder mehrere Bytes) Jedes Wort hat eine eigene Adresse.

Mehr

Betriebssysteme (BS)

Betriebssysteme (BS) Betriebssysteme (BS) Virtueller Speicher Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 2 TU Dortmund Olaf.Spinczyk@tu-dortmund.de http://ess.cs.uni-dortmund.de/~os/ In

Mehr

In heutigen Computern findet man schnellen/teuren als auch langsamen/billigen Speicher

In heutigen Computern findet man schnellen/teuren als auch langsamen/billigen Speicher Speicherhierarchie In heutigen Computern findet man schnellen/teuren als auch langsamen/billigen Speicher Register Speicherzellen, direkt mit der Recheneinheit verbunden Cache-Speicher Puffer-Speicher

Mehr

9) Speicherverwaltung

9) Speicherverwaltung Inhalte Speicherhierarchien Speicherzuteilung Adressbildung Lineare Adressbildung mit statischer/dynamischer Zuteilung (Segmentierung) Kompaktifizierung Lineare Adressbildung mit virtueller Adressierung

Mehr

Verteilte Echtzeit-Systeme

Verteilte Echtzeit-Systeme - Verteilte Echtzeit-Systeme Hans-Albrecht Schindler Wintersemester 2018/19 Teil C: Echtzeit-Betriebssysteme Abschnitt 16: Primärspeicherverwaltung unter Echtzeitbedingungen CSI Technische Universität

Mehr

Vorlesung Betriebssysteme

Vorlesung Betriebssysteme Kapitel VI Speicherverwaltung Vorlesung Betriebssyst 1 Speicherverwaltung Computer exekutiert Programme (mit Daten) im Hauptspeicher. Hauptspeicher: Großes Array von Wörtern (1 oder mehrere Bytes) Jedes

Mehr

Kapitel 6 Speicherverwaltung Seite 1 zum Teil nach: Silberschatz&Galbin, Operating System Concepts, Addison-Wesley)

Kapitel 6 Speicherverwaltung Seite 1 zum Teil nach: Silberschatz&Galbin, Operating System Concepts, Addison-Wesley) Kapitel 6 Speicherverwaltung Seite 1 6 Speicherverwaltung 6.1 Hintergrund Ein Programm muß zur Ausführung in den Hauptspeicher gebracht werden und in die Prozeßstruktur eingefügt werden. Dabei ist es in

Mehr

Proseminar Konzepte von Betriebssystem- Komponenten (KVBK) Vortrag zum Thema: Speicheraddressierung, Segmentierung, Paging

Proseminar Konzepte von Betriebssystem- Komponenten (KVBK) Vortrag zum Thema: Speicheraddressierung, Segmentierung, Paging Proseminar Konzepte von Betriebssystem- Komponenten (KVBK) Vortrag zum Thema: Speicheraddressierung, Segmentierung, Paging Grundlegende Bedeutung von Speicheradressierung: Wie sind die Daten auf Dem Speicher

Mehr

Rechnergrundlagen SS Vorlesung

Rechnergrundlagen SS Vorlesung Rechnergrundlagen SS 2007 13. Vorlesung Inhalt Cache Lesen Schreiben Überschreiben Memory Management Unit (MMU) Translation Lookaside Buffer (TLB) Klausurvorbereitung Inhalte der Klausur Rechnergrundlagen

Mehr

CA Übung 30.01.2006. Christian kann heute nicht kommen => ich bin heute da, Christian das nächste Mal wieder

CA Übung 30.01.2006. Christian kann heute nicht kommen => ich bin heute da, Christian das nächste Mal wieder CA Übung 30.01.2006 Hallo zusammen! Christian kann heute nicht kommen => ich bin heute da, Christian das nächste Mal wieder Adrian Schüpbach: scadrian@student.ethz.ch Christian Fischlin: cfischli@student.ethz.ch

Mehr

Konzepte von Betriebssystem- Komponenten Olessia Usik 20. Juni 2005

Konzepte von Betriebssystem- Komponenten Olessia Usik 20. Juni 2005 Konzepte von Betriebssystem- Komponenten Olessia Usik olessia@freenet.de 20. Juni 2005 1 GROß 2 SCHNELL UNENDLICH Gliederung 1. Einleitung 2. Swapping 3. Virtuelle Speicherverwaltung 3.1 Segmentorientierter

Mehr

7. Speicherverwaltung

7. Speicherverwaltung 7. Speicherverwaltung Ziele Zuteilung des Arbeitsspeicher Abbildung der symbolischen Adresse auf die physikalische Adresse Adress-Transformation Symbolische Adresse verschiebbare Adresse physikalische

Mehr

4.3 Hintergrundspeicher

4.3 Hintergrundspeicher 4.3 Hintergrundspeicher Registers Instr./Operands Cache Blocks Memory Pages program 1-8 bytes cache cntl 8-128 bytes OS 512-4K bytes Upper Level faster Disk Tape Files user/operator Mbytes Larger Lower

Mehr

Freispeicherverwaltung Martin Wahl,

Freispeicherverwaltung Martin Wahl, Freispeicherverwaltung Martin Wahl, 17.11.03 Allgemeines zur Speicherverwaltung Der physikalische Speicher wird in zwei Teile unterteilt: -Teil für den Kernel -Dynamischer Speicher Die Verwaltung des dynamischen

Mehr

5.5 Virtueller Speicher

5.5 Virtueller Speicher 5.5 Virtueller Speicher Wenn der reale Speicher sogar für einzelne Prozesse zu klein ist : Virtueller Speicher (virtual memory), ist beliebig groß, nimmt alle Prozesse auf, ist in gleichgroße Teile Seiten

Mehr

Kapitel VI. Speicherverwaltung. Vorlesung Betriebssysteme

Kapitel VI. Speicherverwaltung. Vorlesung Betriebssysteme Kapitel VI Speicherverwaltung V 1 Speicherverwaltung Computer exekutiert Programme (mit Daten) im Hauptspeicher. Hauptspeicher: Großes Array von Wörtern (1 oder mehrere Bytes) Jedes Wort hat eine eigene

Mehr

Rechnerorganisation. Überblick über den Teil 13

Rechnerorganisation. Überblick über den Teil 13 Rechnerorganisation Teil 3 9. Juni 2 KC Posch Überblick über den Teil 3 Arbiter: Wie können sich 2 aktive Partner vertragen? Direkter Speicherzugriff: Ein Ko Prozessor zum Daten Schaufeln Die Verbesserung

Mehr

Kapitel VI. Speicherverwaltung. Vorlesung Betriebssysteme

Kapitel VI. Speicherverwaltung. Vorlesung Betriebssysteme Kapitel VI Speicherverwaltung 1 Speicherverwaltung Computer exekutiert Programme (mit Daten) im Hauptspeicher. Hauptspeicher: Großes Array von Wörtern W (1 oder mehrere Bytes) Jedes Wort hat eine eigene

Mehr

Bsys2 Zusammenfassung. Definition Die CPU ist das Gehirn des Computers. Sie holt Befehle aus dem Speicher und führt sie aus.

Bsys2 Zusammenfassung. Definition Die CPU ist das Gehirn des Computers. Sie holt Befehle aus dem Speicher und führt sie aus. Prozessoren Definition Die CPU ist das Gehirn des Computers. Sie holt Befehle aus dem Speicher und führt sie aus. Register Alle Prozessoren besitzen interne Register, um den Zugriff auf Daten zu beschleunigen.

Mehr

Anbindung zum Betriebssystem (BS)

Anbindung zum Betriebssystem (BS) 7.1 Einleitung Anbindung zum Betriebssystem (BS) Aufgaben BS Schnittstelle von der Software zur Hardware Sicherstellung des Betriebs mit Peripherie Dienste erfüllen für Benutzung Rechner durch Verwaltung

Mehr

, 2014W Übungsgruppen: Mo., Mi.,

, 2014W Übungsgruppen: Mo., Mi., VU Technische Grundlagen der Informatik Übung 7: Speichermanagement 183.579, 2014W Übungsgruppen: Mo., 12.01. Mi., 14.01.2015 Aufgabe 1: Cache-Adressierung Ein Prozessor mit einer Adresslänge von 20 Bit

Mehr

Hans-Georg Eßer, Hochschule München, Betriebssysteme I, SS Speicherverwaltung 1

Hans-Georg Eßer, Hochschule München, Betriebssysteme I, SS Speicherverwaltung 1 Sep 19 14:20:18 amd64 sshd[20494]: Accepted rsa for esser from ::ffff:87.234.201.207 port 61557 Sep 19 14:27:41 amd64 syslog-ng[7653]: STATS: dropped 0 Sep 20 01:00:01 amd64 /usr/sbin/cron[29278]: (root)

Mehr

Basisinformationstechnologie I Wintersemester 2011/ November 2011 Betriebssysteme

Basisinformationstechnologie I Wintersemester 2011/ November 2011 Betriebssysteme Basisinformationstechnologie I Wintersemester 2011/12 23. November 2011 Betriebssysteme Seminarverlauf 12. Oktober: Organisatorisches / Grundlagen I 19. Oktober: Grundlagen II 26. Oktober: Grundlagen III

Mehr