3 Schnittstelle zum Betriebssystem 3.1 Einleitung

Größe: px
Ab Seite anzeigen:

Download "3 Schnittstelle zum Betriebssystem 3.1 Einleitung"

Transkript

1 3.1 Einleitung 1 Anbindung zum Betriebssystem (BS) Aufgaben BS Schnittstelle zur Hardware Sicherstellung des Betriebs mit Peripherie Dienste erfüllen für Benutzung Rechner Dateiverwaltung (Kopieren, Verwalten,.) Speicherverwaltung (s. Kap. 3.2 ff) Prozessverwaltung Prozess: laufendes Programm + Zusatzinformation (CC, PC, Speicher, Register, E/A-Status) Schutzmechanismen bereitstellen Z.B. Mehrbenutzerbetrieb, Fehler im Programm Und noch viel mehr. (s. dann Systemprogrammierung) Wichtig für RA: Schnittstelle zur Hardware

2 3.1 Einleitung Komplexität beherrschen durch Gliederung in Schichten Allgemeines Prinzip in der Informatik Betriebssystemmaschine Betriebssystem Befehlssatz-Architektur Mikroprogramme Hardware-Architektur Hardware 2

3 3.1 Einleitung Neue Befehle des Betriebssystems Systemaufrufe (system calls) Aktiviert vordefinierten Betriebssystemdienst Z.B. Daten aus einer Datei lesen Implementierbar über Mikroprogramm Vorsicht! (siehe Bild vorher) Mikroprogramm über Assembler nach wie vor direkt aufrufbar Speicherverwaltung im Fokus bei RA Konzept virtueller Speicher Schutzmechanismen (Speicherverwaltungseinheit Memory Management Unit (MMU)) 3

4 3.2 Speicherverwaltung Memory Management Virtueller Speicher Frühe Tage der EDV Speicher war knapp Im Prinzip nichts geändert (Speicher immer knapp) Programme zu groß Zerlegen in sog. Überlagerungsprogramme (Overlays) Overlays auf Sekundärspeicher Programmierer eigenverantwortlich für die Verwaltung Overlays Explizit ablegen Explizit einlesen 4

5 3.2 Speicherverwaltung Memory Management Grundlegendes Konzept Trennung in Adressraum Speicherraum (Speicherstellen) virtuell physikalisch Adressraum Adresse Abbildung 4K- Hauptspeicher

6 3.2.1 Paging Annahme: Programm verzweigt auf Adresse zwischen 8192 und 12287? Inhalt Arbeitsspeicher auf Platte speichern Overlay (Seite) mit Worten von 8192 bis suchen Overlay (Seite) in Hauptspeicher laden Adresszuordnungen auf ändern Programausführung fortsetzen 6

7 3.2.1 Paging Automatisches Ein-/Auslagern von Overlays Seitenauslagerung (Paging) Von Festplatte gelesene Programm-(Daten)blöcke Seiten (Pages) 7 Adressraum, auf die Programm verweisen kann virtueller Adressraum (Virtual Adress Space) Die real fest verdrahteten Speicheradressen physikalischer Adressraum (Physical Adress Space) Abbildung virtuelle in physikalische Adresse Speicherabbildung (Memory Mapping) realisiert über Seitentabelle (Page Table)

8 3.2 Speicherverwaltung Memory Management Ziel: für Programmierer völlig transparent Illusion eines im Prinzip beliebig großen, linear adressierbaren Hauptspeichers (z.b. von 0 ab aufwärts) Seitenein-/auslagerung geschieht im Hintergrund Hardware-Unterstützung dafür notwendig 8

9 3.2.1 Paging Praktische Implementierung Paging Virtueller Adressraum hat in der Regel Obergrenze Eingeteilt in Seiten gleicher Größe Größen von 512 Byte 64 KB pro Seite Immer 2er Potenz Hauptspeicher mehr als nur eine Seite Vorgesehener Platz für Aufnahme Seite Seitenrahmen (Page frames) 9

10 3.2.1 Paging Speicherverwaltungseinheit MMU Speicher versteht nur physikalische Adressen Übersetzung virtuell -> physikalisch Übersetzung baut beim Paging auf Seitentabellen auf (a) (b) 10

11 3.2.1 Paging Ermittlung physikalischer Adresse 11

12 3.2.1 Paging Virtuelle Adresse wird zerlegt in Seitennummer und Offset Seitennummer abbilden auf Nummer Seitenrahmen Realisiert über Seitentabelle Offset zeigt in den Seitenrahmen Im Beispiel Offset 12 Bit breit, da Seitenrahmen 4 KB groß Present-/Absent-Bit Ist Seite im physikalischen Speicher? 12

13 3.2.1 Paging Seitenanforderung (Demand paging) # (Anzahl) Seitenrahmen < # virtuelle Seiten Analoge Situation wie bei Cache (Cacheblock Hauptspeicherblock) Virtuelle Seite nicht in einem Seitenrahmen Seitenfehler (Page fault) Tritt Seitenfehler auf BS muss angeforderte Seite auf Platte suchen und lesen Passenden Eintrag in Seitentabelle suchen Entsprechenden Eintrag in Seitentabelle durchführen Diese Betriebsart nennt man Demand Paging 13

14 3.2.1 Paging Seitenersetzung (s. später auch Swapping) Algorithmus zur Auswahl einer auszulagernden Seite Ziel: finde die Seite, deren Referenz am meisten in der Zukunft liegt Zufällig Nicht unbedingt die beste Wahl FIFO (First-In First-Out) Die jeweils zuerst geladene Seite wird wieder entfernt LRU (Least Recently Used) Weit verbreiteter Algorithmus Strategien benötigen Zähler pro Seitenrahmen 14

15 3.2.1 Paging Vorsicht LRU kann in eine Falle führen Beispiel 15 Programme, die ständig Seitenfehler verursachen führen zum so genannten Thrashing

16 3.2.1 Paging Interne Fragmentierung Programme und Daten gerade Vielfaches der Seitengröße keine Platzverschwendung Wird i.d.r. nicht der Fall sein Folglich: Verschnitt Verschwendete Bytes: Interne Fragmentierung Beispielrechnung: Bytes benötigt: 4 K Byte Größe Seitenrahmen Rechnung Tafel Besser kleine oder große Seitenrahmen bzgl. interner Fragmentierung? 16

17 3.2.2 Segmentierung bisher Paging: eindimensionaler virtueller Adressraum Vorteilhafter: mehrere virtuelle Adressräume Motivation warum mehrere Adressräume flexibler Dynamischer Zuwachs von Daten Beispiel Compilerlauf Speicherbedarf nimmt ständig zu für Symboltabelle (verwalten Variablen) Speicher für Aufnahme Quelltext Für Konstantentabelle Für Syntaxbaum 17 Speicherbedarf schrumpft und wächst abwechselnd für benutzten Stack aufgrund von Prozeduraufrufen des Compilers

18 3.2.2 Segmentierung Situation bei eindimensionalen virtuellen Adressraum 18 Programmierer wäre gezwungen Tabellen zu verwalten

19 3.2.2 Segmentierung Bessere Lösung: mehrere vollkommen unabhängig voneinander vorhandene Adressräume so genannte Segmente 19

20 3.2.2 Segmentierung Vorteil Segmente: Können unabhängig wachsen und schrumpfen Unterstützen Modularisierung bei der Programmierung Jede Prozedur eigenes Segment mit Anfangsadresse 0 Aufruf anderer Prozedur (Segmentnummer, Adresse 0) Nachträgliche Änderungen an Prozedur leichter Immer Einstieg bei Adresse 0 Bei eindimensionalem Adressraum nicht möglich Einbinden von Bibliotheken Nicht jedes Programm braucht Kopie der Bibliothek Unterstützen Schutzmechanismen leichter 20

21 3.2.2 Segmentierung WICHTIG: Segment ist logische Einheit Programmierer kennt diese und verwendet diese Auch hier muss Umsetzung in eine physikalische Adresse erfolgen 21

22 3.2.2 Segmentierung Realisierung Segmentierung auf 2 Arten Swapping und Paging Swapping Referenziertes im Speicher nicht vorhandenes Segment wird nachgeladen Falls kein Platz vorhanden: Ein oder mehrere Segmente müssen auf Platte geschrieben werden Im Prinzip wie bei Demand Paging Entscheidender Unterschied Bei Demand Paging: Seitengrößen identisch Hier: Segmentgrößen unterschiedlich 22

23 3.2.2 Segmentierung Externe Fragmentierung 23

24 3.2.2 Segmentierung Beseitigung durch Komprimieren Notwendig Liste zur Verwaltung der Adressen und Größen der Löcher Komprimieren Jedesmal wenn Lücke entstanden ist: Verschieben in Richtung Adresse 0 Aufwändig Besser: Warten bis Fragmentierung gravierende Ausmaße angenommen hat -> erst dann Komprimieren Bis dahin in passende Lücke einordnen Neues Problem: Welche Lücke wählen? 24

25 3.2.2 Segmentierung Zwei Strategien Best Fit Wähle kleinstes Loch, in das Segment gerade reinpasst First Fit Wähle erstes Loch, in das Segment gerade reinpasst Diskussion: Vor- und Nachteile 25

26 3.2.2 Segmentierung Bisher Segmentierung über Swapping Nun: Vermeiden von Lückensuche Kombination von Segmentierung und Paging Idee: jedes Segment intern in Seiten aufteilen Alle Verfahren die beim Paging entwickelt wurden nutzbar Neu: für jedes Segment eigene Seitentabelle Erstmalig angewandt im Betriebssystem MULTICS Adressbildung s. nächste Seite 26

27 3.2.2 Segmentierung Adressbildung bei Segmentierung mit Paging 27

28 3.2.3 Vergleich Segmentierung / Paging Vor- und Nachteile ein- und mehrdimensionaler logischer Adressen 28

29 3.2.3 Vergleich Segmentierung / Paging Heutzutage: zumeist Paging Wegen des Vorteils, dass sich Programmierer nicht kümmern muss Begriffswirrwarr in der Literatur Tannenbaum: Segmentierung + Paging (s. MULTICs) Hennessy / Patterson: Computer Organization and Design Segmentierung nicht explizit erwähnt; Gruppe von virtuellen Seiten als Segment bezeichnet Starke Ähnlichkeit zum mehrdimensionalen Paging (s. Übungsblatt 10, Aufgabe 6 u. 7) Virtuelle Adresse 29

30 3.2.4 Beispiel: Virtueller Speicher Pentium 4 Pentium 4 besitzt Speichersystem, das Demand Paging Reine Segmentierung Segmentierung + Paging unterstützt Kernstück bei reiner Segmentierung zwei Tabellen LDT (Lokale Deskriptor Tabelle) Jedes Programm eigene LDT Verwaltet Code-, Datensegment, Stapelsegment (stack) GDT (Globale Deskriptor Tabelle) Verwaltetet Segmente des Betriebssystems 30

31 3.2.4 Beispiel: Virtueller Speicher Pentium 4 P4-Programm lädt nach Start zunächst Selektor in Segmentregister Codesegment in CS, Datensegment in DS, Selektor verweist auf Eintrag in eine der Deskriptortabellen 31

32 3.2.4 Beispiel: Virtueller Speicher Pentium 4 Beim Laden Selektor entsprechenden Deskriptor holen Deskriptor wird in internen Register der MMU gespeichert Bit Selektor 2 13 Segmentdeskriptoren, 8 K Einträge Jeder Eintrag 8 Byte groß Selektor mit Nummer 72 verweist auf welchen Eintrag? Limit zum Überprüfen, ob der Offset-Wert über Segment hinausgeht

33 3.2.4 Beispiel: Virtueller Speicher Pentium 4 Übersetzung des Selektor/Offset Paars bei Segmentierung in lineare physikalische Adresse BASE-Feld in 3 Teile zerlegt (s. Folie vorher) Wg. Kompatibilität zu (24 Bit Basis) Basis + Offset physikalische Adresse 33

34 3.2.4 Beispiel: Virtueller Speicher Pentium 4 Reines Paging (vorher als Demand Paging bezeichnet) Einfach realisierbar BASE = 0 und LIMIT auf Maximalwert Es entsteht ein großer virtueller Adressraum Auf diesem kann nun z.b. mehrdimensionales Paging aufsetzen (s. Folie 29) 34

35 3.2.4 Beispiel: Virtueller Speicher Pentium 4 Segmentierung + Paging In diesem Falle wird vorherige ermittelte Adresse als virtuelle Adresse im Segment interpretiert und z.b. wie folgt für Ermittlung physikalischer Adresse verwendet werden Vorteil mehrstufiges Adressierungs-Verfahren Sparen von Verwaltungsaufwand 35

36 3.2.4 Beispiel: Virtueller Speicher Pentium 4 Schutzmechanismen (s. DPL-Bits in Selektor Folie 32) interpretierbar als Ebene 36 Zugriff Segmente in seiner Ebene (für LDT) kein Problem Zugriff auf andere Segmente Bei Daten von hoch auf niedrig verboten Bei Programmen möglich aber überwacht Nur bestimmte Zugriffe möglich

37 3.3 Optimierungen bei der Speicherwaltung Zwei Ansatzpunkte Platz: Aufwand Speicherung Tabellen Zugriffsgeschwindigkeit auf Tabellen Mittels so genannter TLBs (Translation Lookaside Buffer) 37 Aufwand Speicherung Seitentabellen Annahme nun: reines Paging Jeder Prozess hat seine eigene Seitentabelle Beispiel: 32 Bit virtuelle Adresse, 4 Byte pro Eintrag, Seitenrahmen 4KB Wie groß ist Aufwand für Speicherung Seitentabelle? Für ein Programm machbar für Hunderte zu aufwändig

38 3.3 Optimierungen bei der Speicherwaltung 5 Maßnahmen um Größen der Seitentabellen zu begrenzen Maßnahme 1 Seitentabelle zunächst auf feste Größe setzen Bei Bedarf zusätzlicher Eintrag Pagetabelle wächst dynamisch Setzt voraus Adressraum wächst nur in einer Richtung Maßnahme 2 Erweitern in zwei Richtungen Viele Sprachen brauchen mindestens zwei Bereiche, z.b. für Stack und Heap 2 Seitentabellen pro Prozess, die vom BS verwaltet werden und von der Mitte heraus wachsen 38

39 3.3 Optimierungen bei der Speicherwaltung Maßnahme 3 So genannte invertierte Seitentabelle Mittels Hash-Funktion virtuelle Adresse abbilden auf physikalische Seite Nur eine Seitentabelle notwendig identisch mit der Anzahl physikalischer Seiten Nachteil: erhöhter Aufwand bei Adressrechnung (Hash- Funktion) Maßnahme 4 mehrdimensonales Paging (s. vorher) Maßnahme 5 Pagetabelle selbst in virtuellen Speicher legen Gefahr vieler Ein-/Auslagerungen 39

40 3.3 Optimierungen bei der Speicherwaltung Zugriff optimieren: Translation Lookaside Buffer Voll-assoziativer Cache für virtuelle Adressen aus Seitentabelle (im Prozessor realisiert) 40

41 3.3 Optimierungen bei der Speicherwaltung Adressbildung insgesamt Translation Lookaside Buffer, Seitentabelle und Cachezugriff 41

42 3.3 Optimierungen bei der Speicherwaltung Zugriffsablauf algorithmisch gezeigt 42

43 3.3 Optimierungen bei der Speicherwaltung Mögliche und nicht mögliche Kombinationen 43

44 3.4 Ergänzungen Invertierte Speichertabelle (s. Maßnahme 3, S. 39) 44

45 3.4 Ergänzungen Paging in der Regel nicht sichtbar für den Programmierer Segmentierung für Programmierer sichtbar In der Regel verschiedene Segmente für Programmkode und Programmdaten verwendet Auch mehrere Programm- und Datensegmente möglich 45

46 3.4 Ergänzungen Segmentierung Vereinfacht die Handhabung wachsender Datenstrukturen Ermöglicht unabhängiges Ändern und Neukompilieren ohne erneutes Linken und neues Wiederladen Führt dadurch zur leichteren gleichzeitigen Nutzung von Segmenten (Bibliotheksprogrammen) zwischen Prozessen Erleichtert Schutzabfragen (über angegebenen Segmentoffset) Manche Systeme kombinieren Segmentierung mit Paging 46

47 3.4 Ergänzungen Hardware für Segmentierung und Paging Unsegmentiert und kein Paging (unpaged) virtuelle Adresse = physikalische Adresse Geringe Komplexität Hohe Leistung 47 Unsegmentiert, aber Paging Speicher betrachtet als in Seiten eingeteilter linearer Adressraum Speicherschutz management mittels Paging-Verfahren (Seitentabellen, TLBs) Berkeley UNIX Segmentiert und kein Paging Sammlung lokaler Adressräume Schutz gegeben bis hinunter zur Byteebene Segmenttabelle wird on-chip benötigt Segmentiert und Paging Segmentierung wird verwendet um logische Speicherpartitionen zu definieren, die für die Zugriffskontrolle benutzt werden Paging verwaltet Zugriff innerhalb der Partitionen Unix System V

48 3.4 Ergänzungen Pentium II Address Translation Mechanism 48

49 3.4 Ergänzungen Pentium II Protection - Protection bits give 4 levels of privilege 0 most protected, 3 least Use of levels software dependent Usually level 3 for applications, level 1 for O/S and level 0 for kernel (level 2 not used) Level 2 may be used for apps that have internal security e.g. Database Some instructions only work in level 0 49

50 3.4 Ergänzungen Pentium II Paging Segmentation wird ausgeschaltet In diesem Fall wird ein rein linearer Adressraum verwendet Zweistufiger Zugriff über Tabellen 1.Stufe, Seitentabellenverzeichnis (page directory) 1024 Einträge maximal Teilt 4G linearen Speicher in 1024 Seitengruppen à 4Mbyte Jede Seitentabelle hat 1024 Einträge, die Seiten mit jeweils 4Kbyte Größe adressieren Ein Seitenverzeichnis für einen Prozess, für alle Prozesse oder für ein Teil der Prozesse Seitenverzeichnis für aktuellen Prozess ist stets im Speicher Verwendet TLB mit 32 Seitentabelleneinträgen Zwei Seitengrößen möglich (4k or 4M) 50

51 3.4 Ergänzungen Pentium II Segmentation Jede virtuelle Adresse besteht aus 16-Bit Segment und 32- Bit Offset 2 Bits des Segments sind für Schutzmechanismen 14 Bits spezifizieren Segment Unsegmentierter virtueller Speicher 2 32 = 4Gbytes Segmentiert: 2 46 =64 Terabytes 51

Anbindung zum Betriebssystem (BS)

Anbindung zum Betriebssystem (BS) 5.1 Einleitung Anbindung zum Betriebssystem (BS) Aufgaben BS Schnittstelle zur Hardware Sicherstellung des Betriebs mit Peripherie Dienste erfüllen für Benutzung Rechner durch Verwaltung der Ressourcen

Mehr

Tutorium Rechnerorganisation

Tutorium Rechnerorganisation Woche 11 Tutorien 3 und 4 zur Vorlesung Rechnerorganisation 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

Speicherverwaltung (Swapping und Paging)

Speicherverwaltung (Swapping und Paging) Speicherverwaltung (Swapping und Paging) Rückblick: Segmentierung Feste Einteilung des Speichers in einzelne Segmente 750k 0 Rückblick: Segmentierung Feste Einteilung des Speichers in einzelne Segmente

Mehr

7. Speicherverwaltung

7. Speicherverwaltung 7. Speicherverwaltung Ziele Zuteilung des Arbeitsspeicher Abbildung der symbolischen Adresse auf die physikalische Adresse Adress-Transformation Symbolische Adresse verschiebbare Adresse physikalische

Mehr

Freispeicherverwaltung Martin Wahl,

Freispeicherverwaltung Martin Wahl, Freispeicherverwaltung Martin Wahl, 17.11.03 Allgemeines zur Speicherverwaltung Der physikalische Speicher wird in zwei Teile unterteilt: -Teil für den Kernel -Dynamischer Speicher Die Verwaltung des dynamischen

Mehr

Virtueller Speicher. SS 2012 Grundlagen der Rechnerarchitektur Speicher 44

Virtueller Speicher. SS 2012 Grundlagen der Rechnerarchitektur Speicher 44 Virtueller Speicher SS 2012 Grundlagen der Rechnerarchitektur Speicher 44 Die Idee Virtuelle Adressen Prozess 1 Speicherblock 0 Speicherblock 1 Speicherblock 2 Speicherblock 3 Speicherblock 4 Speicherblock

Mehr

5.6 Segmentierter virtueller Speicher

5.6 Segmentierter virtueller Speicher 5.6 Segmentierter virtueller Speicher Zur Erinnerung: Virtueller Speicher ermöglicht effiziente und komfortable Nutzung des realen Speichers; Sharing ist problematisch. Segmentierung erleichtert Sharing,

Mehr

Wie groß ist die Page Table?

Wie groß ist die Page Table? Wie groß ist die Page Table? Im vorigen (typischen) Beispiel verwenden wir 20 Bits zum indizieren der Page Table. Typischerweise spendiert man 32 Bits pro Tabellen Zeile (im Vorigen Beispiel brauchten

Mehr

Memory Management. Peter Puschner Institut für Technische Informatik peter@vmars.tuwien.ac.at

Memory Management. Peter Puschner Institut für Technische Informatik peter@vmars.tuwien.ac.at Memory Management Peter Puschner Institut für Technische Informatik peter@vmars.tuwien.ac.at 1 Speicherverwaltung Effektive Aufteilung und Verwaltung des Arbeitsspeichers für BS und Programme Anforderungen

Mehr

wichtigstes Betriebsmittel - neben dem Prozessor: Speicher

wichtigstes Betriebsmittel - neben dem Prozessor: Speicher Speicherverwaltung Aufgaben der Speicherverwaltung wichtigstes Betriebsmittel - neben dem Prozessor: Speicher Sowohl die ausführbaren Programme selbst als auch deren Daten werden in verschiedenen Speicherbereichen

Mehr

Echtzeitbetriebssysteme

Echtzeitbetriebssysteme Speicherverwaltung (Memory Management) Aufgaben der Memory-Management-Unit ist l der Speicherschutz und l die Adressumsetzung Wird durch Hardware unterstützt l Memory Management Unit (MMU) l MMU wird vom

Mehr

Übung zu Grundlagen der Betriebssysteme. 13. Übung 22.01.2012

Übung zu Grundlagen der Betriebssysteme. 13. Übung 22.01.2012 Übung zu Grundlagen der Betriebssysteme 13. Übung 22.01.2012 Aufgabe 1 Fragmentierung Erläutern Sie den Unterschied zwischen interner und externer Fragmentierung! Als interne Fragmentierung oder Verschnitt

Mehr

Technische Informatik II Wintersemester 2002/03 Sommersemester 2001. Heiko Holtkamp Heiko@rvs.uni-bielefeld.de

Technische Informatik II Wintersemester 2002/03 Sommersemester 2001. Heiko Holtkamp Heiko@rvs.uni-bielefeld.de Technische Informatik II Wintersemester 2002/03 Sommersemester 2001 Heiko Holtkamp Heiko@rvs.uni-bielefeld.de Speicher ist eine wichtige Ressource, die sorgfältig verwaltet werden muss. In der Vorlesung

Mehr

Paging. Einfaches Paging. Paging mit virtuellem Speicher

Paging. Einfaches Paging. Paging mit virtuellem Speicher Paging Einfaches Paging Paging mit virtuellem Speicher Einfaches Paging Wie bisher (im Gegensatz zu virtuellem Speicherkonzept): Prozesse sind entweder ganz im Speicher oder komplett ausgelagert. Im Gegensatz

Mehr

Einführung in die technische Informatik

Einführung in die technische Informatik Einführung in die technische Informatik Christopher Kruegel chris@auto.tuwien.ac.at http://www.auto.tuwien.ac.at/~chris Betriebssysteme Aufgaben Management von Ressourcen Präsentation einer einheitlichen

Mehr

Linker: Adreßräume verknüpfen. Informationen über einen Prozeß. Prozeß-Erzeugung: Verwandtschaft

Linker: Adreßräume verknüpfen. Informationen über einen Prozeß. Prozeß-Erzeugung: Verwandtschaft Prozeß: drei häufigste Zustände Prozeß: anatomische Betrachtung jeder Prozeß verfügt über seinen eigenen Adreßraum Sourcecode enthält Anweisungen und Variablen Compiler überträgt in Assembler bzw. Binärcode

Mehr

1. Speicher. Typische Nutzung eines Adreßraums. Systemsoftware. Textbereich relativ klein. Sehr großer Abstand zwischen Heap und Stack

1. Speicher. Typische Nutzung eines Adreßraums. Systemsoftware. Textbereich relativ klein. Sehr großer Abstand zwischen Heap und Stack 1. Speicher 1 Typische Nutzung eines Adreßraums Textbereich relativ klein Sehr großer Abstand zwischen Heap und Stack Keine Verunreinigungen durch: E/A-Bereiche nicht bestückte Adreßbereiche fremde Kontrollflüsse

Mehr

Speicher Virtuelle Speicherverwaltung. Speicherverwaltung

Speicher Virtuelle Speicherverwaltung. Speicherverwaltung Speicherverwaltung Die Speicherverwaltung ist derjenige Teil eines Betriebssystems, der einen effizienten und komfortablen Zugriff auf den physikalischen Arbeitsspeicher eines Computer ermöglicht. Je nach

Mehr

Kapitel VI. Speicherverwaltung. Speicherverwaltung

Kapitel VI. Speicherverwaltung. Speicherverwaltung Kapitel VI Speicherverwaltung 1 Speicherverwaltung Computer exekutiert Programme (mit Daten) im Hauptspeicher. Hauptspeicher: Großes Array von Wörtern (1 oder mehrere Bytes) Jedes Wort hat eine eigene

Mehr

Fachbericht Thema: Virtuelle Speicherverwaltung

Fachbericht Thema: Virtuelle Speicherverwaltung Fachbericht 15.10.99 1 HINTERGRÜNDE/ MOTIVATION 2 2 FUNKTIONEN DER SPEICHERVERWALTUNG 2 3 ARTEN DER SPEICHERVERWALTUNG 2 3.1 STATISCHE SPEICHERVERWALTUNG 2 3.2 DYNAMISCHE SPEICHERVERWALTUNG 3 3.2.1 REALER

Mehr

Betriebssysteme. Dipl.-Ing.(FH) Volker Schepper

Betriebssysteme. Dipl.-Ing.(FH) Volker Schepper Speicherverwaltung Real Mode Nach jedem starten eines PC befindet sich jeder x86 (8086, 80386, Pentium, AMD) CPU im sogenannten Real Mode. Datenregister (16Bit) Adressregister (20Bit) Dadurch lassen sich

Mehr

Linux Paging, Caching und Swapping

Linux Paging, Caching und Swapping Linux Paging, Caching und Swapping Inhalte Paging Das Virtuelle Speichermodell Die Page Table im Detail Page Allocation und Page Deallocation Memory Mapping & Demand Paging Caching Die verschiedenen Caches

Mehr

Echtzeit-Multitasking

Echtzeit-Multitasking Technische Informatik Klaus-Dieter Thies Echtzeit-Multitasking Memory Management und System Design im Protected Mode der x86/pentium-architektur. Shaker Verlag Aachen 2002 Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Mehr

4.3 Hintergrundspeicher

4.3 Hintergrundspeicher 4.3 Hintergrundspeicher Registers Instr./Operands Cache Blocks Memory Pages program 1-8 bytes cache cntl 8-128 bytes OS 512-4K bytes Upper Level faster Disk Tape Files user/operator Mbytes Larger Lower

Mehr

Übung zu Einführung in die Informatik # 10

Übung zu Einführung in die Informatik # 10 Übung zu Einführung in die Informatik # 10 Tobias Schill tschill@techfak.uni-bielefeld.de 15. Januar 2016 Aktualisiert am 15. Januar 2016 um 9:58 Erstklausur: Mi, 24.02.2016 von 10-12Uhr Aufgabe 1* a),

Mehr

Besprechung der Probeklausur Übungsscheine, inoffizielle Evaluation Übungsaufgaben Noch Fragen?

Besprechung der Probeklausur Übungsscheine, inoffizielle Evaluation Übungsaufgaben Noch Fragen? Themen heute Besprechung der Probeklausur Übungsscheine, inoffizielle Evaluation Übungsaufgaben Noch Fragen? Besprechung der Probeklausur Probeklausur wird jetzt ausgeteilt Notenschlüssel: 45 37,5 Punkte:

Mehr

Kapitel 6 Speicherverwaltung Seite 1 zum Teil nach: Silberschatz&Galbin, Operating System Concepts, Addison-Wesley)

Kapitel 6 Speicherverwaltung Seite 1 zum Teil nach: Silberschatz&Galbin, Operating System Concepts, Addison-Wesley) Kapitel 6 Speicherverwaltung Seite 1 6 Speicherverwaltung 6.1 Hintergrund Ein Programm muß zur Ausführung in den Hauptspeicher gebracht werden und in die Prozeßstruktur eingefügt werden. Dabei ist es in

Mehr

Enterprise Computing Einführung in das Betriebssystem z/os. Prof. Dr. Martin Bogdan Prof. Dr.-Ing. Wilhelm G. Spruth WS2012/13

Enterprise Computing Einführung in das Betriebssystem z/os. Prof. Dr. Martin Bogdan Prof. Dr.-Ing. Wilhelm G. Spruth WS2012/13 UNIVERSITÄT LEIPZIG Enterprise Computing Einführung in das Betriebssystem z/os Prof. Dr. Martin Bogdan Prof. Dr.-Ing. Wilhelm G. Spruth WS2012/13 Verarbeitungsgrundlagen Teil 2 Virtual Storage el0100 copyright

Mehr

(Prof. Dr. J. Schlichter, WS 2011 / 2012) Übungsleitung: Dr. Wolfgang Wörndl

(Prof. Dr. J. Schlichter, WS 2011 / 2012) Übungsleitung: Dr. Wolfgang Wörndl Übung zur Vorlesung Grundlagen Betriebssysteme und Systemsoftware (Prof. Dr. J. Schlichter, WS 2011 / 2012) Übungsleitung: Dr. Wolfgang Wörndl (gbs-ws11@mailschlichter.informatik.tu-muenchen.de) http://www11.in.tum.de/veranstaltungen/grundlagenbetriebssystemeundsystemsoftwarews1112

Mehr

Technische Informatik 2 Speichersysteme, Teil 3

Technische Informatik 2 Speichersysteme, Teil 3 Technische Informatik 2 Speichersysteme, Teil 3 Prof. Dr. Miroslaw Malek Sommersemester 2004 www.informatik.hu-berlin.de/rok/ca Thema heute Virtueller Speicher (Fortsetzung) Translation Lookaside Buffer

Mehr

Übung 4 - Betriebssysteme I

Übung 4 - Betriebssysteme I Prof. Dr. Th. Letschert FB MNI 9. Juni 2002 Übung 4 - Betriebssysteme I Aufgabe 1 1. Erläutern Sie die Begriffe der transparent und der virtuell mit ihrer in der Informatik üblichen Bedeutung. 2. Wie werden

Mehr

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Version 21.12.2016 1 Inhalt Vorlesung Aufbau einfacher Rechner Überblick: Aufgabe, Historische Entwicklung, unterschiedliche Arten von Betriebssystemen

Mehr

Betriebssysteme 1. Thomas Kolarz. Folie 1

Betriebssysteme 1. Thomas Kolarz. Folie 1 Folie 1 Betriebssysteme I - Inhalt 0. Einführung, Geschichte und Überblick 1. Prozesse und Threads (die AbstrakFon der CPU) 2. Speicherverwaltung (die AbstrakFon des Arbeitsspeichers) 3. Dateisysteme (die

Mehr

5.5.5 Der Speicherverwalter

5.5.5 Der Speicherverwalter 5.5.5 Der Speicherverwalter Speicherverwalter (memory manager) reagiert auf = im einfachsten Fall ein Systemprozess, der für die Umlagerung der Seiten (page swapping) zuständig ist (analog zum Umlagerer/Swapper)

Mehr

(Prüfungs-)Aufgaben zum Thema Speicherverwaltung

(Prüfungs-)Aufgaben zum Thema Speicherverwaltung (Prüfungs-)Aufgaben zum Thema Speicherverwaltung 1) Ein Betriebssystem mit virtueller Speicherverwaltung arbeite mit 32 Bit langen virtuellen Adressen einer Seitengröße von 4KB zweistufigem Paging, wobei

Mehr

Computeranwendung in der Chemie Informatik für Chemiker(innen) 3. Software

Computeranwendung in der Chemie Informatik für Chemiker(innen) 3. Software Computeranwendung in der Chemie Informatik für Chemiker(innen) 3. Software Jens Döbler 2003 "Computer in der Chemie", WS 2003-04, Humboldt-Universität VL3 Folie 1 Grundlagen Software steuert Computersysteme

Mehr

Rechnergrundlagen SS Vorlesung

Rechnergrundlagen SS Vorlesung Rechnergrundlagen SS 2007 13. Vorlesung Inhalt Cache Lesen Schreiben Überschreiben Memory Management Unit (MMU) Translation Lookaside Buffer (TLB) Klausurvorbereitung Inhalte der Klausur Rechnergrundlagen

Mehr

Realisierung: virtueller Prozessor: der reale Prozessor wird periodisch dem Programm zugewiesen Im Prozessor: durch Task-Status Segment (TSS)

Realisierung: virtueller Prozessor: der reale Prozessor wird periodisch dem Programm zugewiesen Im Prozessor: durch Task-Status Segment (TSS) 1.2 Multitasking Damit ein Computer mehrere Aufgaben gleichzeitig erledigen kann, die jede für sich oder die auch gemeinsam arbeiten, z.b. Daten lesen Berechnungen ausführen Netzwerkkontakt abarbeiten

Mehr

Grundlagen Rechnerarchitektur und Betriebssysteme

Grundlagen Rechnerarchitektur und Betriebssysteme Grundlagen Rechnerarchitektur und Betriebssysteme Johannes Formann Definition Computer: Eine Funktionseinheit zur Verarbeitung von Daten, wobei als Verarbeitung die Durchführung mathematischer, umformender,

Mehr

Basisinformationstechnologie I Wintersemester 2011/ November 2011 Betriebssysteme

Basisinformationstechnologie I Wintersemester 2011/ November 2011 Betriebssysteme Basisinformationstechnologie I Wintersemester 2011/12 23. November 2011 Betriebssysteme Seminarverlauf 12. Oktober: Organisatorisches / Grundlagen I 19. Oktober: Grundlagen II 26. Oktober: Grundlagen III

Mehr

5 Kernaufgaben eines Betriebssystems (BS)

5 Kernaufgaben eines Betriebssystems (BS) 5 Kernaufgaben eines Betriebssystems (BS) Betriebssystem ist eine Menge von Programmen, die die Abarbeitung anderer Programme auf einem Rechner steuern und überwachen, insbesondere verwaltet es die Hardware-Ressourcen

Mehr

Kompatibilitätsmodi: Real Mode: - Segmentregister*16+Offset => Adresse - Keine Segmentdeskriptoren, kein Paging, - ~ 1 MB Adressraum.

Kompatibilitätsmodi: Real Mode: - Segmentregister*16+Offset => Adresse - Keine Segmentdeskriptoren, kein Paging, - ~ 1 MB Adressraum. 15.1.1 Kompatibilitätsmodi: Real Mode: - Segmentregister*16+Offset => Adresse - Keine Segmentdeskriptoren, kein Paging, - ~ 1 MB Adressraum. - 15. Hauptspeicher-Adressierung 15.1 Adressierungsmodi Virtual

Mehr

Kapitel 9 Hauptspeicherverwaltung

Kapitel 9 Hauptspeicherverwaltung Kapitel 9 Hauptspeicherverwaltung Einführung: Speicher als Betriebsmittel Speicherkapazität wächst ständig ein PC heute hat 1000 mal soviel Speicher wie 1965 der größte Computer der Welt Anwendungsprogramme

Mehr

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Version 11.01.2017 1 Inhalt Vorlesung Aufbau einfacher Rechner Überblick: Aufgabe, historische Entwicklung, unterschiedliche Arten von Betriebssystemen

Mehr

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Version 13.01.2015 1 Klausur Termin: 10. März 2016, 13:00 Uhr Raum: Audimax, KG 2 4 ECTS Punkte 3 Klausuranmeldung Anmeldefrist: 31.01.2016 (Ausnahme:

Mehr

Bsys2 Zusammenfassung. Definition Die CPU ist das Gehirn des Computers. Sie holt Befehle aus dem Speicher und führt sie aus.

Bsys2 Zusammenfassung. Definition Die CPU ist das Gehirn des Computers. Sie holt Befehle aus dem Speicher und führt sie aus. Prozessoren Definition Die CPU ist das Gehirn des Computers. Sie holt Befehle aus dem Speicher und führt sie aus. Register Alle Prozessoren besitzen interne Register, um den Zugriff auf Daten zu beschleunigen.

Mehr

Lösungsvorschlag zur 6. Übung

Lösungsvorschlag zur 6. Übung rof. Frederik Armknecht Sascha Müller Daniel Mäurer Grundlagen der Informatik 3 Wintersemester 9/1 Lösungsvorschlag zur 6. Übung 1 räsenzübungen 1.1 Schnelltest a) Caches und virtueller Speicher können

Mehr

Speicherverwaltung Memory Management

Speicherverwaltung Memory Management Speicherverwaltung Memory Management Betriebssysteme VO WS 2008/2009 IAIK 1 Parkinsons Gesetz Data expands to fill the space available for storage eigentlich ursprünglich: WORK EXPANDS SO AS TO FILL THE

Mehr

Technische Informatik I. Übung 3 Speicherhierarchie. v t d 0 d 1 d 2 d 3 0 1 2 3. Technische Informatik I Übung 3. Technische Informatik I Übung 3

Technische Informatik I. Übung 3 Speicherhierarchie. v t d 0 d 1 d 2 d 3 0 1 2 3. Technische Informatik I Übung 3. Technische Informatik I Übung 3 Institut für Kommunikationsnetze und Rechnersysteme Technische Informatik I Paul J. Kühn, Matthias Meyer Übung 3 Speicherhierarchie Inhaltsübersicht Aufgabe 3.1 Daten-Cache Aufgabe 3.2 Virtueller Speicher

Mehr

Systeme I: Betriebssysteme Kapitel 4 Prozesse. Wolfram Burgard

Systeme I: Betriebssysteme Kapitel 4 Prozesse. Wolfram Burgard Systeme I: Betriebssysteme Kapitel 4 Prozesse Wolfram Burgard Version 18.11.2015 1 Inhalt Vorlesung Aufbau einfacher Rechner Überblick: Aufgabe, Historische Entwicklung, unterschiedliche Arten von Betriebssystemen

Mehr

6.Vorlesung Grundlagen der Informatik

6.Vorlesung Grundlagen der Informatik Christian Baun 6.Vorlesung Grundlagen der Informatik Hochschule Darmstadt WS1112 1/42 6.Vorlesung Grundlagen der Informatik Christian Baun Hochschule Darmstadt Fachbereich Informatik christian.baun@h-da.de

Mehr

In diesem Abschnitt wollen wir uns mit der Architektur von Datenbank Managements Systemen beschäftigen.

In diesem Abschnitt wollen wir uns mit der Architektur von Datenbank Managements Systemen beschäftigen. 1 In diesem Abschnitt wollen wir uns mit der Architektur von Datenbank Managements Systemen beschäftigen. Zunächst stellt sich die Frage: Warum soll ich mich mit der Architektur eines DBMS beschäftigen?

Mehr

8. Swapping und Virtueller Speicher

8. Swapping und Virtueller Speicher 8. Swapping und Virtueller Speicher Der physikalische Adreßraum wird weiter abgebildet auf Arbeitsspeicher und Plattenspeicher. Prozesse (deren benutzte Seiten) die nicht laufen (und bald nicht laufen)

Mehr

Konzepte von Betriebssystemkomponenten Disk-Caches und Dateizugriff

Konzepte von Betriebssystemkomponenten Disk-Caches und Dateizugriff Konzepte von Betriebssystemkomponenten Disk-Caches und Dateizugriff von Athanasia Kaisa Grundzüge eines Zwischenspeichers Verschiedene Arten von Zwischenspeicher Plattenzwischenspeicher in LINUX Dateizugriff

Mehr

Grundlagen der Informatik III Wintersemester 2010/ Vorlesung Dr.-Ing. Wolfgang Heenes

Grundlagen der Informatik III Wintersemester 2010/ Vorlesung Dr.-Ing. Wolfgang Heenes Grundlagen der Informatik III Wintersemester 2010/2011 25. Vorlesung Dr.-Ing. Wolfgang Heenes int main() { printf("hello, world!"); return 0; } msg: main:.data.asciiz "Hello, world!".text.globl main la

Mehr

Anzeigen des Ereignisprotokolls (Windows) Anzeigen aller Fehler im Anwendungsprotokoll (Windows)

Anzeigen des Ereignisprotokolls (Windows) Anzeigen aller Fehler im Anwendungsprotokoll (Windows) 1. Shellprogrammierung (17.10.) Jeweils unter cmd und Powershell Öffnen einer Konsole Anzeigen des aktuellen Verzeichnisses Anzeigen der Dateien im Verzeichnis c:\windows\system32 Seitenweises Anzeigen

Mehr

1. Von-Neumann-Architektur (7/66 Punkte)

1. Von-Neumann-Architektur (7/66 Punkte) Fakultät Informatik/Mathematik Seite 1/8 Datum: 23.12.2010 Name: Vorname: Arbeitszeit: 60 Minuten Matr.-Nr.: Hilfsmittel: alle eigenen Unterschrift: wird vom Prüfer ausgefüllt 1 2 3 4 5 6 7 8 9 Diese hat

Mehr

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung. Maren Bennewitz

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung. Maren Bennewitz Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Maren Bennewitz Version 13.2.213 1 Inhalt Vorlesung Aufbau einfacher Rechner Überblick: Aufgabe, Historische Entwicklung, unterschiedliche Arten

Mehr

Betriebssysteme I WS 2013/2014. Betriebssysteme / verteilte Systeme rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404

Betriebssysteme I WS 2013/2014. Betriebssysteme / verteilte Systeme rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404 Betriebssysteme I WS 213/214 Betriebssysteme / verteilte Systeme rolanda.dwismuellera@duni-siegena.de Tel.: 271/74-45, Büro: H-B 844 Stand: 2. Januar 214 Betriebssysteme / verteilte Systeme Betriebssysteme

Mehr

01744 PC-Technologie Prüfungsprotokoll (Note 1,3) vom 20.06.16 bei Dr. Lenhardt, Protokollführer Dr. Bähring

01744 PC-Technologie Prüfungsprotokoll (Note 1,3) vom 20.06.16 bei Dr. Lenhardt, Protokollführer Dr. Bähring 01744 PC-Technologie Prüfungsprotokoll (Note 1,3) vom 20.06.16 bei Dr. Lenhardt, Protokollführer Dr. Bähring Dr. Lenhardt legt Wert darauf, dass man kurz und ohne ausschweifen Antwortet. Abkürzungen sollen

Mehr

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung. Maren Bennewitz

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung. Maren Bennewitz Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Maren Bennewitz Version 5.2.214 1 Inhalt Vorlesung Aufbau einfacher Rechner Überblick: Aufgabe, Historische Entwicklung, unterschiedliche Arten von

Mehr

Grundlagen der Informatik III Wintersemester 2010/2011

Grundlagen der Informatik III Wintersemester 2010/2011 Grundlagen der Informatik III Wintersemester 21/211 Wolfgang Heenes, atrik Schmittat 12. Aufgabenblatt mit Lösungsvorschlag 7.2.211 Hinweis: Der Schnelltest und die Aufgaben sollen in den Übungsgruppen

Mehr

Universität Bielefeld Technische Fakultät AG Rechnernetze und verteilte Systeme. Vorlesung 4: Memory. Wintersemester 2001/2002. Peter B.

Universität Bielefeld Technische Fakultät AG Rechnernetze und verteilte Systeme. Vorlesung 4: Memory. Wintersemester 2001/2002. Peter B. Universität Bielefeld Technische Fakultät AG Rechnernetze und verteilte Systeme Vorlesung 4: Memory Peter B. Ladkin Address Translation Die Adressen, die das CPU benutzt, sind nicht identisch mit den Adressen,

Mehr

Betriebssysteme - Speicherverwaltung

Betriebssysteme - Speicherverwaltung Betriebssysteme - Speicherverwaltung alois.schuette@h-da.de Version: (8c45d65) ARSnova 19226584 Alois Schütte 18. Mai 2016 1 / 80 Inhaltsverzeichnis Der Hauptspeicher ist neben dem Prozessor das wichtigste

Mehr

Technische Informatik 2 Speichersysteme, Teil 2

Technische Informatik 2 Speichersysteme, Teil 2 Technische Informatik 2 Speichersysteme, Teil 2 Prof. Dr. Miroslaw Malek Sommersemester 2009 www.informatik.hu-berlin.de/rok/ca Thema heute Virtueller Speicher Virtueller Seitenspeicher Seitenregister

Mehr

Bootvorgang des DSM-Systems Systems Plurix

Bootvorgang des DSM-Systems Systems Plurix Bootvorgang des DSM-Systems Systems Plurix Stefan Frenz Vortrag im Rahmen der Abteilungsbesprechung Voraussetzungen: CPU CPU-Modi Voraussetzungen: BIOS Rechner-Initialisierung durch das BIOS Interrupt

Mehr

, SS2012 Übungsgruppen: Do., Mi.,

, SS2012 Übungsgruppen: Do., Mi., VU Technische Grundlagen der Informatik Übung 7: Speicher und Peripherie 183.579, SS2012 Übungsgruppen: Do., 31.05. Mi., 06.06.2012 Aufgabe 1: Ihre Kreativität ist gefragt! Um die Qualität der Lehrveranstaltung

Mehr

Vorlesung 14 Speichersysteme (2)

Vorlesung 14 Speichersysteme (2) D - CA - XIV - MH - 1 HUMBOLDT-UNIVERSITÄT ZU BERLIN INSTITUT FÜR INFORMATIK Vorlesung 14 Speichersysteme (2) Sommersemester 2003 Leitung: Prof. Dr. Miroslaw Malek D - CA - XIV - MH - 2 SPEICHERSYSTEME

Mehr

Speicher- Management

Speicher- Management - Management hierarchie Die Hauptcharakteristika von sind: Kosten Kapazitäten Zugriffszeiten Generell gilt: kürzere Zugriffszeiten bedingen höhere Kosten pro bit größere Kapazität bedingt geringere Kosten

Mehr

Betriebssysteme. 8. Betriebsmittelverwaltung. Lehrveranstaltung im Studienschwerpunkt Verwaltungsinformatik

Betriebssysteme. 8. Betriebsmittelverwaltung. Lehrveranstaltung im Studienschwerpunkt Verwaltungsinformatik Betriebssysteme 8. Betriebsmittelverwaltung Lehrveranstaltung im Studienschwerpunkt Verwaltungsinformatik erstellt durch: Name: Telefon: 09281 / 409-279 Fax: 09281 / 409-55279 Email: mailto: Karl.Wohlrab@fhvr-aiv.de

Mehr

Definitionen zum Verschnitt

Definitionen zum Verschnitt Definitionen zum Verschnitt Die absoluten Größen haben eine Einheit. Beim Bilden der Verhältnisgrößen wird die Einheit gekürzt. Man kann bei den Verhältnisgrößen die Größe durch die Anzahl vorgegebener

Mehr

Turbo Pascal Profibuch

Turbo Pascal Profibuch Turbo Pascal Profibuch Martin Althaus SVBEX вшшшшшшвшаш DÜSSELDORF SAN FRANCISCO ' PARIS LONDON SOEST (NL) Inhaltsverzeichnis Vorwort 1 Einleitung 3 Wie dieses Buch gelesen werden sollte 5 Teil I: Interne

Mehr

Konzepte von Betriebssystem-Komponenten. Programmstart & dynamische Bibliotheken SS 05. Wladislaw Eckhardt.

Konzepte von Betriebssystem-Komponenten. Programmstart & dynamische Bibliotheken SS 05. Wladislaw Eckhardt. Proseminar KVBK Programmstart dynamische Bibliotheken Konzepte von Betriebssystem-Komponenten Programmstart & dynamische Bibliotheken SS 05 Wladislaw Eckhardt Wladi23@gmx.net 1 1 Einleitung 1.1 Problematik

Mehr

MMU Virtualisierung. ISE Seminar 2012. Thomas Schaefer 1

MMU Virtualisierung. ISE Seminar 2012. Thomas Schaefer 1 MMU Virtualisierung ISE Seminar 2012 Thomas Schaefer 1 Inhalt Allgemein MMU: Virtualisiert Probleme Problem 1: Ballooning Problem 2: Memory-Sharing Kurz: Problem 3 & 4 Translation Lookside Buffer TLB in

Mehr

Hausübung 5 (Musterlösung )

Hausübung 5 (Musterlösung ) SoSe 2014 Konzepte und Methoden der Systemsoftware Universität Paderborn Fachgebiet Rechnernetze Hausübung 5 (Musterlösung ) 2014-06-23 bis 2014-07-04 Hausübungsabgabe: Format: Lösungen in schriftlicher

Mehr

Verteilte Systeme. Verteilte Systeme. 5 Prozeß-Management SS 2016

Verteilte Systeme. Verteilte Systeme. 5 Prozeß-Management SS 2016 Verteilte Systeme SS 2016 Universität Siegen rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404 Stand: 31. Mai 2016 Betriebssysteme / verteilte Systeme Verteilte Systeme (1/14) i

Mehr

1.3 Architektur von Betriebssystemen

1.3 Architektur von Betriebssystemen 1.3 Architektur von Betriebssystemen Zentrale Aspekte: Schichtenstruktur Monolithischer Kern oder Mikrokern aufrufbasiert oder auftragsbasiert Objektorientierung bs-1.2 1 1.3.1 Schichtenstruktur Eine Schicht

Mehr

Technische Informatik 1

Technische Informatik 1 Technische Informatik 1 7 Prozesse und Threads Lothar Thiele Computer Engineering and Networks Laboratory Betriebssystem 7 2 7 3 Betriebssystem Anwendung Anwendung Anwendung Systemaufruf (syscall) Betriebssystem

Mehr

Praktikum Informatik 2: Betriebssysteme und Rechnernetze

Praktikum Informatik 2: Betriebssysteme und Rechnernetze Praktikum Informatik 2: Betriebssysteme und Rechnernetze Thema: 4. Speicherverwaltung Datum: 19.03.2008 vorgelegt von: Antje Stoppa Carsten Erdmann Andr é Hartwig Ulrike Saretzki Inhaltsverzeichnis 1 Motivation

Mehr

Systeme I: Betriebssysteme Kapitel 4 Prozesse. Maren Bennewitz

Systeme I: Betriebssysteme Kapitel 4 Prozesse. Maren Bennewitz Systeme I: Betriebssysteme Kapitel 4 Prozesse Maren Bennewitz Version 21.11.2012 1 Begrüßung Heute ist Tag der offenen Tür Willkommen allen Schülerinnen und Schülern! 2 Testat nach Weihnachten Mittwoch

Mehr

DATEIVERWALTUNG INHALTSVERZEICHNIS. STANZL Martin 4. HB/a. Verwendete Literatur: Konzepte der Betriebssysteme (Seiten 91-97)

DATEIVERWALTUNG INHALTSVERZEICHNIS. STANZL Martin 4. HB/a. Verwendete Literatur: Konzepte der Betriebssysteme (Seiten 91-97) DATEIVERWALTUNG STANZL Martin 4. HB/a Verwendete Literatur: Konzepte der Betriebssysteme (Seiten 91-97) INHALTSVERZEICHNIS 1. Die Aufteilung des Plattenspeichers... 2 2. Der Aufbau von Dateien... 2 3.

Mehr

x86-assemblerprogrammierung

x86-assemblerprogrammierung x86-assemblerprogrammierung von Michael Röhrs (Ergänzend zum Vortrag am 25.04.01) Einleitung Die Familie der x86-prozessoren gehört zur Klasse der CISC-Prozessoren ( Complex Instruction Set Computer ).

Mehr

Grundlagen der Betriebssysteme

Grundlagen der Betriebssysteme Grundlagen der Betriebssysteme [CS2100] Sommersemester 2014 Heiko Falk Institut für Eingebettete Systeme/Echtzeitsysteme Ingenieurwissenschaften und Informatik Universität Ulm Kapitel 6 Speicherverwaltung

Mehr

Systeme 1. Kapitel 3 Dateisysteme WS 2009/10 1

Systeme 1. Kapitel 3 Dateisysteme WS 2009/10 1 Systeme 1 Kapitel 3 Dateisysteme WS 2009/10 1 Letzte Vorlesung Dateisysteme Hauptaufgaben Persistente Dateisysteme (FAT, NTFS, ext3, ext4) Dateien Kleinste logische Einheit eines Dateisystems Dateitypen

Mehr

(Prof. Dr. J. Schlichter, WS 2011 / 2012) Übungsleitung: Dr. Wolfgang Wörndl (gbs-ws11@mailschlichter.informatik.tu-muenchen.de)

(Prof. Dr. J. Schlichter, WS 2011 / 2012) Übungsleitung: Dr. Wolfgang Wörndl (gbs-ws11@mailschlichter.informatik.tu-muenchen.de) Übung zur Vorlesung Grundlagen Betriebssysteme und Systemsoftware (Prof. Dr. J. Schlichter, WS 2011 / 2012) Übungsleitung: Dr. Wolfgang Wörndl (gbs-ws11@mailschlichter.informatik.tu-muenchen.de) http://www11.in.tum.de/veranstaltungen/grundlagenbetriebssystemeundsystemsoftwarews1112

Mehr

5 Speicherverwaltung. bs-5.1 1

5 Speicherverwaltung. bs-5.1 1 5 Speicherverwaltung bs-5.1 1 Pufferspeicher (cache) realer Speicher Primärspeicher/Arbeitsspeicher (memory) Sekundärspeicher/Hintergrundspeicher (backing store) (Tertiärspeicher/Archivspeicher) versus

Mehr

Betriebssysteme (BS) IA-32. Überblick. das Programmiermodell der Intel Architektur. Historie der Intel x86 Prozessoren. 8086: Programmiermodell

Betriebssysteme (BS) IA-32. Überblick. das Programmiermodell der Intel Architektur. Historie der Intel x86 Prozessoren. 8086: Programmiermodell Betriebssysteme (BS) alias Betriebssystembau (BSB) IA-32 das Programmiermodell der Intel Architektur Überblick Historie Basisprogrammiermodell Speicherverwaltung und Adressierung Schutz "Tasks" Zusammenfassung

Mehr

Algorithm Engineering. Alexander Kröller, Abteilung Algorithmik, IBR

Algorithm Engineering. Alexander Kröller, Abteilung Algorithmik, IBR #7 Terminchaos Nächste Vorlesungen: 27. 5. Vertretung durch Prof. Fekete 3. 6. Exkursionswoche 10. 6. Vertretung durch N.N. 17. 6. back to normal... Experiment Durchlaufe zwei gleichgrosse Arrays: Sortierte

Mehr

Vorlesung "Struktur von Mikrorechnern" (CBS)

Vorlesung Struktur von Mikrorechnern (CBS) 5 Entwicklung der Prozessorarchitekturen 5.1 Intel Prozessorenreihe i86 5.1.1 8088 und 8086 Prozessoren 5.1.3 80386 Prozessoren 5.1.5 Pentium Prozessoren 5.2 Vergleich von Prozessorarchitekturen unterschiedlicher

Mehr

Rechnernutzung in der Physik. Betriebssysteme

Rechnernutzung in der Physik. Betriebssysteme Rechnernutzung in der Physik Betriebssysteme 1 Betriebssysteme Anwendungsprogramme Betriebssystem Treiber BIOS Direkter Zugriff von Anwenderprogrammen auf Hardware nur in Ausnahmefällen sinnvoll / möglich:

Mehr

Cache. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011

Cache. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 Cache Dr.-Ing. Volkmar Sieh Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 Cache 1/53 2012-02-29 Einleitung Hauptspeicherzugriffe sind langsam die

Mehr

(Prof. Dr. J. Schlichter, WS 2011 / 2012) Übungsleitung: Dr. Wolfgang Wörndl

(Prof. Dr. J. Schlichter, WS 2011 / 2012) Übungsleitung: Dr. Wolfgang Wörndl Übung zur Vorlesung Grundlagen Betriebssysteme und Systemsoftware (Prof. Dr. J. Schlichter, WS 2011 / 2012) Übungsleitung: Dr. Wolfgang Wörndl (gbs-ws11@mailschlichter.informatik.tu-muenchen.de) http://www11.in.tum.de/veranstaltungen/grundlagenbetriebssystemeundsystemsoftwarews1112

Mehr

4. Speicher- und Prozeßverwaltung

4. Speicher- und Prozeßverwaltung 4. Speicher- und Prozeßverwaltung J. Dunkel 4.1 Einleitung In diesem Kapitel soll gezeigt werden, wie durch die Architektur moderner Mikroprozessoren, insbesondere von Seiten der Hardware, die Grundlagen

Mehr

Visualiserung des Prinzips von virtuellem Speicher

Visualiserung des Prinzips von virtuellem Speicher Visualiserung des Prinzips von virtuellem Speicher Benutzerhandbuch Inhaltsverzeichnis Installationsanweisung 3 Systemanforderung 3 Das Programm 3 Das Programm starten 3 Das Hauptfenster der segmentorientierten

Mehr

Speicher. Speicher. Speicherhierarchie. Speicher. Interessante Zahlen:

Speicher. Speicher. Speicherhierarchie. Speicher. Interessante Zahlen: Übersicht 1 Einleitung Hauptspeicher 2 Hauptspeicher 3 Caches, Cache-Kohärenz Dr.-Ing. Volkmar Sieh Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2008/2009

Mehr

Computer-Systeme Teil 15: Virtueller Speicher

Computer-Systeme Teil 15: Virtueller Speicher Computer-Systeme Teil 15: Virtueller Speicher Computer-Systeme WS 12/13 - Teil 15/Virtueller Speicher 14.01.2013 1 Übersicht Segmente Systemaufrufe Swapping Paging Computer-Systeme WS 12/13 - Teil 15/Virtueller

Mehr

Systeme I: Betriebssysteme Kapitel 4 Prozesse. Maren Bennewitz

Systeme I: Betriebssysteme Kapitel 4 Prozesse. Maren Bennewitz Systeme I: Betriebssysteme Kapitel 4 Prozesse Maren Bennewitz Version 20.11.2013 1 Begrüßung Heute ist Tag der offenen Tür Willkommen allen Schülerinnen und Schülern! 2 Wdhlg.: Attributinformationen in

Mehr

Besprechung des 8. Übungsblattes Einführung in Caches Cache-Organisation Cache-Ersetzungsstrategien Aufgaben (an der Tafel) Testklausur

Besprechung des 8. Übungsblattes Einführung in Caches Cache-Organisation Cache-Ersetzungsstrategien Aufgaben (an der Tafel) Testklausur Themen heute Besprechung des 8. Übungsblattes Einführung in Caches Cache-Organisation Cache-Ersetzungsstrategien Aufgaben (an der Tafel) Testklausur Besprechung des 8. Übungsblattes Aufgabe 2.6. In diesem

Mehr

Informatik I WS 07/08 Tutorium 24

Informatik I WS 07/08 Tutorium 24 Info I Tutorium 24 Informatik I WS 07/08 Tutorium 24 31.01.08 Bastian Molkenthin E-Mail: infotut@sunshine2k.de Web: http://infotut.sunshine2k.de Organisatorisches Anmeldung Hauptklausur : allerspätestens

Mehr

Main Memory. Hauptspeicher. Memories. Speichermodule. SIMM: single inline memory module 72 Pins. DIMM: dual inline memory module 168 Pins

Main Memory. Hauptspeicher. Memories. Speichermodule. SIMM: single inline memory module 72 Pins. DIMM: dual inline memory module 168 Pins 5 Main Memory Hauptspeicher Memories 2 Speichermodule SIMM: single inline memory module 72 Pins DIMM: dual inline memory module 68 Pins 3 Speichermodule 4 Speichermodule 5 Speichermodule 6 2 Hauptspeicher

Mehr