Kompatibilitätsmodi: Real Mode: - Segmentregister*16+Offset => Adresse - Keine Segmentdeskriptoren, kein Paging, - ~ 1 MB Adressraum.

Größe: px
Ab Seite anzeigen:

Download "Kompatibilitätsmodi: Real Mode: - Segmentregister*16+Offset => Adresse - Keine Segmentdeskriptoren, kein Paging, - ~ 1 MB Adressraum."

Transkript

1 Kompatibilitätsmodi: Real Mode: - Segmentregister*16+Offset => Adresse - Keine Segmentdeskriptoren, kein Paging, - ~ 1 MB Adressraum Hauptspeicher-Adressierung 15.1 Adressierungsmodi Virtual 386 Mode: - Nutzung der untersten 1 MB des linearen A-Raumes, - Virtual 386 Überwachungsprogramm & Emulator, - Abfangen von privilegierten Instruktionen, - Segmentregisterfunktion wie Real Mode, - Pro VM eine eigene Speicherabbildung, - Grundlage für "DOS-Box". 16 Bit Segment + 16 Bit Offset 20 Bit Adresse 4 Bit Versatz 1 P. Schulthess, Systemprogrammierung I, 2002, VS Informatik Ulm

2 Protected Mode: Segmentregister sind nun Segmentselektoren. Deskriptoren für Speichersegmente. 16 verschiedene Segmenttypen. Paging ab Intel/386 möglich. 64 Terabyte Adressraum. 4 Privilegierungsebenen. Segmentselektor Segmentdeskriptoren 32 Bit Adresse Segment-Basis + 32 Bit Adresse 2 P. Schulthess, Systemprogrammierung I, 2002, VS Informatik Ulm

3 Adressierung im Protected Mode Segmentierung und Paging kombinierbar: GDTR GDTR Segmentselektor Virtuelle 32 Bit Adresse Lokale Deskriptortabelle Globale Deskriptortabelle Segment-Basis + Lineare Adresse CR3 Directory Deskriptor- Deskriptor- Deskriptor- tabelle Tables tabelle tabelle + Physikalische Adresse! 3 P. Schulthess, Systemprogrammierung I, 2002, VS Informatik Ulm

4 15.2 Register ab i Sichtbare Register Für Anwendungsprogramme zugänglich. Arbeitsregister: - Mit Segmentregister verbunden, - aber umsteuerbar mit einem Präfix. Funktionsbezogene Register: - Flags (mit IO-Privilege Level), - Daten, Extra-Daten, - Stack, Code. Ab 486 weitere Register. SS CS DS ES FS GS ESP EIP EAX EBX ECX EDX ESI EDI EBP SP IP AX BX CX DX SI DI BP AL BL CL DL Eflags Flags 4 P. Schulthess, Systemprogrammierung I, 2002, VS Informatik Ulm

5 Unsichtbare Register Zweck: - Erweiterte Adresse im Protected Mode, - Zugriffsschutz & Prozessorsteuerung, - Betriebssystemaufruf. Kontrollregister CR0..CR3/4: Weitere Register: - Debug & Test Register, - Boundary Scan... Spätere Register (nicht 386): - MMX - Multimedia Extension, - Gleitkomma Operationen. SS CS DS ES FS GS TSSX LDTX CR0 CR1 CR2 CR3 SS-Basis/-Limit CS-Basis/-Limit DS-Basis/-Limit Segment- Deskriptorcaches ES-Basis/-Limit FS-Basis/-Limit GS-Basis/-Limit TSS-Basis/-Limit LDT-Basis/-Limit IDT-Basis/-Limit GDT-Basis/-Limit Debug, Test, JTAG 5 P. Schulthess, Systemprogrammierung I, 2002, VS Informatik Ulm

6 Evolution vs. Komplikation Die Segmentregister arbeiten im Protected Mode als 16 Bit Segmentselektoren: Tabellenindex LDT GDT Requ. Priv. Level Im Segmentselektor liegt ein Index in die globale oder die lokale Deskkriptortabelle. Gleichzeitig mit dem Segmentregister wird implizit der Segmentdeskriptorcache geladen. Dabei geschehen unter Umständen mehrere Hauptspeicherzugriffe. Auch für das aktuelle Task-State Segment und die lokale Deskriptortabelle werden Deskriptoren gepuffert (cached). Selektorregister TSSX und LDTX können gelesen werden. 6 P. Schulthess, Systemprogrammierung I, 2002, VS Informatik Ulm

7 (5) Kontrollregister: Maschinenkonfigurierung, Maschineneigenschaften, Seitentabellen. CR0: - Paging, - Taskswitch, - Coprocessor, - Protected Mode. CR0 CR1 CR2 CR3 CR4 PG... TS, EM, MP, PE reserviert Fault Adresse Directory Adresse CPU Erweiterungen 7 P. Schulthess, Systemprogrammierung I, 2002, VS Informatik Ulm

8 Datenstrukturen 15.3 Segmentdeskriptoren Originaldeskriptoren liegen in lokaler oder globaler Deskriptortabelle. Segmentdeskriptor-Caches unsichtbar in der CPU vorhanden. Potential für einen segmentierten virtuellen Speicher ohne Seiteneinteilung: - evtl. Segment-Deskriptoren ein- & auslagern und Selektoren ergänzen. - gleichzeitig jeweils 8000 lokale und 8000 globale Deskriptoren, - anstatt eines Zeigers nur ein Segment-Selektor, - für jedes Objekt einen Segmentdeskriptor, - Evtl. LDT-Register umsetzen. Schutzfunktion bei Segmentierung: - Protection Level ( )=(privileged... non-priv.) - Zugriffsmodus (exec, read, write ), - Feldlänge im Deskriptor. 8 P. Schulthess, Systemprogrammierung I, 2002, VS Informatik Ulm

9 Deskriptor für Applikationssegmente: Intel 286 "Historium". Granularität der Länge: - 1 Byte / 4K. 32 Bit oder 16 Bit Instruktionen & Adressen. Granularität 32/16 Bit, Reserve, OS use, Present, Protect 0..3, Application-Deskr., Beim Zugriff auf ein ausgelagertes Segment erfolgt ein Interrupt an das OS Typ Applikationssegm., DT=true. 4 Basis Limit Nur Deskriptoren mit gleicher oder schlechterer Sicherheitsstufe dürfen geladen werden (CS) P. Schulthess, Systemprogrammierung I, 2002, VS Informatik Ulm

10 Kennung für Applikationssegemente Bit#11=true (EXE-Bit): Code - Codesegment, darf ausgeführt werden, - darf auch gelesen werden, falls Bit#9=true (W/R), - falls Bit#10=true (conforming), ausführbar durch unterprivilegiertes Segment. Bit#11=false (EXE-Bit): Data - Datensegment, nicht ausfühbar, - schreiben, falls Bit#9=true (W/R), - falls Bit#10=true (abwärts), erstreckt sich das Segment von der Basisadresse nach unten (Stack). #11: EXE (code/not data) #10: E/C (downward,conforming), #9: W/R (write data, read code), #8: A (accessed). 1 Typ Bit#8=true (Access-Bit): - dieses Segment wurde benützt, - nützlich für die Speicherauslagerungsstrategie. 10 P. Schulthess, Systemprogrammierung I, 2002, VS Informatik Ulm

11 Intel386 System-Segmente Haben das DT-Bit gelöscht (286er Segmente weggelassen). Call-Gate Deskriptor (Typ = 12): - beschreibt den Einsprung in eine geschützte Routine, - normalerweise in einem anderen Segment (far call), - referenziert einen weiteres Segmentdeskriptor, - ändert kurzzeitig die Privilegierungsebene, - übernimmt bis zu 128 Parameterbytes: present, privilege, typ12 Zieloffset Zielsegment # Zieloffset DWcnt 11 P. Schulthess, Systemprogrammierung I, 2002, VS Informatik Ulm

12 Interrupt-Deskriptoren (Typ = 14): - Beschreibt den Einsprung in eine Interruptroutine, - 8 Byte Einträge in der Interrupt-Deskriptortabelle, - IDT-Basis/Limit geladen über LIDT-Instruktion, present, privilege, typ14/15 Zieloffset Zielsegment # Zieloffset Trap-Gate Deskriptoren (Typ = 15) arbeiten ähnlich wie Interruptdeskriptoren, jedoch ohne die Interrupts zu maskieren: LDT Segmentdeskriptor (Typ = 2): - kann nur in der Globalen Deskriptortabelle liegen, - wird durch eine LLDT-Instruktion geladen, - beschreibt eine Lokale Deskriptortabelle, - Format wie Applikationsdeskriptor. 12 P. Schulthess, Systemprogrammierung I, 2002, VS Informatik Ulm

13 Task-Gate Deskriptor (Typ = 5): - referenziert ein Task-State Segment (TSS), - evtl. mehrere Task-Gates für ein TSS, - enthält Privilegierungsstufe: Ein Task-Switch erfolgt falls: - laden von Selektor für Task-Gate oder TSS, - i.e. Call- oder Jump-Instruktion, - Interrupt oder Exception, - IRET v. nested Task. present, privilege, typ=5 Tables TSS Zielsegment # 13 P. Schulthess, Systemprogrammierung I, 2002, VS Informatik Ulm

14 Task-State Segment Deskriptor (Typ = 9/11): - Enthält aktuellen/geretteten Prozessorzustand (TSS), - Segmentselektor für lokale Deskriptortabelle, - Basisadresse für Seitentabellendirectory, - Stacks der Privilegierungstufen 0,1,2, - aktuell sichttbare Prozessorregister, - Zugriffsmaske für die E/A-Ports, - Link zum vorherigen Tasksegm., - aktives TSS mit Typ=11, - Nested-Task Flag. Task-State Segment IO-Permission Bitmap OS Zeux TSS-Limit IO-Bitmap Register Stacks 0,1,2 PrevTSS Task-Register TSS-Base 14 P. Schulthess, Systemprogrammierung I, 2002, VS Informatik Ulm

15 Zugriffsschutz-Mechanismen Zugang über Gate-Deskriptoren. Zugang zur privilegierteren Ebene nur über ein Gate: - Call, Trap, Interrupt, Task (TSS) - Ausnahme: Conforming Deskriptors. Vier Privilegierungsebenen: - 3: Anwendungsprogramme, - 2: Laufzeitumgebungen, GUI : Gerätetreiber, - 0: Kernel. Privilegierungscode: - CPL im aktuellen Codesegment, - RPL im Selektorargument, - DPL im Deskriptor, - IOPL in Flags Paging folgt auf die Segmentierung 15 P. Schulthess, Systemprogrammierung I, 2002, VS Informatik Ulm

16 Die Segmentierung ermöglicht, mindestens 64 Terabytes zu adressieren. Resultat der Segmentierung ist 32 Bit lineare Adresse oder Exception. Ist eine Segment ausgelagert, so wird beim Zugriff eine Exception erzeugt und das Segment eingelagert. Die lineare Adresse kann in 4 KB Blöcken auf physikalische Seiten übersetzt werden. Die Übersetzungstabellen sind 2-stufig: Segmentierung Paging Paging auf Basis der linearen Adresse CR3 Directory Directo Directo Directo Directo Directo Directo Directo Tables ry ry ry ry ry ry ry Frames 16 P. Schulthess, Systemprogrammierung I, 2002, VS Informatik Ulm

17 Seitentabelleneintrag (Intel Pentium) : Kacheladresse nur gültig, wenn Seite im Speicher vorhanden ist. Frame/Kachel-Adresse Auffinden der Seite im Sekundärspeicher. Caching Strategie und Schreibrechte. 12 Avail 00 dirty accessed PCD PWT U/S W/R P Nutzbar für Betriebssystem beschrieben Use-Bit Seite hat Cache Disabled Cache durchschreiben User Seite, nicht Supervisor Seite beschreibbar Präsenz Bit, Seite vorhanden 17 P. Schulthess, Systemprogrammierung I, 2002, VS Informatik Ulm

18 15.5 Grafik-Adressübersetzungstabelle abgekürzt "GART": - übersetzt logische Speicherzugriffe in physikalische, - findet sich in AGP-fähigen Host-Bridges, - Grafiktreiber setzt die Tabelleneinträge. 3D-Grafikadapter: - greifen als Busmaster in den Hauptspeicher hinein, - arbeiten auf logischen Koordinaten & Strukturen. Physikalische Buszugriffe: - für normale PCI-Geräte, - über den PCI Bus, - über Hostbus, - zum Cache. AGP Grafikadapter (3D) Logische Adressen CPU: (Treiber/SW) MMU GART Host-Brücke (PCI/AGP) Physikal. Adressen Hauptspeicher 18 P. Schulthess, Systemprogrammierung I, 2002, VS Informatik Ulm

15. Hauptspeicher-Adressierung

15. Hauptspeicher-Adressierung 15. Hauptspeicher-Adressierung 15.1 Adressierungsmodi 15.1.1 Kompatibilitätsmodi: Real Mode: - Segmentregister*16+Offset => Adresse - Keine Segmentdeskriptoren, kein Paging, - ~ 1 MB Adressraum. 16 Bit

Mehr

12. Sicherheit. A, B3, B2, B1, C2, C1, D sicher unsicher. Betriebssysteme, Sommer 2005, Verteilte Systeme, Universität Ulm, M.

12. Sicherheit. A, B3, B2, B1, C2, C1, D sicher unsicher. Betriebssysteme, Sommer 2005, Verteilte Systeme, Universität Ulm, M. 12. Sicherheit 12.1 Einleitung Ziel: Schutz vor Fehlern & Eindringlingen. Objekt: passive Ressource (z.b. Datei) Subjekt: aktive Einheiten (Proz. & Benutzer) Sicherheit: Fähigkeit eines BS, für seine Objekte

Mehr

H. Intel x86 CPU. Höhere Informatik. Systemprogrammierung: - Betriebssystemkonzepte, Ein- & Ausgabe

H. Intel x86 CPU. Höhere Informatik. Systemprogrammierung: - Betriebssystemkonzepte, Ein- & Ausgabe H. Intel x86 CPU Historische Entwicklung des x86 Registersatzes. Complex Instruction Set Computer (CISC), Deskriptoren & Adressierung, Cacheausstattung. Höhere Informatik Systemprogrammierung: - Betriebssystemkonzepte,

Mehr

Betriebssysteme (BS) IA-32. Überblick. das Programmiermodell der Intel Architektur. Historie der Intel x86 Prozessoren. 8086: Programmiermodell

Betriebssysteme (BS) IA-32. Überblick. das Programmiermodell der Intel Architektur. Historie der Intel x86 Prozessoren. 8086: Programmiermodell Betriebssysteme (BS) alias Betriebssystembau (BSB) IA-32 das Programmiermodell der Intel Architektur Überblick Historie Basisprogrammiermodell Speicherverwaltung und Adressierung Schutz "Tasks" Zusammenfassung

Mehr

Betriebssystembau (BSB)

Betriebssystembau (BSB) Betriebssystembau (BSB) Das Programmiermodell der Intel IA-32 Architektur http://ess.cs.tu-.de/de/teaching/ws213/bsb/ Olaf Spinczyk olaf.spinczyk@tu-.de http://ess.cs.tu-.de/~os AG Eingebettete System

Mehr

Betriebssystembau (BSB)

Betriebssystembau (BSB) Betriebssystembau (BSB) Das Programmiermodell der Intel IA-32 Architektur http://ess.cs.tu-dortmund.de/de/teaching/ws212/bsb/ Olaf Spinczyk olaf.spinczyk@tu-dortmund.de http://ess.cs.tu-dortmund.de/~os

Mehr

Betriebssystembau (BSB)

Betriebssystembau (BSB) Betriebssystembau (BSB) Das Programmiermodell der Intel IA-32 Architektur Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund olaf.spinczyk@tu-dortmund.de http://ess.cs.uni-dortmund.de/~os

Mehr

Betriebssysteme (BS)

Betriebssysteme (BS) Betriebssysteme (BS) VL 6 IA-32 das Programmiermodell der Intel-Architektur Daniel Lohmann Lehrstuhl für Informatik 4 Verteilte Systeme und Betriebssysteme Friedrich-Alexander-Universität Erlangen Nürnberg

Mehr

Speicherverwaltung. Design Digitaler Systeme. Prof. Dr.-Ing. Rainer Bermbach

Speicherverwaltung. Design Digitaler Systeme. Prof. Dr.-Ing. Rainer Bermbach Speicherverwaltung Design Digitaler Systeme Prof. Dr.-Ing. Rainer Bermbach Übersicht Speicherverwaltung Virtueller Speicher Memory Management Unit Segmentierung Paging Kombination Segmentierung/ Paging

Mehr

Betriebssystembau (BSB)

Betriebssystembau (BSB) Betriebssystembau (BSB) Das Programmiermodell der Intel IA-32-Architektur https://ess.cs.tu-dortmund.de/de/teaching/ws216/bsb/ Horst Schirmeier, Olaf Spinczyk horst.schirmeier@tu-dortmund.de https://ess.cs.tu-dortmund.de/~hsc

Mehr

Betriebssysteme (BS)

Betriebssysteme (BS) Betriebssysteme (BS) VL 6 IA-32: Das Programmiermodell der Intel-Architektur Daniel Lohmann Lehrstuhl für Informatik 4 Verteilte Systeme und Betriebssysteme Friedrich-Alexander-Universität Erlangen Nürnberg

Mehr

Proseminar Konzepte von Betriebssystem- Komponenten (KVBK) Vortrag zum Thema: Speicheraddressierung, Segmentierung, Paging

Proseminar Konzepte von Betriebssystem- Komponenten (KVBK) Vortrag zum Thema: Speicheraddressierung, Segmentierung, Paging Proseminar Konzepte von Betriebssystem- Komponenten (KVBK) Vortrag zum Thema: Speicheraddressierung, Segmentierung, Paging Grundlegende Bedeutung von Speicheradressierung: Wie sind die Daten auf Dem Speicher

Mehr

Betriebssysteme (BS)

Betriebssysteme (BS) Betriebssysteme (BS) VL 6 IA-32: Das Programmiermodell der Intel-Architektur Daniel Lohmann Lehrstuhl für Informatik 4 Verteilte Systeme und Betriebssysteme Friedrich-Alexander-Universität Erlangen Nürnberg

Mehr

Betriebssysteme (BS)

Betriebssysteme (BS) Betriebssysteme (BS) VL 6 IA-32: Das Programmiermodell der Intel-Architektur Daniel Lohmann Lehrstuhl für Informatik 4 Verteilte Systeme und Betriebssysteme Friedrich-Alexander-Universität Erlangen Nürnberg

Mehr

5.6 Segmentierter virtueller Speicher

5.6 Segmentierter virtueller Speicher 5.6 Segmentierter virtueller Speicher Zur Erinnerung: Virtueller Speicher ermöglicht effiziente und komfortable Nutzung des realen Speichers; Sharing ist problematisch. Segmentierung erleichtert Sharing,

Mehr

Betriebssysteme (BS) Überblick: Einordnung dieser VL. VL 6 IA-32: Das Programmiermodell der Intel-Architektur. Historie der Intel x86-prozessoren

Betriebssysteme (BS) Überblick: Einordnung dieser VL. VL 6 IA-32: Das Programmiermodell der Intel-Architektur. Historie der Intel x86-prozessoren Betriebssysteme (BS) Überblick: dieser VL VL 6 IA-32: Das Programmiermodell der Intel-Architektur Daniel Lohmann Lehrstuhl für Informatik 4 Verteilte Systeme und Betriebssysteme Friedrich-Alexander-Universität

Mehr

Betriebssysteme (BS) Überblick: Einordnung dieser VL. VL 6 IA-32: Das Programmiermodell der Intel-Architektur. Historie der Intel x86-prozessoren

Betriebssysteme (BS) Überblick: Einordnung dieser VL. VL 6 IA-32: Das Programmiermodell der Intel-Architektur. Historie der Intel x86-prozessoren Betriebssysteme (BS) Überblick: dieser VL VL 6 IA-32: Das Programmiermodell der Intel-Architektur Volkmar Sieh / Daniel Lohmann Lehrstuhl für Informatik 4 Verteilte Systeme und Betriebssysteme Friedrich-Alexander-Universität

Mehr

Betriebssysteme (BS)

Betriebssysteme (BS) Betriebssysteme (BS) VL 6 IA-32: Das Programmiermodell der Intel-Architektur Volkmar Sieh / Daniel Lohmann Lehrstuhl für Informatik 4 Verteilte Systeme und Betriebssysteme Friedrich-Alexander-Universität

Mehr

DOSEMU. Vortrag im Hauptseminar Konzepte und Techniken virtueller Maschinen und Emulatoren. Matthias Felix FAU. 13.

DOSEMU. Vortrag im Hauptseminar Konzepte und Techniken virtueller Maschinen und Emulatoren. Matthias Felix FAU. 13. DOSEMU Vortrag im Hauptseminar Konzepte und Techniken virtueller Maschinen und Emulatoren Matthias Felix filo@icip.de FAU 13. Juni 2007 Matthias Felix (FAU) DOSEMU 13. Juni 2007 1 / 22 Inhalt 1 Einführung

Mehr

Zwei Möglichkeiten die TLB zu aktualisieren

Zwei Möglichkeiten die TLB zu aktualisieren Zwei Möglichkeiten die TLB zu aktualisieren Die MMU kümmert sich um alles (Hardware-Lösung) sucht die p-entry wenn diese nicht da ist, behandelt direkt das TLB-miss zum Schluss wird die neue p-entry (virt

Mehr

Intel x86 Bootstrapping

Intel x86 Bootstrapping Intel x86 Bootstrapping Meine CPU, mein Code! Andreas Galauner SigInt 2010 Democode Es gibt Democode: http://github.com/g33katwork/ SigInt10OSWorkshop git clone git://github.com/g33katwork/ SigInt10OSWorkshop.git

Mehr

Virtueller Speicher und Memory Management

Virtueller Speicher und Memory Management Virtueller Speicher und Memory Management Speicher-Paradigmen Programmierer ein großer Adressraum linear adressierbar Betriebssystem eine Menge laufender Tasks / Prozesse read-only Instruktionen read-write

Mehr

Proseminar Konzepte von Betriebssystem-Komponenten (KVBK) Vortrag zum Thema: Speicheraddressierung, Segmentierung, Paging Von Christian Hubert

Proseminar Konzepte von Betriebssystem-Komponenten (KVBK) Vortrag zum Thema: Speicheraddressierung, Segmentierung, Paging Von Christian Hubert Proseminar Konzepte von Betriebssystem-Komponenten (KVBK) Vortrag zum Thema: Speicheraddressierung, Segmentierung, Paging Von Christian Hubert 1.: Speicherung und Adressierung von Daten Bei der Speicheradressierung

Mehr

Betriebssystembau (BSB)

Betriebssystembau (BSB) Betriebssystembau (BSB) Das Programmiermodell der x86_64-architektur https://ess.cs.tu-dortmund.de/de/teaching/ws217/bsb/ Daniel Friesel, Olaf Spinczyk daniel.friesel@tu-dortmund.de https://ess.cs.tu-dortmund.de/~df

Mehr

Betriebssysteme (BS) IA-32. Überblick: Vorlesungen. das Programmiermodell der Intel-Architektur. Agenda. Historie der Intel x86-prozessoren

Betriebssysteme (BS) IA-32. Überblick: Vorlesungen. das Programmiermodell der Intel-Architektur. Agenda. Historie der Intel x86-prozessoren Betriebssysteme (BS) Überblick: Vorlesungen Daniel Lohmann IA-32 das Programmiermodell der Intel-Architektur Lehrstuhl für Informatik 4 Verteilte Systeme und Betriebssysteme Gerätezugriff (Treiber) Anwendung(en)

Mehr

Tutorium Rechnerorganisation

Tutorium Rechnerorganisation Woche 11 Tutorien 3 und 4 zur Vorlesung Rechnerorganisation 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

Vorlesung: Rechnerstrukturen, Teil 2 (Modul IP7)

Vorlesung: Rechnerstrukturen, Teil 2 (Modul IP7) Vorlesung: Rechnerstrukturen, Teil 2 (Modul IP7) Vorlesung: Rechnerstrukturen, Teil 2 (Modul IP7) J. Zhang zhang@informatik.uni-hamburg.de Universität Hamburg AB Technische Aspekte Multimodaler Systeme

Mehr

RO-Tutorien 15 und 16

RO-Tutorien 15 und 16 Tutorien zur Vorlesung Rechnerorganisation Tutorienwoche 10 am 29.06.2011 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Übung zu Betriebssysteme

Übung zu Betriebssysteme Übung zu Betriebssysteme Threadumschaltung 6. & 8. Dezember 2017 Andreas Ziegler Bernhard Heinloth Lehrstuhl für Informatik 4 Friedrich-Alexander-Universität Erlangen-Nürnberg Lehrstuhl für Verteilte Systeme

Mehr

Abbilden von virtuellen auf physikalische Adressen

Abbilden von virtuellen auf physikalische Adressen Abbilden von virtuellen auf physikalische Adressen Virtuelle Adresse 31 30 29 28 27... 15 14 13 12 11 10 9 8... 3 2 1 0 Virtuelle Seitennummer Seiten Offset Translation Physikalische Adresse 29 28 27...

Mehr

Wie groß ist die Page Table?

Wie groß ist die Page Table? Wie groß ist die Page Table? Im vorigen (typischen) Beispiel verwenden wir 20 Bits zum indizieren der Page Table. Typischerweise spendiert man 32 Bits pro Tabellen Zeile (im Vorigen Beispiel brauchten

Mehr

Übung zu Betriebssysteme

Übung zu Betriebssysteme Übung zu Betriebssysteme Interruptbehandlung 08. & 10. November 2017 Andreas Ziegler Bernhard Heinloth Lehrstuhl für Informatik 4 Friedrich-Alexander-Universität Erlangen-Nürnberg Lehrstuhl für Verteilte

Mehr

Prof. Dr. Sharam Gharaei. Inhaltsverzeichnis. 1 Einleitung 1. 2 Grundlage der Realisierung 2. 3 Die Realisierung 3. Literaturverzeichnis 7

Prof. Dr. Sharam Gharaei. Inhaltsverzeichnis. 1 Einleitung 1. 2 Grundlage der Realisierung 2. 3 Die Realisierung 3. Literaturverzeichnis 7 Prof. Dr. Sharam Gharaei Version 1.2.0, 07.04.2017 Inhaltsverzeichnis 1 Einleitung 1 1.1 Code-bezogene Aspekte 2 1.2 Speicherungsbezogene Aspekte 2 2 Grundlage der Realisierung 2 3 Die Realisierung 3 3.1

Mehr

Übung zu Betriebssysteme

Übung zu Betriebssysteme Übung zu Betriebssysteme Threadumschaltung 7. & 10. Dezember 2017 Andreas Ziegler Bernhard Heinloth Lehrstuhl für Informatik 4 Friedrich-Alexander-Universität Erlangen-Nürnberg Lehrstuhl für Verteilte

Mehr

Maschinensprache. 2.5 x86 Speicherzugriff. Universität Mannheim

Maschinensprache. 2.5 x86 Speicherzugriff. Universität Mannheim Maschinensprache 2.5 x86 Speicherzugriff Hauptspeicher Speicheraufbau Linearer, zusammenhängender Adressraum Kleinste adressierbare Einheit: 1 Byte Unterteilung in physikalischen, linearen und virtuellen

Mehr

Das Assembler-Buch. Trutz Eyke Podschun. Grundlagen und Hochsprachenoptimierung. 4., aktualisierte Auflage ADDISON-WESLEY

Das Assembler-Buch. Trutz Eyke Podschun. Grundlagen und Hochsprachenoptimierung. 4., aktualisierte Auflage ADDISON-WESLEY Trutz Eyke Podschun Das Assembler-Buch Grundlagen und Hochsprachenoptimierung 4., aktualisierte Auflage ^ ADDISON-WESLEY An imprint of Addison Wesley Longman, Inc. Bonn Reading, Massachusetts Menlo Park,

Mehr

Wie schreibt man ein Betriebssystem?

Wie schreibt man ein Betriebssystem? Wie schreibt man ein Betriebssystem? Vom BIOS in den Userspace Andreas Galauner Easterhegg 2011 Democode Es gibt Democode: http://github.com/g33katwork/sigint10osworkshop git clone git://github.com/g33katwork/

Mehr

i386 Interrupt-Deskriptortabelle (IDT)

i386 Interrupt-Deskriptortabelle (IDT) Agenda: IRQ-Behandlung in OO-Stubs Interrupts und Traps bei x86 Die Interrupt-Deskriptor-Tabelle (IDT) Aufbau der IDT Traps und Hardware IRQs Der Programmierbare Interruptcontroller PIC 8295A Aufbau Verwendung

Mehr

Betriebssystemtechnik

Betriebssystemtechnik Betriebssystemtechnik Übung 2 - Den Speicher beseiten Daniel Danner Christian Dietrich Gabor Drescher May 19, 2015 Betriebssystemtechnik 1 13 Ziel dieser Übung Betriebssystemtechnik 2 13 Ziel dieser Übung

Mehr

7. Speicherverwaltung

7. Speicherverwaltung 7. Speicherverwaltung Ziele Zuteilung des Arbeitsspeicher Abbildung der symbolischen Adresse auf die physikalische Adresse Adress-Transformation Symbolische Adresse verschiebbare Adresse physikalische

Mehr

x86-assemblerprogrammierung

x86-assemblerprogrammierung x86-assemblerprogrammierung Inhalt Literatur Register Speicherverwaltung Adressierung Stackverwaltung Datentypen und Befehlssatz Befehlskodierung Dandamudi : Intruduction to Assembly Language Programming

Mehr

Echtzeit-Multitasking

Echtzeit-Multitasking Technische Informatik Klaus-Dieter Thies Echtzeit-Multitasking Memory Management und System Design im Protected Mode der x86/pentium-architektur. Shaker Verlag Aachen 2002 Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Mehr

Echtzeit-Multitasking

Echtzeit-Multitasking Technische Informatik Klaus-Dieter Thies Echtzeit-Multitasking Memory Management und System Design im Protected Mode der x86/pentium-architektur. Shaker Verlag Aachen 2002 Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Mehr

Der Intel 8086 Reto Gurtner 2005

Der Intel 8086 Reto Gurtner 2005 Der Intel 8086 Reto Gurtner 2005 1 1. DIE INTERNEN REGISTER... 3 1.1 ALLGEMEINE REGISTER AX, BX, CX UND DX... 3 DAS AX-REGISTER... 4 DAS BX-REGISTER... 4 DAS CX-REGISTER... 5 DAS DX-REGISTER... 5 1.2 DIE

Mehr

Betriebssystembau. 3. Übung. Michael Engel Arbeitsgruppe Eingebettete Systemsoftware. Lehrstuhl für Informatik 12 TU Dortmund

Betriebssystembau. 3. Übung. Michael Engel Arbeitsgruppe Eingebettete Systemsoftware. Lehrstuhl für Informatik 12 TU Dortmund Betriebssystembau 3. Übung Michael Engel Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund michael.engel@tu-dortmund.de http://ess.cs.uni-dortmund.de/~me/ 1 Agenda: IRQ-Behandlung

Mehr

Echtzeitbetriebssysteme

Echtzeitbetriebssysteme Speicherverwaltung (Memory Management) Aufgaben der Memory-Management-Unit ist l der Speicherschutz und l die Adressumsetzung Wird durch Hardware unterstützt l Memory Management Unit (MMU) l MMU wird vom

Mehr

Schreiben von Pages. Schreiben einer Page in den Swap Space ist sehr teuer (kostet millionen von CPU Zyklen).

Schreiben von Pages. Schreiben einer Page in den Swap Space ist sehr teuer (kostet millionen von CPU Zyklen). Schreiben von Pages Schreiben einer Page in den Swap Space ist sehr teuer (kostet millionen von CPU Zyklen). Write Through Strategie (siehe Abschnitt über Caching) ist hier somit nicht sinnvoll. Eine sinnvolle

Mehr

Assembler. Dr.-Ing. Volkmar Sieh. Department Informatik 4 Verteilte Systeme und Betriebssysteme Friedrich-Alexander-Universität Erlangen-Nürnberg

Assembler. Dr.-Ing. Volkmar Sieh. Department Informatik 4 Verteilte Systeme und Betriebssysteme Friedrich-Alexander-Universität Erlangen-Nürnberg Assembler Dr.-Ing. Volkmar Sieh Department Informatik 4 Verteilte Systeme und Betriebssysteme Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2017/2018 V. Sieh Assembler (WS16/17) 1 15 Einleitung

Mehr

Realisierung: virtueller Prozessor: der reale Prozessor wird periodisch dem Programm zugewiesen Im Prozessor: durch Task-Status Segment (TSS)

Realisierung: virtueller Prozessor: der reale Prozessor wird periodisch dem Programm zugewiesen Im Prozessor: durch Task-Status Segment (TSS) 1.2 Multitasking Damit ein Computer mehrere Aufgaben gleichzeitig erledigen kann, die jede für sich oder die auch gemeinsam arbeiten, z.b. Daten lesen Berechnungen ausführen Netzwerkkontakt abarbeiten

Mehr

3 Schnittstelle zum Betriebssystem 3.1 Einleitung

3 Schnittstelle zum Betriebssystem 3.1 Einleitung 3.1 Einleitung 1 Anbindung zum Betriebssystem (BS) Aufgaben BS Schnittstelle zur Hardware Sicherstellung des Betriebs mit Peripherie Dienste erfüllen für Benutzung Rechner Dateiverwaltung (Kopieren, Verwalten,.)

Mehr

Betriebssysteme BS-S SS Hans-Georg Eßer. Foliensatz S: Speicherverwaltung. Dipl.-Math., Dipl.-Inform. v1.0, 2015/04/14

Betriebssysteme BS-S SS Hans-Georg Eßer. Foliensatz S: Speicherverwaltung. Dipl.-Math., Dipl.-Inform. v1.0, 2015/04/14 BS-S Betriebssysteme SS 2015 Hans-Georg Eßer Dipl.-Math., Dipl.-Inform. Foliensatz S: Speicherverwaltung v1.0, 2015/04/14 Betriebssysteme, SS 2015 Hans-Georg Eßer Folie S-1 Übersicht: BS Praxis und BS

Mehr

Übung zu Betriebssystembau (Ü BS)

Übung zu Betriebssystembau (Ü BS) Übung zu Betriebssystembau (Ü BS) Interruptbehandlung in OOStuBS Wanja Hofer Lehrstuhl für Informatik IV WS 07/08 1 Agenda: IRQ-Behandlung in OOStuBS Interrupts und Traps beim x86 Die Interrupt-Deskriptor-Tabelle

Mehr

ERA-Zentralübung Maschinenprogrammierung

ERA-Zentralübung Maschinenprogrammierung ERA-Zentralübung Maschinenprogrammierung M. Meyer LRR TU München 17.11.2017 Inhalt Aufgabe 3.1 Aufgabe 3.2 Aufgabe 3.3 Logische Operationen Schiebebefehle Weitere Befehle Registerübersicht Aufgabe 3.1

Mehr

Technische Informatik II (TI II) (8) Speicherverwaltung. Sebastian Zug Arbeitsgruppe: Embedded Smart Systems

Technische Informatik II (TI II) (8) Speicherverwaltung. Sebastian Zug Arbeitsgruppe: Embedded Smart Systems 1 Technische Informatik II (TI II) (8) Speicherverwaltung Sebastian Zug Arbeitsgruppe: Embedded Smart Systems 2 Fragen an die Veranstaltung Nach welchen Merkmalen lässt sich der Speicher in einem Rechner

Mehr

Einschub: HW-Zugriff aus dem Userspace

Einschub: HW-Zugriff aus dem Userspace Einschub: HW-Zugriff aus dem Userspace Dr.-Ing. Matthias Sand Lehrstuhl für Informatik 3 (Rechnerarchitektur) Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2010/2011 Einschub: HW-Zugriff aus dem

Mehr

Bootvorgang des DSM-Systems Systems Plurix

Bootvorgang des DSM-Systems Systems Plurix Bootvorgang des DSM-Systems Systems Plurix Stefan Frenz Vortrag im Rahmen der Abteilungsbesprechung Voraussetzungen: CPU CPU-Modi Voraussetzungen: BIOS Rechner-Initialisierung durch das BIOS Interrupt

Mehr

Teil 2: Speicherstrukturen

Teil 2: Speicherstrukturen Inhalt Teil 2: Speicherstrukturen Hauptspeicher Cache Assoziativspeicher Speicherverwaltungseinheit ( Memory Management Unit ) 1 Virtueller Speicher Trennung von virtuellem Adreßraum (mit virtuellen Adressen)

Mehr

Das Assembler-Buch. Trutz Eyke Podschun. Grundlagen, Einführung und Hochsprachenoptimierung

Das Assembler-Buch. Trutz Eyke Podschun. Grundlagen, Einführung und Hochsprachenoptimierung Trutz Eyke Podschun Das Assembler-Buch Grundlagen, Einführung und Hochsprachenoptimierung ^ ADDISON-WESLEY An imprint of Pearson Education Deutschland GmbH München Boston San Francisco Harlow, England

Mehr

Aufgabe 2 - Erweiterung um PIC und Interrupts

Aufgabe 2 - Erweiterung um PIC und Interrupts Aufgabe 2 - Erweiterung um PIC und Interrupts Rainer Müller Department Informatik 4 Verteilte Systeme und Betriebssysteme Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2014/2015 R. Müller Erweiterung

Mehr

Pru fungsprotokoll. Prüfer: Dr. Lenhardt Beisitzer:? Datum der Prüfung: Dauer: 25 Minuten

Pru fungsprotokoll. Prüfer: Dr. Lenhardt Beisitzer:? Datum der Prüfung: Dauer: 25 Minuten Pru fungsprotokoll Prüfer: Dr. Lenhardt Beisitzer:? Datum der Prüfung: 09.12.2016 Dauer: 25 Minuten Das folgende Protokoll habe ich nach bestem Wissen und Gewissen erstellt. Es besteht kein Anspruch auf

Mehr

Systeme 1. Kapitel 9.2. Interaktion von Hardware und Betriebssystem Linux-Kernel und x86 Systeme

Systeme 1. Kapitel 9.2. Interaktion von Hardware und Betriebssystem Linux-Kernel und x86 Systeme Systeme 1 Kapitel 9.2 Interaktion von Hardware und Betriebssystem Linux-Kernel und x86 Systeme Speicherzugriffe auf x86 Systemen Auf x86 Systemen existieren drei Arten von Speicheradressen Logische Adresse

Mehr

Besprechung des 9. Übungsblattes Virtuelle Speicherverwaltung Aufgaben

Besprechung des 9. Übungsblattes Virtuelle Speicherverwaltung Aufgaben Themen heute Besprechung des 9. Übungsblattes Virtuelle Speicherverwaltung Aufgaben Besprechung des 9. Übungsblattes Aufgabe 2 Ist in einer Aufgabe wie hier keine explizite Wortbreite angegeben, nicht

Mehr

Klausur Mikroprozessortechnik

Klausur Mikroprozessortechnik 1 Prof. Dr. K. Wüst WS 2001 FH Gießen Friedberg, FB MNI Studiengang Informatik Nachname: Vorname: Matrikelnummer: Klausur Mikroprozessortechnik 14.9.2001 Punkteverteilung Aufgabe Punkte erreicht 1 3 2

Mehr

(Cache-Schreibstrategien)

(Cache-Schreibstrategien) Übungsblatt 2 Aufgabe 1 (Digitale Datenspeicher) 1. Nennen Sie einen digitalen Datenspeicher, der mechanisch arbeitet. 2. Nennen Sie zwei rotierende magnetische digitale Datenspeicher. 3. Nennen Sie zwei

Mehr

5.4 Segmentierung. Einfachstes Beispiel: 1 Code-Segment + 1 Datensegment. 0 codelength 0 datalength. bs-5.4 1

5.4 Segmentierung. Einfachstes Beispiel: 1 Code-Segment + 1 Datensegment. 0 codelength 0 datalength. bs-5.4 1 5.4 Segmentierung Adressraum besteht aus mehreren Segmenten (segments), die unabhängig voneinander manipulierbar sind. Segmentierungsstruktur ist festgelegt durch die Hardware den Adressumsetzer. Einfachstes

Mehr

Aufgabe 2 - Erweiterung um PIC und Interrupts

Aufgabe 2 - Erweiterung um PIC und Interrupts Aufgabe 2 - Erweiterung um PIC und Interrupts Dr.-Ing. Volkmar Sieh Department Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg WS2010/2011 Aufgabe 2 - Erweiterung um

Mehr

Übung zu Betriebssystemtechnik

Übung zu Betriebssystemtechnik Übung zu Betriebssystemtechnik Paging in StuBSmI 14. Mai 2018 Andreas Ziegler Bernhard Heinloth Lehrstuhl für Informatik 4 Friedrich-Alexander-Universität Erlangen-Nürnberg Lehrstuhl für Verteilte Systeme

Mehr

Betriebssysteme BS-V SS 2015. Hans-Georg Eßer. Foliensatz V: Ulix: Interrupts und Faults Ulix: System Calls. Dipl.-Math., Dipl.-Inform.

Betriebssysteme BS-V SS 2015. Hans-Georg Eßer. Foliensatz V: Ulix: Interrupts und Faults Ulix: System Calls. Dipl.-Math., Dipl.-Inform. BS-V Betriebssysteme SS 2015 Dipl.-Math., Dipl.-Inform. Foliensatz V: Ulix: Interrupts und Faults Ulix: System Calls v1.0, 2015/05/28 (klassische Dokumentation) Folie V-1 Übersicht: BS Praxis und BS Theorie

Mehr

Linker: Adreßräume verknüpfen. Informationen über einen Prozeß. Prozeß-Erzeugung: Verwandtschaft

Linker: Adreßräume verknüpfen. Informationen über einen Prozeß. Prozeß-Erzeugung: Verwandtschaft Prozeß: drei häufigste Zustände Prozeß: anatomische Betrachtung jeder Prozeß verfügt über seinen eigenen Adreßraum Sourcecode enthält Anweisungen und Variablen Compiler überträgt in Assembler bzw. Binärcode

Mehr

Betriebssysteme Teil 10 B: Fragen rund um Seitenfehler

Betriebssysteme Teil 10 B: Fragen rund um Seitenfehler Betriebssysteme Teil 10 B: Fragen rund um Seitenfehler 1 Überlegungen Wenn wir einige Seiten eines Programms in den Speicher laden, brauchen wir eine Strategie, welche Seiten als nächstes geladen werden

Mehr

ERA-Zentralübung Maschinenprogrammierung

ERA-Zentralübung Maschinenprogrammierung ERA-Zentralübung Maschinenprogrammierung M. Meyer LRR TU München 27.10.2017 Arithmetik mit 80386 Inhalt Rechenmodell Register Befehle Beispiele 80386-Rechenmodell Typisches Zwei-Address-Format Ziel :=

Mehr

Paging. Einfaches Paging. Paging mit virtuellem Speicher

Paging. Einfaches Paging. Paging mit virtuellem Speicher Paging Einfaches Paging Paging mit virtuellem Speicher Einfaches Paging Wie bisher (im Gegensatz zu virtuellem Speicherkonzept): Prozesse sind entweder ganz im Speicher oder komplett ausgelagert. Im Gegensatz

Mehr

Das Paging: Stellen wir uns eine Zahlenmenge vor mit 12 Zahlen und zwar von 0 bis 11.

Das Paging: Stellen wir uns eine Zahlenmenge vor mit 12 Zahlen und zwar von 0 bis 11. Das Paging: Stellen wir uns eine Zahlenmenge vor mit 12 Zahlen und zwar von 0 bis 11. {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} Stellen wir uns nun vor, die 12 Zahlen sind nicht in der richtigen Reihenfolge,

Mehr

Konzepte von Betriebssystemkomponenten Referat am Thema: Adressräume, Page Faults, Demand Paging, Copy on Write Referent: Johannes Werner

Konzepte von Betriebssystemkomponenten Referat am Thema: Adressräume, Page Faults, Demand Paging, Copy on Write Referent: Johannes Werner Konzepte von Betriebssystemkomponenten Referat am 24.11.2003 Thema: Adressräume, Page Faults, Demand Paging, Copy on Write Referent: Johannes Werner Gliederung Adressräume Page Faults Demand Paging Copy

Mehr

Aufgabe 1 Entwicklung einer Virtuellen Maschine

Aufgabe 1 Entwicklung einer Virtuellen Maschine Aufgabe 1 Entwicklung einer Virtuellen Maschine Rainer Müller Department Informatik 4 Verteilte Systeme und Betriebssysteme Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2014/2015 R. Müller Entwicklung

Mehr

Rechnernetze und Organisation

Rechnernetze und Organisation Framework für Assignment A2 1 Übersicht Framework für Assignment A2 WH: Aufgabenstellung Klassen und Methoden Getting started Erste Instruktion aus Testdaten dekodieren 2 Aufgabenstellung Instruction-Set

Mehr

20 Task-Management Was bleibt noch zu tun? Wird ein Poolelement in die Queue aufgenommen, dann muß der Poolelemente-Zähler inkrementiert werden. Dies erledigt die Anweisung pool_kopf_adr -> anzahl_der.pool_elemente

Mehr

Einführung. Übungen zur Vorlesung Virtuelle Maschinen. Stefan Potyra. SoSe 2009

Einführung. Übungen zur Vorlesung Virtuelle Maschinen. Stefan Potyra. SoSe 2009 Einführung Übungen zur Vorlesung Virtuelle Maschinen Stefan Potyra Lehrstuhl für Informatik 3 (Rechnerarchitektur) Friedrich-Alexander-Universität Erlangen-Nürnberg SoSe 2009 Übungsaufgaben 1 Entwickeln

Mehr

Linux Paging, Caching und Swapping

Linux Paging, Caching und Swapping Linux Paging, Caching und Swapping Inhalte Paging Das Virtuelle Speichermodell Die Page Table im Detail Page Allocation und Page Deallocation Memory Mapping & Demand Paging Caching Die verschiedenen Caches

Mehr

I. Speicherverwaltung

I. Speicherverwaltung I. Speicherverwaltung Variable und feste Partitionen im Hauptspeicher. Laufzeitstrukturen im Hauptspeicher. Virtueller Speicher. Höhere Informatik : - Programmierung, Datenbanken, Verteilte Systeme, Theorie...

Mehr

Übung Praktische Informatik II

Übung Praktische Informatik II Übung Praktische Informatik II FSS 2009 Benjamin Guthier Lehrstuhl für Praktische Informatik IV Universität Mannheim guthier@pi4.informatik.uni-mannheim.de 22.05.09 11-1 Heutige große Übung Ankündigung

Mehr

RO-Tutorien 17 und 18

RO-Tutorien 17 und 18 RO-Tutorien 17 und 18 Tutorien zur Vorlesung Rechnerorganisation Christian A. Mandery TUTORIENWOCHE 12 AM 19.07.2012 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der

Mehr

Betriebssysteme Sommersemester Betriebssysteme. 5. Kapitel. Adressumsetzung. Dr. Peter Tröger / Prof. M. Werner. Professur Betriebssysteme

Betriebssysteme Sommersemester Betriebssysteme. 5. Kapitel. Adressumsetzung. Dr. Peter Tröger / Prof. M. Werner. Professur Betriebssysteme Betriebssysteme Sommersemester 2017 Betriebssysteme 5. Kapitel Adressumsetzung Dr. Peter Tröger / Prof. M. Werner Professur Betriebssysteme 5.1 Speicher schneller, teurer, kleiner Betriebssysteme Adressumsetzung

Mehr

Inhaltsübersicht. Speicherverwaltung Teil I. Motivation. Prinzipielle Arten der Speicherverwaltung

Inhaltsübersicht. Speicherverwaltung Teil I. Motivation. Prinzipielle Arten der Speicherverwaltung Speicherverwaltung Teil I Hard- und Software-Komponenten zur Speicherverwaltung Inhaltsübersicht Zusammenhängende Speicherzuteilung Partitionen fester Größe Partitionen variabler Größe Methoden zur Verwaltung

Mehr

Betriebssysteme. Speicherverwaltung - Grundlegende Konzepte. Sommersemester 2014 Prof. Dr. Peter Mandl. Prof. Dr. Peter Mandl Seite 1.

Betriebssysteme. Speicherverwaltung - Grundlegende Konzepte. Sommersemester 2014 Prof. Dr. Peter Mandl. Prof. Dr. Peter Mandl Seite 1. Speicherverwaltung - Grundlegende Konzepte Sommersemester 2014 Prof. Dr. Peter Mandl Prof. Dr. Peter Mandl Seite 1 Gesamtüberblick 1. Einführung in 2. Betriebssystemarchitekturen und Betriebsarten 3. Interruptverarbeitung

Mehr

01744 PC-Technologie Prüfungsprotokoll (Note 1,3) vom 20.06.16 bei Dr. Lenhardt, Protokollführer Dr. Bähring

01744 PC-Technologie Prüfungsprotokoll (Note 1,3) vom 20.06.16 bei Dr. Lenhardt, Protokollführer Dr. Bähring 01744 PC-Technologie Prüfungsprotokoll (Note 1,3) vom 20.06.16 bei Dr. Lenhardt, Protokollführer Dr. Bähring Dr. Lenhardt legt Wert darauf, dass man kurz und ohne ausschweifen Antwortet. Abkürzungen sollen

Mehr

x86-assemblerprogrammierung

x86-assemblerprogrammierung x86-assemblerprogrammierung von Michael Röhrs (Ergänzend zum Vortrag am 25.04.01) Einleitung Die Familie der x86-prozessoren gehört zur Klasse der CISC-Prozessoren ( Complex Instruction Set Computer ).

Mehr

Technische Realisierung (1)

Technische Realisierung (1) Technische Realisierung () Einfachstes Modell: Prozess (Daten+Code) befindet sich im Hintergrundspeicher Bei teilweise eingelagerten Prozessen: Zusätzlich Teile im Hauptspeicher Logische Adressen überdecken

Mehr

Virtueller Speicher. SS 2012 Grundlagen der Rechnerarchitektur Speicher 44

Virtueller Speicher. SS 2012 Grundlagen der Rechnerarchitektur Speicher 44 Virtueller Speicher SS 2012 Grundlagen der Rechnerarchitektur Speicher 44 Die Idee Virtuelle Adressen Prozess 1 Speicherblock 0 Speicherblock 1 Speicherblock 2 Speicherblock 3 Speicherblock 4 Speicherblock

Mehr

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Version 21.12.2016 1 Inhalt Vorlesung Aufbau einfacher Rechner Überblick: Aufgabe, Historische Entwicklung, unterschiedliche Arten von Betriebssystemen

Mehr

5.4 Segmentierung. Einfachstes Beispiel: 1 Code-Segment + 1 Datensegment. 0 codelength 0 datalength. bs-5.4 1

5.4 Segmentierung. Einfachstes Beispiel: 1 Code-Segment + 1 Datensegment. 0 codelength 0 datalength. bs-5.4 1 5.4 Segmentierung Adressraum besteht aus mehreren Segmenten (segments), die unabhängig voneinander manipulierbar sind. Segmentierungsstruktur ist festgelegt durch die Hardware den Adressumsetzer. Einfachstes

Mehr

Assembler - Variablen

Assembler - Variablen Assembler - Variablen Dr.-Ing. Volkmar Sieh Department Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2008 Assembler - Variablen 1/30 2008-04-21 Variablen Variablen

Mehr

Just-In-Time-Compiler (2)

Just-In-Time-Compiler (2) Just-In-Time-Compiler (2) Dr.-Ing. Volkmar Sieh Department Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2011/2012 Just-In-Time-Compiler (2) 1/13 2011-09-12 Just-In-Time-Compiler

Mehr

Rechnerorganisation. Überblick über den Teil 13

Rechnerorganisation. Überblick über den Teil 13 Rechnerorganisation Teil 3 9. Juni 2 KC Posch Überblick über den Teil 3 Arbiter: Wie können sich 2 aktive Partner vertragen? Direkter Speicherzugriff: Ein Ko Prozessor zum Daten Schaufeln Die Verbesserung

Mehr

Computer-Systeme Teil 15: Virtueller Speicher

Computer-Systeme Teil 15: Virtueller Speicher Computer-Systeme Teil 15: Virtueller Speicher Computer-Systeme WS 12/13 - Teil 15/Virtueller Speicher 14.01.2013 1 Übersicht Segmente Systemaufrufe Swapping Paging Computer-Systeme WS 12/13 - Teil 15/Virtueller

Mehr

1. Speicher. Typische Nutzung eines Adreßraums. Systemsoftware. Textbereich relativ klein. Sehr großer Abstand zwischen Heap und Stack

1. Speicher. Typische Nutzung eines Adreßraums. Systemsoftware. Textbereich relativ klein. Sehr großer Abstand zwischen Heap und Stack 1. Speicher 1 Typische Nutzung eines Adreßraums Textbereich relativ klein Sehr großer Abstand zwischen Heap und Stack Keine Verunreinigungen durch: E/A-Bereiche nicht bestückte Adreßbereiche fremde Kontrollflüsse

Mehr