Standard Sonnenmodell
|
|
|
- Lennart Busch
- vor 8 Jahren
- Abrufe
Transkript
1 Standard Sonnenmodell Max Camenzind Akademie HD - Juli 2016
2 Inhalt Sonnenmodell Die Sonne in Zahlen Aufbau der Sonne Die Sonne im Gleichgewicht Woher stammt die Energie? Nukleare Prozesse im Sonnenkern pp-ketten und Neutrinos Detektionsmethoden für solare Neutrinos Die Lösung des Sonnenneutrino-Problems
3 Die Sonne in Zahlen Durchmesser: Masse: Mittlere Dichte: km 1, kg 1,408 g/cm3 Neigung der Rotationsachse: 7,52 Hauptbestandteile: Wasserstoff: 73 % Helium: 25% C,N,O, 2,4 % Kerntemperatur: 15 Mio. K Oberflächentemperatur: K Abstrahlung: 3,8 x Watt 1 AE: 6 x n/(cm² s) Rotationszeit: Tage Alter: 4,5 Mrd. Jahre
4
5 Aufbau der Sonne Kern Strahlungszone Konvektionszone Photosphäre Chromosphäre Korona Heliosphäre
6 Aufbau der Sonne
7
8
9 Die Sonne ist im Gleichgewicht: Hydrostatisches Gleichgewicht = Kräftegleichgewicht Gravitation - Druck Energiegleichgewicht: Energie des zentralen Fusionsreaktors muss abgeführt werden.
10 Basic Inputs Die Struktur eines Sterns und seiner zeitlichen Entwicklung hängt von 4 wesentlichen Inputs ab: - Anfängliche chemische Verteilung X i - Die Zustandsgleichung stellarer Materie - Radiative Opazität k (r, T, X i ) - Energieproduktion pro Masse e(r,t, X i )
11 Energietransport durch Sonne Kern - ca. 1,5 % des Sonnenvolumens aber 50% der solaren Masse fache Dichte von Wasser - Kernfusion (ca. 15,6 Mio. Kelvin) Strahlungszone - vom Kern bis zu 71% des Radius - E-Weitergabe durch Strahlung (5 Mio. Kelvin) Konvektionszone - 20 % des Sonnenradius - 2 Mio. Kelvin - Energie-Weitergabe durch Konvektion
12 Output Standard-Sonnenmodell 8 Neutrinoflüsse: Produktionsprofile und integrierte Werte. Nur 8 B Fluss bisher direkt gemessen (SNO) Chemische Profile X(r), Y(r), Z i (r) Elektron und Neutronen Dichteprofile ( für Materie-Effekte bei Neutrino Propagation) Thermodynamische Var. als Funktion des Radius: T, P, Dichte r, Schallgeschwindigkeit c S Helium Häufigkeit Y surf auf Oberfläche (Z/X and 1 = X + Y + Z 1 Freiheitsgrad) Tiefe der Konvektionszone, R CZ Adapted from A. Serenelli s lectures at Scottish Universities Summer School in Physics 2006
13
14 Standard Sonnenmodell
15 Dichte Standard-Sonnenmodell Strahlung Fusion Konvektion
16 Temperatur Standard-Sonnenmodell
17 Energieproduktion Standard-Sonnenmodell
18 Vergleich zwischen verschiedenen Modellen BP2000 FRANEC GARSOM T c [10 7 K] r c [gr/cm 3 ] Y c Z c <1% 1% 1% 6% Unterschiede auf % Level oder weniger
19 Standard Sonnenmodell
20
21
22 Standard Sonnenmodell
23 Rotation of the Solar Interior
24 Das Sonnenspektrum
25 Entwicklung der Sonne
26 Physik im Zentrum der Sonne Temperatur: Dichte: Umgewandeltes Material/sec: 15,7 Mio. K 152 g/cm³ 564 Tonnen H Leuchtkraft: 3,8 x Watt Noch zu erwartende Brenndauer: 5,5 Mrd. Jahre Wasserstoffkerne fusionieren zu Heliumkernen, wobei Gammastrahlung und Elektronneutrinos erzeugt werden. Produktionsstätte von Neutrinos
27 Fusionreaktor der Sonne ist der Energie-Reaktor der Sonne; macht nur 1,6% des Sonnenvolumens aus beinhaltet aber 50% der Sonnenmasse; Hat Temperatur von 15,7 Millionen Kelvin; Verbrennt Wasserstoff zu Helium: 564 Millionen Tonnen Wasserstoff 560 Millionen Tonnen Helium (Massendefekt) entspricht etwa Kernkraftwerken!
28 Grundlage: der Atomkern Besteht aus Protonen und Neutronen Nukleonen werden durch die Starke Wechselwirkung zusammengehalten. Die Starke Wechselwirkung ist sehr kurzreichweitig (einige fm). Austauschteilchen (Gluonen) haben kurze Lebensdauer.
29 Nukleare Bindungsenergien
30 Bethe s Paper Kernreaktionen in Sternen Noch keine Neutrinos von Kernreaktionen 1938
31 Der Proton-Proton- Zyklus pp-neutrinos
32 Der Proton-Proton-Zyklus
33 CNO-Zyklus Wichtig nur in massereichen Sternen mit T > 30 Millionen Kelvin Kohlenstoff als Katalysator Energieausbeute: 25,03 MeV 2 Beta-Prozesse
34 CNO-Zyklus 12 C+p => 13 N+g 13 N => 13 C+e + +n e 13 C+p => 14 N+g 14 N+p => 15 O+g 15 O => 15 N+e + +n e 15 N+p => 12 C+ 4 He Es spielen auch höhere Elemente eine Rolle. Deshalb nur bei massereicheren Sternen relevant. Bei der Sonne sind es gerade mal 1,6%.
35 Neutrinos im Standardmodell
36 Der elementare schwache Zerfall
37 Erste Beobachtung eines Neutrinos in einer Wasserstoffblasenkammer. Von Argonne National Laboratory [Bild: Argonne National Laboratory]
38
39 Neutrinos Proton-Proton-Zyklus pp-neutrino pep-neutrino p+p 2 H+e + + n e (99%) p+e - +p 2 H+ n e (1%) 2H+p 3 He+g 3 He+ 3 He 4 He+2p (86%) 3 He+ 4 He 7 Be+g (14%) 3 He+p 4 He+n e +e + (<<1%) 7 Be + p 8 B + g 8 B 8 Be + e + + n e 8 Be 2 4 He (1%) hep-neutrino 7 Be-Neutrino 7 Be + e - 7 Li + n e 7 Li + p 2 4 He (99%) 8 B-Neutrino
40 Neutrinos Proton-Proton-Zyklus
41 Proton-Proton Ketten mit n e Energien p p 2 H e ne < 0,420 MeV p e p 2 H n e 1,442 MeV 100% 0.24% 2 H p 3 He g pp-i 85% 15% hep 3 3 He He 4 He 2p 3 4 He He 7 Be g 3 He p 4 He e ne 90% 10% 0.02% < 18,8 MeV 7 7 Be e 7 7 * Li ne Be e Li ne 0,862 MeV 0,384 MeV 7 8 Be p B g 8 8 * B Be e ne < 15 MeV pp-ii Li p He He pp-iii 8 * 4 4 Be He He
42 Energiespektrum der Sonnenneutrinos
43 Art der Sonnenneutrinos die meisten Neutrinos von der Sonne haben ein kontinuierliches Spektrum bis zu einer Maximalenergie. pep- und 7 Be-Neutrinos sind monoenergetische Neutrinos. die meisten Experimente haben hohe Energieschwellen, so dass sie nur 8 B- Neutrinos messen. Erst Gallex und Borexino haben dies verbessert.
44 Solar Neutrino Spectra Gallex GNO Sage Homestake SNO SuperK (real time) Borexino (Echtzeit Messung) APC January 26, 2009 Davide Franco Università di Milano & INFN
45 Abschätzung Sonnenneutrinofluss Joule = 6,24 x MeV cm² s
46 Neutrino-Prozesse Standardmodell
47 Vergleich Neutrinoflüsse BP2000 FRANEC GARSOM 1% pp [10 10 /s/cm 2 ] Be 4.82 [10 9 /s/cm 2 ] B [10 6 /s/cm 2 ] CNO [10 9 /s/cm 2 ]
48 Die Entdeckung der solaren Neutrinos bestätigt, dass die Sonnenenergie nuklearen Ursprung hat!
Kosmologie und Astroteilchenphysik
Kosmologie und Astroteilchenphysik Prof. Dr. Burkhard Kämpfer, Dr. Daniel Bemmerer Einführung in die Kosmologie Weltmodelle und kosmologische Inflation Thermische Geschichte des Universums Urknall-Nukleosynthese
Präzise Kernphysik für die Sonne
Präzise Kernphysik für die Sonne Kolloquium TU Dresden, 02.12.2008 Daniel Bemmerer Daniel Bemmerer Institut für Strahlenphysik www.fzd.de Mitglied der Leibniz-Gemeinschaft Präzise Kernphysik für die Sonne
DAS SOLARE NEUTRINO-PROBLEM... und wie man damit umgeht. Peter Steinbach Institut für Kern- und Teilchenphysik TU Dresden
DAS SOLARE NEUTRINO-PROBLEM...... und wie man damit umgeht Peter Steinbach Institut für Kern- und Teilchenphysik TU Dresden Wem kommt das bekannt vor? 2 oder etwas weniger komplex... Fraunhofer Spektrallinien
Die Sonne. Kilian Irländer Universität Bielefeld.
Die Sonne Kilian Irländer Universität Bielefeld [email protected] 18.05.2017 Übersicht Einleitung Allgemeines Physikalische Eigenschaften Struktur der Sonne Kern (Kernfusion) Strahlungszone und Konvektionszone
Proton-Proton-Zyklus. p+p => 2 H+e + + ν e (99%) p+e - +p => 2 H+ ν e (1%) H+p => 3 He+γ. He+ 3 He => 4 He+2p (86%) He+ 4 He=> 7 Be+γ (14%)
Proton-Proton-Zyklus pp-neutrino pep-neutrino p+p => 2 H+e + + ν e (99%) p+e - +p => 2 H+ ν e (1%) 2 H+p => 3 He+γ 3 He+ 3 He => 4 He+2p (86%) 3 He+ 4 He=> 7 Be+γ (14%) 3 He+p => 4 He+ν e +e + (
Standard Sonnenmodell & Solare Neutrinos. Max Camenzind Akademie für Ältere April 2014
Standard Sonnenmodell & Solare Neutrinos Max Camenzind Akademie für Ältere April 2014 Die Sonne mit SDO im Januar 2014 Die Photosphäre der Sonne: T = 5770 K Unsere Themen Neutrinos sind stabile Elementarteilchen
Sternentwicklung (3) Wie Sterne Energie erzeugen
Sternentwicklung (3) Wie Sterne Energie erzeugen Die Leuchtkraft der Sonne Die Leuchtkraft ist eine Strahlungsleistung. Sie gibt die pro Zeiteinheit (Sekunde) von einem Stern im gesamten Spektralbereich
Solare Neutrinos. Axel Winter RWTH-Aachen betreut von Prof. Flügge
Solare Neutrinos Axel Winter RWTH-Aachen betreut von Prof. Flügge Übersicht Solare Neutrinos: Erzeugung und Problematik Darstellung der experimentellen Detektionsmöglichkeiten Neutrinooszillation Zusammenfassung
So nah und doch so fern Die Sonne
So nah und doch so fern Die Sonne Uwe Wolter Astronomie-Werkstatt an der Hamburger Sternwarte Mai 2005 Zeitplan Inhaltliche Einführung Das Sonnenspektrum Sonnenbeobachtungen Messung der Sonnenparallaxe
Das solare Neutrinoproblem
Das solare Neutrinoproblem Helene Kraft, Benjamin Gutknecht, Bartosz Slomski, Esther Dönsdorf, Maria Reinhardt, Kristoffer Menzel, David Caliebe 3. Juni, 2005 1 Der Weg zum Postulat des Neutrinos 1930,
Sonne, Mond und Sterne: Die neue Sicht des Universum. III Physik der Sonne und der Sterne
Sonne, Mond und Sterne: Die neue Sicht des Universum III Physik der Sonne und der Sterne Fragen: 1. Wie bilden sich Sterne? 2. Wie wird die Energie im Sterninnern erzeugt? 3. Wie gelangt die Energie aus
Die Sonne ein gewöhnlicher Hauptreihenstern
Die Sonne ein gewöhnlicher Hauptreihenstern Parameter Das Sonnenspektrum Energieerzeugung Innerer Aufbau Die Sonnenatmosphäre Sonnenaktivität Sonnenwind Parameter 1. Entfernung von der Erde Aus Umlaufzeiten,
Die Akte X der Teilchenphysik. Neutrinos. Kai Zuber
Die Akte X der Teilchenphysik Neutrinos Inhalt Historie Solare Neutrinos Der doppelte Betazerfall Ausblick und Zusammenfassung Entdeckung der Radioaktivität 1895 W. Röntgen entdeckt X-Strahlen 1896 H.
Physik Q4 (sp, )
DIE SONNE Physik Q4 (sp, 10.02.2017) SONNE UND SONNENSYSTEM I Sonne ist von erheblicher Bedeutung als Energiequelle Kernfusion im Innern enthält ca. 99 % der Masse des Sonnensystems da wir sie gut beobachten
1930: Krise in in der der Physik. Oh, Oh, daran denkt man man am am besten gar gar nicht, wie wie an an die die neuen Steuern
1930: Krise in in der der Physik Oh, Oh, daran denkt man man am am besten gar gar nicht, wie wie an an die die neuen Steuern 1930: Energie-Erhaltung im im Beta-Zerfall verletzt?? Alpha-Zerfall Beta-Zerfall
41. Kerne. 33. Lektion Kerne
41. Kerne 33. Lektion Kerne Lernziel: Kerne bestehen aus Protonen und Neutronen, die mit starken, ladungsunabhängigen und kurzreichweitigen Kräften zusammengehalten werden Begriffe Protonen, Neutronen
Neutrino Oszillation. Von Richard Peschke
Neutrino Oszillation Von Richard Peschke Gliederung: 1. Was sind Neutrinos? 2. Eigenzustände 3. Mischung 4. Grundlagen der Neutrino Oszillation 5. Experimente: 5.1 Sonnen-Neutrinos 5.2 Reaktor-Neutrinos
Einführungsvortrag Das Sonnenspektrum Sonnenbeobachtungen
Einführungsvortrag Das Sonnenspektrum Sonnenbeobachtungen Messung der Sonnenparallaxe Die Sonne per Satellit Vermessung von Sonnenflecken Messung der Sonnenrotation (Teleskopbeobachtungen) Abschluss on
Neutrinos in Kosmologie und Teilchenphysik
Neutrinos in Kosmologie und Teilchenphysik Thomas Schwetz-Mangold Bremer Olbers-Gesellschaft, 12. Nov. 2013 1 Ein Streifzug durch die Welt der Neutrinos Was ist ein Neutrino? Wie hat man Neutrinos entdeckt?
Kapitel 5: Kernfusion
Kapitel 5: Kernfusion 330 5 Die Kernfusion und ihre Anwendung Der Unterschied der Bindungsenergie zwischen Deuterium D und Helium He ist pro Nukleon wesentlich größer als bei der Kernspaltung. Kernfusion
Vom Sterben der Sterne
Vom Sterben der Sterne Weiße Zwerge, Neutronensterne und Schwarze Löcher Franz Embacher http://homepage.univie.ac.at/franz.embacher/ [email protected] Fakultät für Physik Universität Wien Vortrag
DIE THERMISCHE GESCHICHTE DES UNIVERSUMS & FREEZE-OUT. 14. Dezember Kim Susan Petersen. Proseminar Theoretische Physik & Astroteilchenphysik
DIE THERMISCHE GESCHICHTE DES UNIVERSUMS & FREEZE-OUT 14. Dezember 2010 Kim Susan Petersen Proseminar Theoretische Physik & Astroteilchenphysik INHALT 1. Das Standardmodell 2. Die Form des Universums 3.
Institut für Strahlenphysik Dr. Daniel Bemmerer Mitglied der Leibniz-Gemeinschaft. Altes und Neues zum Standardmodell
Institut für Strahlenphysik Dr. Daniel Bemmerer www.fzd.de Mitglied der Leibniz-Gemeinschaft Altes und Neues zum Standardmodell Von den Quarks zum Universum QuickTime and a TIFF (Uncompressed) decompressor
Kernreaktionen chemisch beschrieben
Physics Meets Chemistry Kernreaktionen chemisch beschrieben 1 Kernreaktionen chemisch beschrieben 1. Ausgangslage 2. Ziele 3. Unterrichtsvorschlag mit Übungen Physics Meets Chemistry Kernreaktionen chemisch
Physik der massiven Neutrinos
Physik der massiven Neutrinos Vorlesungstermine 19.04.2013 Vorlesung 1 MM 26.04.2013 Vorlesung 2 TS 03.05.2013 Vorlesung 3 JR 10.05.2013 Christi Himmelfahrt, Brückentag 17.05.2013 Vorlesung 4 JR 24.05.2013
13. Aufbau und Entwicklung der Sterne
13.1 Sterngeburt Kollaps von interstellaren Gaswolken (dunkle oder leuchtende Nebel) Kalte globules 5-15K Folie 1 Sternentstehung Interstellare Wolken: Fragmentation notwendig, da Jeans- Masse in interstellaren
Geochemie 1. 1. Entstehung und Häufigkeit der Nuklide/ Elemente
Geochemie 1 1. Entstehung und Häufigkeit der Nuklide/ Elemente Atome (Elementare Bausteine der Materie) Masse eines Atoms ist im Kern konzentriert (Neutonen + Protonen) Elektronenhülle dominiert das Eigenvolumen
13. Aufbau und Entwicklung der Sterne Sterngeburt Kollaps von interstellaren Gaswolken (dunkle oder leuchtende Nebel) Kalte globules 5-15K
13.1 Sterngeburt Kollaps von interstellaren Gaswolken (dunkle oder leuchtende Nebel) Kalte globules 5-15K Folie 1 Sternentstehung Interstellare Wolken: Fragmentation notwendig, da Jeans- Masse in interstellaren
15 Kernphysik Physik für E-Techniker. 15 Kernphysik
15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 15.5.3 Kettenreaktion 15. Kernphysik 15.
Beobachtungen zur Nukleosynthese
Vortrag zum Kompaktseminar: Das frühe Universum an der Universität Tübingen Beobachtungen zur Nukleosynthese Hermann Dautel 24. März 2004 Betreut von Jörn Wilms Gliederung: - Einleitung - Lithium-Häufigkeit:
Masse etwa 1 u = e-27 kg = MeV/c^2. Neutron (Entdeckung 1932 James Chadwick)
Masse etwa 1 u = 1.6605e-27 kg = 931.5 MeV/c^2 Neutron (Entdeckung 1932 James Chadwick) Kraft Reichweite (cm) Stärke bei 10 13 cm im Vergleich zu starker Kraft Gravitation unendlich 10 38 elektrische Kraft
Vom Urknall zur Dunklen Energie
Wie ist unser Universum entstanden und wie wird es enden? Wie werden Sterne geboren, leben und sterben dann? Woher kommen die Elemente im Universum? Einleitung Entstehung des Universums vor ungefähr 14
umwandlungen Atommodelle, Rutherford-Experiment, Atomaufbau, Elektronen, Protonen,
Wiederholung der letzten Vorlesungsstunde: Atommodelle, Rutherford-Experiment, Atomaufbau, Elektronen, Protonen, Neutronen, Element, Ordnungszahl Thema heute: Aufbau von Atomkernen, Kern- umwandlungen
Die Physik der Sterne. Max Camenzind Akademie Heidelberg 2014
Die Physik der Sterne Max Camenzind Akademie Heidelberg März @ 2014 Objekte im hydrostatischen Gleichgewicht sind sphärisch Planeten, Sterne Asteroiden sind jedoch eher Kartoffeln Festkörper Themen: Stellare
5. Neutrinos. Hermann Kolanoski, Astroteilchenphysik WS09/10-5.Neutrinos 1
5. Neutrinos Hermann Kolanoski, Astroteilchenphysik WS09/10-5.Neutrinos 1 Neutrinos: Standard Model and Beyond in SU(2) L dubletts Mixing masses - flavour eigenstates - mass eigenstates = double decay
15 Kernphysik Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne
Inhalt 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 15.5.3 Kettenreaktion Der Atomkern
Radioaktivität. Bildungsstandards Physik - Radioaktivität 1 LEHRPLANZITAT. Das radioaktive Verhalten der Materie:
Bildungsstandards Physik - Radioaktivität 1 Radioaktivität LEHRPLANZITAT Das radioaktive Verhalten der Materie: Ausgehend von Alltagsvorstellungen der Schülerinnen und Schüler soll ein grundlegendes Verständnis
11. Sonne, Neutrinos, Homestake, Kamiokande, SNO
11. Sonne, Neutrinos, Homestake, Kamiokande, SNO Das Neutrino ist seit der Zeit, zu der Wolfgang Pauli diese(s) Teilchen zur 'Rettung' von Energie- und Drehimpulserhaltung beim β -Zerfall postuliert hatte,
Massive Sterne: Gravitationskollaps-Supernovae, Neutronensterne & Pulsare
Massive Sterne: Gravitationskollaps-, & Uni Mainz Vortrag in Astroteilchenphysik im WS 10/11 18. Januar 2011 Überblick 1 Gravitationskollaps- und Entstehung von n 2 Eigenschaften von n 3 Was ist ein Pulsar?
Kosmische Neutrinos. Sommersemester Universität Siegen Claus Grupen. Kosmische Neutrinos p. 1/52
Kosmische Neutrinos Sommersemester 2015 Universität Siegen Claus Grupen Kosmische Neutrinos p. 1/52 Neutrino Astronomie Solare Neutrinos (MeV-Bereich) Atmospherische Neutrinos (GeV-Bereich) Neutrino Oszillationen
Elektronen, Protonen und Neutronen haben folgende Eigenschaften, die in Tabelle 2.1 wiedergegeben sind:
Aufbau der Atome.1 Elektronen, Protonen, Neutronen, Isotope Atome bestehen aus Elektronen, die die Atomhülle bilden, sowie den im Kern vereinigten Protonen und Neutronen. Die elektromagnetischen Wechselwirkungen
Neutrinos und andere Geisterteilchen. M. Lindner
Neutrinos und andere Geisterteilchen M. Lindner Elementare Bausteine der Materie Bausteine der (normalen) Materie: - Elektron e - - Up-Quark u und Down-Quark d Soweit bekannt punktförmig: < 0.001fm Wechselwirkungen
Sternentwicklung (4) Wie Sterne Energie erzeugen Energietransport Triple-Alpha-Prozeß
Sternentwicklung (4) Wie Sterne Energie erzeugen Energietransport Triple-Alpha-Prozeß Wasserstoffbrennen Der Bethe-Weizsäcker-Zyklus Synonym: CNO Zyklus H. Bethe, C.-F. von Weizsäcker 1939 Benötigt Kohlenstoff
Entwicklung und Ende von Sternen
Entwicklung und Ende von Sternen Seminarvortrag von Klaus Raab 1.) Nebel und deren Verdichtung zu Protosternen 2.) Kernfusion: Energieerzeugung der Sterne 3.) Massenabhängige Entwicklung und Ende von Sternen
Entdeckung von Proton, Neutron, Elektron sowie (Elektron-)Neutrino
Entdeckung von Proton, Neutron, Elektron sowie (Elektron-)Neutrino Wintersemester 2014/15 Li Jiaqi 11.11.2014 Chronik der mikroskopischen Welt 17-18 Jahrhundert: Begriffe des Atoms benutzen, die chemischen
Radioaktivität. den 7 Oktober Dr. Emőke Bódis
Radioaktivität den 7 Oktober 2016 Dr. Emőke Bódis Prüfungsfrage Die Eigenschaften und Entstehung der radioaktiver Strahlungen: Alpha- Beta- und Gamma- Strahlungen. Aktivität. Zerfallgesetz. Halbwertzeit.
Die Macht der Gravitation vom Leben und Sterben der Sterne
Die Macht der Gravitation vom Leben und Sterben der Sterne Franz Embacher http://homepage.univie.ac.at/franz.embacher/ [email protected] Fakultät für Physik Universität Wien Vortrag am GRG17
Hauptseminar: Neuere Entwicklungen der Kosmologie
Hauptseminar: Neuere Entwicklungen der Kosmologie Das frühe Universum: Inflation und Strahlungsdominanz Thorsten Beck Universität Stuttgart Hauptseminar: Neuere Entwicklungen der Kosmologie p. 1/14 Die
Kernkollapssuper novae SN Ib, Ic und II. Moritz Fuchs 11.12.2007
Kernkollapssuper novae SN Ib, Ic und II Moritz Fuchs 11.12.2007 Gliederung Einleitung Leben eines Sterns bis zur Supernova Vorgänge während der Supernova SN 1987 A r-prozesse Was ist interessant an Supernovae?
Astroteilchenphysik II
Astroteilchenphysik II Sommersemester 2015 Vorlesung # 18, 30.4.2015 Guido Drexlin, Institut für Experimentelle Kernphysik Neutrino-Oszillationen - SNO Resultate: NC an D 2 O & die Lösung des SNP - MSW
Dieter Suter Physik B3
Dieter Suter - 426 - Physik B3 9.3 Kernenergie Kernenergie ist eine interessante Möglichkeit, nutzbare Energie zu gewinnen. Das kann man sehen wenn man vergleicht, wie viel Energie in 1 kg unterschiedlicher
Spezielle Relativitätstheorie. Experimente der relativistischen Dynamik
Spezielle Relativitätstheorie Experimente der relativistischen Dynamik Massenzunahme Walter Kaufmann (87-947) wies 90 die Zunahme der Elektronenmasse bei wachsender Geschwindigkeit nach (bis v 0,94 c).
Sternenentwicklung. Sternenentwicklung. Scheinseminar Astro- und Teilchenphysik SoSe Fabian Hecht
Fabian Hecht 29.04.2010 Physikalische Grundlagen des Sternenaufbaus Motivation nur beschreibbar mit Wissen über Sternenaufbau 4 Zentrale Grundgleichungen zusammen mit Zustandsgleichungen und Zusammensetzung
Die Sonne. das Zentrum unseres Planetensystems. Erich Laager / Bern 1
Die Sonne das Zentrum unseres Planetensystems Erich Laager 2011 18.09.2012 / Bern 1 Die Sonne das Zentrum unseres Planetensystems 2 Die Bild-Quellen zur Sonne: NASA: 08, 14, 19, 33 ESA / NASA SOHO: 29,
Frühes Universum. Katharina Müller Universität Zürich
Frühes Universum Katharina Müller Universität Zürich [email protected] 28. Juni 2002 Inhaltsverzeichnis 0.1 Bigbang Modell................................. 2 Katharina Müller 1 Frühes Universum
Sternentwicklung und das Hertzsprung-Russel-Diagramm
Sternentwicklung und das Hertzsprung-Russel-Diagramm Workshop MNU-Tagung Leipzig 2016 Technische Universität Dresden Dr. rer. nat. Frank Morherr Entwicklung der Sterne Sternentwicklung Weißer Zwerg Schwarzes
Radioaktivität Haller/ Hannover-Kolleg 1
Radioaktivität 17.09.2007 Haller/ Hannover-Kolleg 1 Radioaktivität 17.09.2007 Haller/ Hannover-Kolleg 2 Radioaktivität 1. Was verstehe ich darunter? 2. Welche Wirkungen hat die Radioaktivität? 3. Muss
Dieter Suter Physik B3
Dieter Suter - 421 - Physik B3 9.2 Radioaktivität 9.2.1 Historisches, Grundlagen Die Radioaktivität wurde im Jahre 1896 entdeckt, als Becquerel feststellte, dass Uransalze Strahlen aussenden, welche den
Vom Elementarteilchen zum Universum Verbindungen zwischen den Welten des ganz Kleinen und des ganz Großen
Vom Elementarteilchen zum Universum Verbindungen zwischen den Welten des ganz Kleinen und des ganz Großen Werner Hofmann MPI für Kernphysik Heidelberg Animationen erfordern spezielle Software und sind
NEUTRONENSTERNE. Eine Reise in die Vergangenheit. Jochen Wambach Institut für Kernphysik TU Darmstadt
NEUTRONENSTERNE Eine Reise in die Vergangenheit Jochen Wambach Institut für Kernphysik TU Darmstadt NEUTRONENSTERNE Eine Reise in die Vergangenheit Jochen Wambach Institut für Kernphysik TU Darmstadt Was
7 Teilchenphysik und Kosmologie
7.1 Entwicklung des Universums 7 Teilchenphysik und Kosmologie 7.1 Entwicklung des Universums 64 Die Spektrallinien sehr entfernter Galaxien sind gegenüber denen in unserer Galaxie rot-verschoben, d.h.
9. Kernphysik 9.1. Zusammensetzung der Atomkerne
Prof. Dieter Suter Physik B2 SS 01 9. Kernphysik 9.1. Zusammensetzung der Atomkerne 9.1.1. Nukelonen Die Atomkerne bestehen aus Protonen und Neutronen. Die Zahl der Nukleonen wird durch die Massenzahl
Kernkräfte und Potentialtopfmodell des Kerns
Kernkräfte und Potentialtopfmodell des Kerns Kernkräfte Die zentrale Frage dieses Abschnitts lautet: Warum haltet der Kern trotz der abstoßenden Columbkraft zwischen den Protonen zusammen? Die Antwort
Energiespektrum der Sonnenneutrinos
Energiespektrum der Sonnenneutrinos Summary Homestake experiment Detection of 37 Ar, decays via K-electon capture: 37 Ar + e - => 37 Cl + ν e Half live: t 1/2 = 35 d Decay products: (i) X-rays (Röntgenstrahlung))
Neutrinos von der Sonne
Neutrinos von der Sonne Sarah Andreas 16.05.2006 RWTH Aachen Sonne: Neutrinoproduktion Experimente: Neutrinonachweis Experimente I Neutrinos fehlen... Übersicht Solares Neutrino Problem (SNP): Erklärungsversuche
Gigantische Explosionen
Gigantische Explosionen Gammaastronomie - das Universum bei höchsten Energien Gernot Maier Credit: Stephane Vetter (Nuits sacrees) Kollidierende Galaxien Licht = Elektromagnetische Strahlung Welle Teilchen
Mittel- und Oberstufe - MITTEL:
Praktisches Arbeiten - 3 nrotationsgeschwindigkeit ( 2 ) Mittel- und Oberstufe - MITTEL: Ein Solarscope, Eine genau gehende Uhr, Ein Messschirm, Dieses Experiment kann in einem Raum in Südrichtung oder
2. Das Sonnensystem. Bild. Iau entscheid
2. Das Sonnensystem Bild. Iau entscheid Aufbau des Sonnensystems Sonne 8 Planeten: Merkur, Venus, Erde, Mars ( innere Planeten), Jupiter, Saturn, Uranus, Neptun ( äußere Planeten). 5 Kleinplaneten: Ceres,
Nukleare Astrophysik
Nukleare Astrophysik Atomkerne Astrophysik Beobachtung von Isotopen-Verteilungen Absorptionsspektren γ-astronomie Extrasolare Radionuklide Solare Isotopenhäufigkeiten Sonnenspektrum Meteoriten Nukleosynthese
Bausteine der Materie und ihre Entstehung Von Quarks bis zum Sandstrand
Bausteine der Materie und ihre Entstehung Von Quarks bis zum Sandstrand Professor Dr. Andreas Zilges Universität zu Köln MINT-Laborpraktikum 2008 Das Auge von Säugetieren Vorne zu sitzen ist manchmal gefährlich.
Energiefreisetzung In der Sonne, wie in allen anderen Sternen auch, wird die Energie durch Kernfusion freigesetzt. Wasserstoffkerne(Protonen) können
Energiefreietzung In der Sonne, wie in allen anderen Sternen auch, wird die Energie durch Kernfuion freigeetzt. Waertoffkerne(Protonen) können bei güntigen Bedingungen zu Heliumkernen verchmelzen, dabei
Von Weißen Zwergen, Neutronensternen und Schwarzen Löchern
Von Weißen Zwergen, Neutronensternen und Schwarzen Löchern Was uns die Endstadien der Sterne über die Naturgesetze sagen Franz Embacher http://homepage.univie.ac.at/franz.embacher/ [email protected]
Die Welt der kleinsten Teilchen
Die Welt der kleinsten Teilchen Woraus ist die Welt, woraus sind wir selbst gemacht? (Dank an Prof. Kolanoski und Prof. Kobel fuer die Ueberlassung einiger Folien) 1 Die Welt der kleinsten Teilchen Woraus
GOTTTEILCHEN und WELTMASCHINE
Harald Appelshäuser Institut für Kernphysik GOTTTEILCHEN und WELTMASCHINE dem Urknall auf der Spur mit dem Teilchenbeschleuniger am CERN Large Hadron Collider (LHC) 8,6 km Large Hadron Collider (LHC) 1232
Moderne Instrumente der Sternbeobachtung
Moderne Instrumente der Sternbeobachtung Sternentstehung/ Sternentwicklung (Steffen Fuhrmann) Sternbeobachtung (Jan Zimmermann) 0. Gliederung 1. historische Entwicklung 2. Definitionen 3. Entstehung eines
Primordiale Nukleosynthese
Westfälische Wilhelms-Universität Münster Nadine Wehmeier Seminar zur Theorie der Teilchen und Felder Thema im WS 2008/2009: Kosmologie und Teilchenphysik Skript zum Seminarvortrag vom 19.11.2008 Primordiale
Supernovae. Peter H. Hauschildt. Hamburger Sternwarte Gojenbergsweg Hamburg
Supernovae Peter H. Hauschildt [email protected] Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg sn.tex Supernovae Peter H. Hauschildt 16/2/2005 18:20 p.1 Übersicht Was ist eine Supernova? Was
Energiequellen und Zeitskalen
Wiederholung Flavour-Oszillationen: B-Mesonen (BABAR) Zeitumkehrinvarianz Herleitung der Dirac-Gleichung Dirac-Spinor, γ-matrizen Lösungen der Dirac-Gleichung Dirac- und Feynman-Bild Anwendung: Pion-Photon-Wechselwirkung
Solare Neutrinos. Axel Moll Physikalisches Institut IIIB
Solare Neutrinos Physikalisches Institut IIIB 5.7.05 1 Inhalt: Reaktionen in der Sonne zur Erzeugung von Neutrinos Der pp Zyklus Der CNO Zyklus Energiespektren der Sonnenneutrinos Nachweis solarer Neutrinos
Atomphysik Klasse 9. Aufgabe: Fülle die freien Felder aus!
1. Was gibt die Massenzahl A eines Atoms an? Die Zahl der Neutronen im Kern. Die Zahl der Protonen im Kern. Die Summe aus Kernneutronen und Kernprotonen. Die Zahl der Elektronen. Die Summe von Elektronen
Die Entwicklung des Universums vom Urknall bis heute. Gisela Anton Erlangen, 23. Februar, 2011
Die Entwicklung des Universums vom Urknall bis heute Gisela Anton Erlangen, 23. Februar, 2011 Inhalt des Vortrags Beschreibung des heutigen Universums Die Vergangenheit des Universums Ausblick: die Zukunft
Anreicherung der interstellaren Materie mit schweren Elementen. Supernovae
Anreicherung der interstellaren Materie mit schweren Elementen Supernovae Unser heutiges Thema... Sterne können exotherm nur Elemente bis Eisen (Z=26) in ihrem Inneren regulär fusionieren. Wie gelangen
Sterne, Galaxien und das Universum
Sterne, Galaxien und das Universum Teil 4: Leben nach der Hauptreihe Peter Hauschildt [email protected] Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg 18. April 2017 1 / 49 Übersicht auf dem
Kosmologie und Astroteilchenphysik
Kosmologie und Astroteilchenphysik Prof. Dr. Burkhard Kämpfer, Dr. Daniel Bemmerer Einführung in die Kosmologie Weltmodelle und kosmologische Inflation Thermische Geschichte des Universums Urknall-Nukleosynthese
Sterne. Eine kurze Zusammenfassung des Sternenlebens. Jörn Lenhardt. Das Leben der Sterne
Sterne Eine kurze Zusammenfassung des Sternenlebens Jörn Lenhardt Willkommen Entstehung 1/5 Riesige Gas- und Staubwolken Fast Vakuum Durch Gravitation (Schwerkraft) wird die Wolke zusammengehalten Die
Lernziele zu Radioaktivität 1. Radioaktive Strahlung. Entdeckung der Radioaktivität. Entdeckung der Radioaktivität
Radioaktive Strahlung Entstehung Nutzen Gefahren du weisst, Lernziele zu Radioaktivität 1 dass Elementarteilchen nur bedingt «elementar» sind. welche unterschiedlichen Arten von radioaktiven Strahlungen
Sternhaufen. Geburtsorte der Materie. Dr. Andrea Stolte. I. Physikalisches Institut Universität Köln
Sternhaufen Geburtsorte der Materie Dr. Andrea Stolte I. Physikalisches Institut Universität Köln Ringvorlesung Astronomie 13. Januar 2010 1 Sternhaufen -- Geburtsorte der Materie I. Am Anfang waren Wasserstoff
Neutrinos: Kosmische Leichtgewichte auf der Waagschale von KATRIN
Neutrinos: Kosmische Leichtgewichte auf der Waagschale von KATRIN Neutrinos, ihre Masse & das Universum KATRIN eine Waage für Neutrinos am Forschungszentrum Karlsruhe 1 Man denk am Besten gar nicht darüber
Kernphysik II Kernstruktur & Kernreaktionen Nuclear Structure & Reactions
Kernphysik II Kernstruktur & Kernreaktionen Nuclear Structure & Reactions Dozent: Prof. Dr. P. Reiter Ort: Seminarraum Institut für Kernphysik Zeit: Montag 14:00 14:45 Mittwoch 16:00 17:30 Kernphysik II
Ferienakademie Kernfusion. von Matthias Dodenhöft
Ferienakademie 18.09.11-30.09.11 Kernfusion von Matthias Dodenhöft 1 Inhalt 1. Geschichte der Kernfusion 2. Physikalische Grundlagen 3. Kernfusion auf der Sonne 4. Kernfusion auf der Erde 4.1 Umsetzung
Solare Neutrinos. Anja Wurdack, Björn Tegetmeyer. 19. Dezember 2012
19. Dezember 2012 Inhaltsverzeichnis Einführung Solares Neutrinoproblem Masse des Neutrinos Einführung Was ist ein Neutrino? Einführung Was ist ein Neutrino? elektrisch neutrales Elementarteilchen Lepton
Kerne und Sterne. (Was verbindet Mikro- und Makrokosmos?) Andreas Wagner. Institut für Kern- und Hadronenphysik. Andreas Wagner
Kerne und Sterne (Was verbindet Mikro- und Makrokosmos?) PLOPP SUPERNOVA He H Li SONNE SONNENSYSTEME GALAXIEN C Fe O N U Moderne Astronomie: Infrarot-, Radio-, Optische, Röntgen-, Gamma-, Neutrino- Klassische
Kernphysik I. Kernmodelle: Fermigas-Modell Neutronenstern
Kernhysik I Kernmodelle: ermigas-modell Neutronenstern ermigas-modell Kerne im Grundzustand können als entartetes ermigassysteme aus Nukleonen, mit hoher Dichte (,1 Nukleonen/fm ) betrachtet werden. Die
Das Neutron. Eigenschaften des Neutrons m n = 1.001m p m i = m g ± 10 4 τ n = ± 0.8 s
Vorlesung Fundamentale Experimente mit ultrakalten Neutronen (FundExpUCN) Die Entdeckung des Neutrons Fundamentale Eigenschaften des Neutrons Reaktorphysik und Erzeugung von Neutronen Spallationsneutronenquellen
7. Das Bohrsche Modell des Wasserstoff-Atoms. 7.1 Stabile Elektronbahnen im Atom
phys4.08 Page 1 7. Das Bohrsche Modell des Wasserstoff-Atoms 7.1 Stabile Elektronbahnen im Atom Atommodell: positiv geladene Protonen (p + ) und Neutronen (n) im Kern negative geladene Elektronen (e -
