Halbwertszeit (Thoron)
|
|
|
- Greta Kruse
- vor 8 Jahren
- Abrufe
Transkript
1 Universität Potsdam Institut für Physik und Astronomie Grundpraktikum 05/2013 K2 Halbwertszeit (Thoron) ACHTUNG: Dieses Experiment ist nicht für Schwangere zugelassen! Bitte rechtzeitig ein anderes Experiment beantragen! Aufgaben 1. Die Spannungscharakteristik eines Geiger-Müller-Zählrohres ist aufzunehmen. Daraus sind die Einsatzspannung und der Plateauanstieg zu bestimmen und ein geeigneter Arbeitspunkt festzulegen Die Zerfallskurve von Thoron 86Rn ist aufzunehmen. Aus der Zerfallskurve sind die Zerfallskonstante λ und die Halbwertszeit T H zu ermitteln und mit Literaturangaben zu vergleichen. 3. Die Dosisleistung ist am Arbeitsplatz und außerhalb des Gebäudes zu messen (Vergleich mit Literaturangaben). Abbildung 1: Versuchsaufbau Zubehör Ra Bleicontainer mit Thoriumsalz,Umwälzpumpe, Filter, Abschirmkammer mit Fensterzählrohr, Impulsratenmesser, Computer mit Messwerterfassungskarte 1
2 Grundlagen Radioaktivität bezeichnet die Eigenschaft von bestimmten Substanzen, Strahlung zu emittieren. Die radioaktiven Substanzen sind instabile Isotope 1, d.h. die Atome besitzen einen instabilen Kern, der sich unter Aussendung von ionisierender α-, β- oder γ-strahlung spontan in einen anderen Kern umwandelt. Der dadurch entstehende Tochterkern ist meistens ebenfalls instabil und zerfällt weiter. Die Kernumwandlung wird radioaktiver Zerfall genannt und die daraus entstehende Reihe von radioaktiven Isotopen nennt man die Zerfallsreihe. Es gibt zwei Arten der Umwandlung: α-zerfall: Spontane Emission eines Heliumkerns (2 Protonen + 2 Neutronen). Restkern: Massenzahl -4, Ordnungszahl -2. β-zerfall: Spontane Emission eines Elektrons bzw. Positrons + 1 Neutrino für β - - bzw. β + -Zerfall. Restkern: Massenzahl konstant, Ordnungszahl +1 bzw. 1. Man darf sich beim β-zerfall nicht vorstellen, dass sich im Kern schon vorher ein Elektron bzw. Positron befunden hätte. Vielmehr wandelt sich beim β - -Zerfall ein Neutron in ein Proton um, unter Emission eines Elektrons und eines Elektron-Neutrinos 2. Das Elektron wiegt fast nichts und das Neutrino gar nichts, daher bleibt die Massenzahl konstant. Beim β + -Zerfall wandelt sich ein Proton in ein Neutron um, unter Emission eines Positrons und eines Positron-Neutrinos. Gammastrahlung entsteht dann, wenn der α- oder β-zerfall nicht in den energetischen Grundzustand führt. In diesem Fall ist der Tochterkern noch energetisch angeregt. Beim Übergang in den Grundzustand wird diese Anregungsenergie in Form eines γ-quants emittiert. Zerfallsgesetz Ein instabiler Atomkern zerfällt nach einer gewissen Zeit. Wann ein bestimmtes Atom zerfällt, ist absolut zufällig. Es gibt aber ein statistisches Gesetz, welches den Zerfall regelt. Die Aktivität einer radioaktiven Substanz ist definiert durch die Anzahl der Zerfälle pro Zeit, d.h. durch die Zerfallsrate. Wenn also im Zeitintervall dt gerade dn Kerne zerfallen, dann ist die Aktivität gegeben durch: At = dn dt (1) wobei das Minuszeichen dafür Rechnung trägt, dass beim Zerfall die Anzahl der Kerne abnimmt. Eine Substanz ist umso aktiver, je mehr radioaktive Kerne vorhanden sind. Daher sollte die Aktivität proportional zur Anzahl der Kerne sein, At = N t. 1 Isotope: Kerne mit konstanter Protonenzahl und variabler Neutronenzahl 2 Die Existenz des Neutrinos wurde zunächst rein theoretisch gefordert um die Drehimpulserhaltung zu garantieren. Erst viel später hat man das Neutrino unter hohem Aufwand experimentell nachgewiesen. 2
3 Es ergibt sich also das Zerfallsgesetz dn dt = N. t (2) Dies ist eine Differentialgleichung erster Ordnung mit der Lösung N t = N 0 e t t 0 wobei N 0 die Anzahl der Kerne zur Zeit t 0 darstellt. Setzen wir der Einfachheit halber t 0 = 0, so erhalten wir die folgende kompakte Form des Zerfallsgesetzes N t = N 0 e t. (3) Die Konstante λ nennt man Zerfallskonstante. Offensichtlich findet der Zerfall exponentiell statt. Es gibt also einen festen Wert für die Zeit nach der die Anzahl der radioaktiven Kerne auf die Hälfte gesunken ist. Diese Zeit nennt man die Halbwertszeit T H, und sie lässt sich bestimmen durch N T H = 1 2 N 0. (4) Setzen wir also das exponentielle Zerfallsgesetz ein, erhalten wir N N 0 e T H = 0 2 lne T 1 H = ln 2 T H = ln2. Damit ergibt sich für die Halbwertszeit T H = ln 2. (5) Radioaktives Gleichgewicht Haben Mutter- und Tochterkern in einer radioaktiven Zerfallsreihe eine Zerfallskonstante von λ 1 bzw. λ 2, und ist der Mutterkern langlebiger als der Tochterkern, also λ 1 < λ 2, dann stellt sich nach einer gewissen Zeit ein radioaktives Gleichgewicht ein, in welchem sich die Aktivitäten A 1 und A 2 der beiden Substanzen zueinander verhalten wie 3
4 A 2 = 2 A. (6) In unserem Fall wandelt sich Radon-220 in Polonium um. Die Halbwertszeit von Radon- 220 ist mit T H1 = 55.6 s wesentlich höher als die von Polonium-216, welche nur T H2 = s beträgt. Also ist die Zerfallskonstante λ 1 von Radon-220 wesentlich kleiner als die Zerfallskonstante λ 2 von Polonium-216, d.h. λ 1 << λ 2. Dieses sogenannte Dauergleichgewicht, ausgedrückt durch die Bedingung λ 1 << λ 2 kommt sehr häufig in der Natur vor. Im Dauergleichgewicht vereinfacht sich die Formel für das radioaktive Gleichgewicht zu A 2 = A 1. (7) Wegen A i = λ i N i folgt also für die Anzahlen N i von radioaktiven Mutter- und Tochterkernen N 1 N 2 = 2 1, (8) oder, ausgedrückt durch die jeweiligen Halbwertszeiten T Hi, N 1 N 2 = T H1 T H2. (9) Man kann also aus dem Verhältnis der Halbwertszeiten zweier Substanzen auf deren relative Häufigkeit schließen und umgekehrt. In ganzen Worten ausgedrückt: Das Verhältnis der Häufigkeiten zweier radioaktiver Substanzen entspricht dem Verhältnis ihrer Halbwertszeiten. Messung von Radioaktivität Es gibt viele verschiedene Wege, Radioaktivität zu messen. Grundsätzlich misst man entweder die Aktivität oder die Dosis. Aktivität: Auf die Strahlungsquelle bezogen. 1 Bq = Becquerel = 1 Zerfall pro Sekunde. Ältere Maßeinheit: 1 Ci = 1 Curie = Bq. 1 Curie entspricht der Aktivität von 1g Radium. Dosis: Auf das Absorptionsmedium bezogen. Man unterscheidet: (a) Ionendosis: substanzunabhängig. Ionisierte Ionenpaare pro Masse, 1 R = 1 Röntgen. 1 R = 1 elektrostatische Einheit ( As ) wird ionisiert in 1 cm 3 Luft bei 1 bar und 20. Also 1 R = As/kg. (b) Energiedosis: substanzabhängig. Absorbierte Strahlungsenergie pro Masse, 1 J/kg. Durch Multiplikation der Ionendosis mit der mittleren Ionisierungsenergie der Substanz findet man die zugehörige Energiedosis. Die ist dann substanzabhängig. Für Luft findet man 1 R J/kg, für Wasser 1 R 0.01 J/kg = 1 rd = 1 rad. Die Energiedosis für Wasser entspricht in etwa der Energiedosis für den menschlichen Körper. Weil der so 4
5 wichtig ist, gibt man dieser Größe eine eigene Einheit, nämlich 1 Gy = 1 Gray. (c) Dosisäquivalent: substanzabhängig. Dosisäquivalent = Energiedosis Qualitätsfaktor. Dieser Qualitätsfaktor (QF) wird festgelegt auf Strahlung QF α 10 β 1 γ 1 Weil der QF dimensionslos ist, ist die Dimension des Dosisäquivalents dieselbe wie bei der Energiedosis, jedoch nennt man sie anders, nämlich 1 Sv = 1 Sievert, was 1 Gray entspricht. Kurzgefasst: Die Strahlungsbelastung ist substanzabhängig und wird gerne in Sievert (Sv) gemessen. 1 Sievert = 1 Röntgen multipliziert mit der mittleren Ionisierungsenergie von Wasser. Eine wichtige Größe ist auch die Dosisleistung, die als Dosis pro Zeit veranschlagt wird. Die mittlere Strahlendosis, die aus allen natürlichen Strahlenquellen resultiert, beträgt in Deutschland etwa 2,1 msv pro Jahr. Ionisierende Strahlung kann mit einem Geiger-Müller-Zählrohr gemessen werden. Dieses Gerät funktioniert nach dem Prinzip der Gasentladung. Dazu folgende Überlegungen. Die aufgeladenen Platten eines Kondensators entladen sich mit der Zeit über die Luft. Dabei werden Luftmoleküle ionisiert, d.h. das elektrische Feld reißt Elektronen aus ihrer Hülle. Während die entrissenen Elektronen zur Anode wandern, bewegen sich die positiv geladenen Ionen zur Kathode, wodurch der Ladungsunterschied zwischen den Platten und damit die elektrische Spannung allmählich vermindert wird. Liegt nun eine sehr hohe Spannung zwischen den Platten an, so werden die Elektronen und Ionen so stark beschleunigt, dass sie durch den Zusammenstoß mit anderen Molekülen Elektronen aus deren Hülle schlagen und sie damit ebenfalls ionisieren. Diesen Effekt nennt man Stoßionisation. Es ergibt sich ein lawinenartiger Entladungsprozess, den man als Gasentladung bezeichnet. Treten zwischen den Platten ionisierende Strahlen ein, so wird diese Entladung begünstigt. Das Geiger-Müller-Zählrohr besteht nun im wesentlichen aus einem mit einem Edelgas gefüllten Metallzylinder, in dessen Mitte sich ein Draht befindet. Eine Spannungsquelle lädt einen Kondensator auf, dessen Platten mit Zylinder und Draht verbunden sind. Nachdem sich der Kondensator vollständig aufgeladen hat, liegt eine hohe Spannung zwischen Draht und Zylindermantel an. Wenn nun ein γ-quant in den Messzylinder eintritt, dann ionisiert es entlang seiner Bahn die Gasatome. Die entstehenden positiven Ionen wandern zur Zylinderwand, die freigeschlagenen Elektronen wandern zum Draht. Durch die Geometrie der Anordnung ist das elektrische Feld in der Umgebung des Drahtes sehr stark (siehe Abb. 2). 5
6 Abbildung 2: Die Feldlinien im Zählrohr Daher werden die Elektronen immer stärker beschleunigt, je näher sie dem Draht kommen. Schließlich ist ihre kinetische Energie so hoch, dass sie eine Lawine von Stoßionisationen in Gang bringen, es kommt zur Gasentladung, die Spannung am Kondensator fällt schlagartig ab und der entstehende Stromimpuls wird verstärkt und gezählt. Da das elektrische Feld im Zylinder im Zuge der Entladung zusammenbricht, kommt die Ionisierungslawine zum Erliegen und es kann sich nun wieder eine Spannung aufbauen. Nach einer gewissen Totzeit ist die Spannung wieder hoch genug und das Zählrohr ist wieder sensibel für das nächste γ-quant. Das prinzipielle Schaltbild für das Geiger-Müller Zählrohr ist in Abb. 3 zu sehen. Abbildung 3: Schaltbild für das Geiger-Müller Zählrohr In der Praxis befindet sich im Messzylinder ein Edelgas, z.b. Argon, und es wird oft noch ein Löschgas hinzugefügt, z.b. Halogene, welches eine Dauerentladung verhindert, indem es die bei den Ionisierungen entstehenden Photonen absorbiert. Die Hochspannung am Zylinder muss so eingestellt werden, dass ohne eintretende ionisierende Strahlung gerade keine Gasentladung stattfindet. 6
7 Versuchsdurchführung Siehe Platzanweisung! Versuchsauswertung Zu 1. Zu 2. Tragen Sie die gemessene Impulsrate in Abhängigkeit von der angelegten Spannung auf und diskutieren Sie den sich ergebenden Graphen. Markieren Sie die Einsatzspannung U E, also die Spannung ab welcher das Zählrohr anspricht. Markieren Sie die Arbeitsspannung bei U A = U E + 100V und begründen Sie anhand des Graphen warum dies eine gute Wahl ist. Die Zerfallsreihen sollen folgendermaßen ausgewertet werden: a) Kombination der einzeln gemessenen Datensätze zu einem Datensatz, also zu je einem Zeitwert mehrere Funktionswerte (hier: Impulse pro 10 Sekunden) b) Statistisches Mitteln der einzelnen Funktionen zu einer Funktion c) Abschneiden des Plateaus der ersten 100 Sekunden. Hier sind die Hähne noch geöffnet und es stellt sich ein Gleichgewicht ein (Warum?). d) Bestimmung der Umgebungsstrahlung (Nullzählrate) durch Mitteilung über die letzten 50 Sekunden. e) Subtraktion der Umgebungsstrahlung. f) Grafische Näherung zur Ermittlung der Halbwertszeit. g) Logarithmieren der Funktion. Es ergibt sich annähernd eine Gerade. h) Man sieht, dass die hintersten Datenpunkte sehr stark von dem Geradenverlauf abweichen (Warum?). Im weiteren wird daher der hintere Teil abgeschnitten bzw. nicht für die lineare Regression benutzt. Dies ist zu begründen. i) Lineare Regression des am besten geeigneten Teilbereichs der Datenpunkte. j) Der Betrag der Steigung entspricht der Zerfallskonstante λ. Daraus ist die Halbwertszeit zu berechnen. Ebenso sind die jeweiligen Standardabweichungen zu bestimmen. k) Das Ergebnis ist mit dem Literaturwert von T = 55.6 s /1/ zu vergleichen und die Abweichung ist zu diskutieren. Zu 3. Die Messwerte sind miteinander und mit der Angabe zur mittleren Strahlendosis aus allen natürlichen Strahlenquellen zu vergleichen. 7
8 Hinweise zur Vorbereitung Erläutern Sie die Größen Aktivität und Zählrate. Unterscheiden Sie die Begriffe Nuklid und Isotop. Erläutern Sie die Veränderungen von Kernladungszahl und Massenzahl beim radioaktiven α- bzw. β-zerfall. Erläutern Sie anhand Abb.4 /9/ die Umwandlungsschritte vom Radium-224 bis zum Blei- 212 Abbildung 4: Thoriumzerfallsreihe mit Angabe der Halbwertszeiten und historischen Nuklid-Bezeichnungen Eigenschaften der α-, β- und γ-strahlung. Erläutern Sie die Herleitung des Zerfallsgesetzes (3). Leiten Sie aus (3) eine Gleichung für die Halbwertszeit T H (5) her! Erläutern Sie Aufbau und Wirkungsweise des Geiger-Müller-Zählrohres. 8
9 Literatur /1/ Walcher, W.: Praktikum der Physik. Stuttgart 2006 /2/ Bergmann/Schäfer: Lehrbuch der Experimentalphysik, Bd. 4: Teilchen, Berlin 1992 /3/ Bröcker, B.: dtv-atlas zur Atomphysik, München 1997 /4/ Grimsehl, G.: Lehrbuch der Physik, Bd. 4: Struktur der Materie, Leipzig /5/ Hänsel, H., Neumann, W.: Physik, Bd. 3: Atome, Atomkerne, Elementarteilchen, Berlin 1995 /6/ Stolz, W.: Radioaktivität, München 2005 /7/ Vogel, H.: Gerthsen Physik, Berlin 2004 /8/ Herforth, L, Koch, H.: Praktikum der Radioaktivität und der Radiochemie Leipzig 1992 /9/ Eichler, H.J., Das Neue Physikalische Grundpraktikum, Kronfeldt, H.D., Sahm, J.: Berlin
Halbwertszeit (Barium)
Universität Potsdam Institut für Physik und Astronomie Grundpraktikum K3 Halbwertszeit (Barium) ACHTUNG: Dieses Experiment ist nicht für Schwangere zugelassen! Bitte rechtzeitig ein anderes Experiment
Masse etwa 1 u = e-27 kg = MeV/c^2. Neutron (Entdeckung 1932 James Chadwick)
Masse etwa 1 u = 1.6605e-27 kg = 931.5 MeV/c^2 Neutron (Entdeckung 1932 James Chadwick) Kraft Reichweite (cm) Stärke bei 10 13 cm im Vergleich zu starker Kraft Gravitation unendlich 10 38 elektrische Kraft
Physikalisches Praktikum I
Fachbereich Physik Physikalisches Praktikum I K20 Name: Halbwertszeit von Rn Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss
Theoretische Grundlagen Physikalisches Praktikum. Versuch 8: Radioaktivität
Theoretische Grundlagen Physikalisches Praktikum Versuch 8: Radioaktivität Radioaktivität spontane Umwandlung instabiler tomkerne natürliche Radioaktivität: langlebige Urnuklide und deren Zerfallsprodukte
Technologie/Informatik Kernaufbau und Kernzerfälle. Dipl.-Phys. Michael Conzelmann, StR Staatliche FOS und BOS Bad Neustadt a. d.
Technologie/Informatik Kernaufbau und Kernzerfälle Dipl.-Phys. Michael Conzelmann, StR Staatliche FOS und BOS Bad Neustadt a. d. Saale Übersicht Kernaufbau Rutherford-Experiment, Nukleonen Schreibweise,
Einführungsseminar S2 zum Physikalischen Praktikum
Einführungsseminar S2 zum Physikalischen Praktikum 1. Organisatorisches 2. Unterweisung 3. Demo-Versuch Radioaktiver Zerfall 4. Am Schluss: Unterschriften! Praktischer Strahlenschutz Wechselwirkung von
Physik für Mediziner Radioaktivität
Physik für Mediziner http://www.mh-hannover.de/physik.html Radioaktivität Peter-Alexander Kovermann Institut für Neurophysiologie [email protected] Der Aufbau von Atomen 0-5 - 0-4 m 0-0 -4
Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften
Praxisseminar Strahlenschutz Teil 2: Ionisierende Strahlung Markus Drapalik 14.03.2013 26.03.2013 Praxisseminar Strahlenschutz Teil 2: Ionisierende Strahlung 1 1 Inhalt Aufbau des Atoms Atomarer Zerfall
(in)stabile Kerne & Radioaktivität
Übersicht (in)stabile Kerne & Radioaktivität Zerfallsgesetz Natürliche und künstliche Radioaktivität Einteilung der natürlichen Radionuklide Zerfallsreihen Zerfallsarten Untersuchung der Strahlungsarten
41. Kerne. 34. Lektion. Kernzerfälle
41. Kerne 34. Lektion Kernzerfälle Lernziel: Stabilität von Kernen ist an das Verhältnis von Protonen zu Neutronen geknüpft. Zu viele oder zu wenige Neutronen führen zum spontanen Zerfall. Begriffe Stabilität
42. Radioaktivität. 35. Lektion Radioaktivität
42. Radioaktivität 35. Lektion Radioaktivität Lernziel: Unstabile Kerne zerfallen unter Emission von α, β, oder γ Strahlung Begriffe Begriffe Radioaktiver Zerfall ktivität Natürliche Radioaktivität Künstliche
15 Kernphysik Physik für E-Techniker. 15 Kernphysik
15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 15.5.3 Kettenreaktion 15. Kernphysik 15.
Radioaktivität. den 7 Oktober Dr. Emőke Bódis
Radioaktivität den 7 Oktober 2016 Dr. Emőke Bódis Prüfungsfrage Die Eigenschaften und Entstehung der radioaktiver Strahlungen: Alpha- Beta- und Gamma- Strahlungen. Aktivität. Zerfallgesetz. Halbwertzeit.
Dieter Suter Physik B3
Dieter Suter - 421 - Physik B3 9.2 Radioaktivität 9.2.1 Historisches, Grundlagen Die Radioaktivität wurde im Jahre 1896 entdeckt, als Becquerel feststellte, dass Uransalze Strahlen aussenden, welche den
Physik für Mediziner im 1. Fachsemester
Physik für Mediziner im 1. Fachsemester #28 10/12/2008 Vladimir Dyakonov [email protected] Reichweite radioaktiver Strahlung Alpha-Strahlung: Wenige cm in Luft Abschirmung durch Blatt Papier,
Natürliche Radioaktivität
Natürliche Radioaktivität Definition Natürliche Radioaktivität Die Eigenschaft von Atomkernen sich spontan in andere umzuwandeln, wobei Energie in Form von Teilchen oder Strahlung frei wird, nennt man
Versuch 24 Radioaktivität
Grundpraktikum der Fakultät für Physik Georg August Universität Göttingen Versuch 24 Radioaktivität Praktikant: Joscha Knolle Ole Schumann E-Mail: [email protected] Durchgeführt am: 6.3.213 Abgabe: 7.3.213
15 Kernphysik Der Atomkern 15.2 Kernspin Zerfallsgesetz radioaktiver Kerne
15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität ität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 1553K 15.5.3 Kettenreaktion 15. Kernphysik
Röntgenstrahlen. Röntgenröhre von Wilhelm Konrad Röntgen. Foto: Deutsches Museum München.
Röntgenstrahlen 1 Wilhelm Konrad Röntgen Foto: Deutsches Museum München. Röntgenröhre von 1896 2 1 ev = 1 Elektronenvolt = Energie die ein Elektron nach Durchlaufen der Potentialdifferenz 1V hat (1.6 10-19
2) Kernstabilität und radioaktive Strahlung (2)
2) Kernstabilität und radioaktive Strahlung (2) Periodensystem der Elemente vs. Nuklidkarte ca. 115 unterschiedliche chemische Elemente Periodensystem der Elemente 7 2) Kernstabilität und radioaktive Strahlung
Radioaktiver Zerfall des Atomkernes: α-zerfall
Radioaktiver Zerfall des Atomkernes: α-zerfall Schwere Atomkerne (hohes Z, hohes N) sind instabil gegen spontanen Zerfall. Die mögliche Emission einzelner Protonen oder einzelner Neutronen ist nicht häufig.
Halbwertszeit von Ag und In
K21 Name: Halbwertszeit von Ag und In Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von jedem Teilnehmer eigenständig (keine
1 Natürliche Radioaktivität
1 NATÜRLICHE RADIOAKTIVITÄT 1 1 Natürliche Radioaktivität 1.1 Entdeckung 1896: Henri BEQUEREL: Versuch zur Fluoreszenz = Emission einer durchdringenden Stahlung bei fluoreszierenden Uran-Verbindungen Eigenschaften:
Praktikum Physik Radioaktivität 13GE RADIOAKTIVITÄT VERSUCHSAUSWERTUNG
RADIOAKIVIÄ VERSUCHSAUSWERUNG I. VERSUCHSZIEL Die Zerfallskurve einer radioaktiven Substanz soll aufgenommen werden. Aus dieser Zerfallskurve soll das Gesetz des radioaktiven Zerfalls hergeleitet werden.
Klausur 3 Kurs 12Ph1e Physik
0-03-07 Klausur 3 Kurs Phe Physik Name: Rohpunkte : / Bewertung : Punkte ( ) Erläutern Sie jeweils, woraus α-, β- und γ-strahlen bestehen und geben Sie jeweils mindestens eine Methode an, wie man sie identifizieren
Physikalische Grundlagen ionisierender Strahlung
Physikalische Grundlagen ionisierender Strahlung Bernd Kopka, Labor für Radioisotope an der Universität Göttingen www.radioisotope.de Einfaches Atommodell L-Schale K-Schale Kern Korrekte Schreibweise
1. Physikalische Grundlagen
1.2. Kernumwandlung und Radioaktivität - Entdeckung Antoine Henri Becquerel Entdeckte Radioaktivität 1896 Ehepaar Marie und Pierre Curie Nobelpreise 1903 und 1911 Liese Meitner, Otto Hahn 1. Kernspaltung
27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE
27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 28. Atomphysik, Röntgenstrahlung (Fortsetzung: Röntgenröhre, Röntgenabsorption) 29. Atomkerne, Radioaktivität (Nuklidkarte, α-, β-, γ-aktivität, Dosimetrie)
11. GV: Radioaktivität
Physik Praktikum I: WS 005/06 Protokoll zum Praktikum Dienstag, 15.11.05 11. GV: Radioaktivität Protokollanten Jörg Mönnich - Anton Friesen - Betreuer R. Kerkhoff Radioaktivität Einleitung Unter Radioaktivität
15 Kernphysik Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne
Inhalt 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 15.5.3 Kettenreaktion Der Atomkern
Atome. Definition: das kleinste Teilchen eines chemischen Elementes, das mit chemischen Verfahren nicht mehr zerlegbar ist.
Atome Definition: das kleinste Teilchen eines chemischen Elementes, das mit chemischen Verfahren nicht mehr zerlegbar ist. Das Atom besitzt einen positiv geladene Atomkern und eine negative Elektronenhülle.
Aufbau des Atomkerns a) Gib an, aus wie vielen Protonen und Neutronen die
Aufbau des Atomkerns a) Gib an, aus wie vielen Protonen und Neutronen die Atomkerne von Cl bestehen. b) Erkläre, was man unter Isotopen versteht. Gib ein Beispiel an. 3, Cl c) Im Periodensystem wird die
1. Aufbau des Atomkerns
801-1 1.1 Bausteine des Atomkerns VIII. Der Atomkern und Kernstrahlung 1. Aufbau des Atomkerns 1.1 Bausteine des Atomkerns Der Atomkern ist aus den Nukleonen aufgebaut. Dazu gehören die Protonen (p) und
Musterlösung Übung 4
Musterlösung Übung 4 Aufgabe 1: Radon im Keller a) 222 86Rn hat 86 Protonen, 86 Elektronen und 136 Neutronen. Der Kern hat demnach eine gerade Anzahl Protonen und eine gerade Anzahl Neutronen und gehört
Radioaktiver Zerfall Strahlung Nukliderzeugung. Nukliderzeugung
Radioaktiver Zerfall Strahlung Nukliderzeugung Wiederholung: Struktur der Materie Radioaktivität Nuklidkarte, Nuklide Zerfallsarten Strahlung Aktivität Nukliderzeugung Was ist Radioaktivität? Eigenschaft
NR - Natürliche Radioaktivität Praktikum Wintersemester 2005/06
NR - Natürliche Radioaktivität Praktikum Wintersemester 25/6 Alexander Rembold, Philipp Buchegger, Johannes Märkle Assistent Dr. Torsten Hehl Tübingen, den 7. Dezember 25 Theorie und Grundlagen Halbwertszeit
Fortgeschrittene Experimentalphysik für Lehramtsstudierende. Teil II: Kern- und Teilchenphysik
Fortgeschrittene Experimentalphysik für Lehramtsstudierende Markus Schumacher 30.5.2013 Teil II: Kern- und Teilchenphysik Prof. Markus Schumacher Sommersemester 2013 Kapitel 4: Zerfälle instabiler Kerne
Als Radioaktivität bezeichnet den spontanen Zerfall von Radionukliden unter Emission ionisierender Strahlung.
Als Radioaktivität bezeichnet den spontanen Zerfall von Radionukliden unter Emission ionisierender Strahlung. 1803 John Dalton, Atomtheorie 1869 D.I. Mendelejev, Periodensystem 1888 H. Hertz, experimenteller
Strahlenphysik Grundlagen
Dr. Martin Werner, 17.02.2010 Strahlentherapie und spezielle Onkologie Elektromagnetisches Spektrum aus Strahlentherapie und Radioonkologie aus interdisziplinärer Sicht, 5. Auflage, Lehmanns Media Ionisierende
Versuch 25: Messung ionisierender Strahlung
Versuch 25: Messung ionisierender Strahlung Die Abstandsabhängigkeit und der Wirkungsquerschnitt von α- und γ-strahlung aus einem Americium-24-Präparat sollen untersucht werden. In einem zweiten Teil sollen
Lagerung des Abfalls. radioaktiver Abfall
Lagerung des Abfalls radioaktiver Abfall Radioaktivität Was ist Radioaktivität? Welche Eigenschaften besitz sie? Welche Auswirkungen kann sie haben? Warnung vor radioaktiver Strahlung Internationale Strahlenschutzzeichen
Versuch 29 Radioaktivität
Physikalisches Praktikum Versuch 29 Radioaktivität Praktikanten: Johannes Dörr Gruppe: 14 [email protected] physik.johannesdoerr.de Datum: 25.09.2006 Katharina Rabe Assistent: Sebastian Geburt [email protected]
Thomas Kuster. 30. Mai 2007
Zerfälle Thomas Kuster 30. Mai 2007 1 Information ˆ Unterrichtsziele Kernumwandlung kennenlernen (Element wird in ein anderes Element umgewandelt) Die gebildeten Kerne (Tochterkerne) im Periodensystem
Radioaktivität und Strahlenschutz. FOS: Kernumwandlungen und Radioaktivität
R. Brinkmann http://brinkmann-du.de Seite 25..23 -, Beta- und Gammastrahlen Radioaktivität und Strahlenschutz FOS: Kernumwandlungen und Radioaktivität Bestimmte Nuklide haben die Eigenschaft, sich von
Energie wird normalerweise in Joule gemessen. Ein Joule (J) einspricht einem Newtonmeter
Maße wie Gammastrahlen abgeschwächt werden. Im Gegensatz zu den Gammastrahlen sind die Neutronenstrahlen auch Teilchenstrahlen wie Alpha- und Betastrahlen. Die Reichweiten von Strahlen mit einer Energie
5) Messung radioaktiver Strahlung (1)
5) Messung radioaktiver Strahlung (1) Registrierung von Wechselwirkungen zwischen Strahlung und Materie Universelles Prinzip: Messung der Ionisierungswirkung Messung der Ionisierung Messung der Dosis.
Lernziele zu Radioaktivität 1. Radioaktive Strahlung. Entdeckung der Radioaktivität. Entdeckung der Radioaktivität
Radioaktive Strahlung Entstehung Nutzen Gefahren du weisst, Lernziele zu Radioaktivität 1 dass Elementarteilchen nur bedingt «elementar» sind. welche unterschiedlichen Arten von radioaktiven Strahlungen
NR Natürliche Radioaktivität
NR Natürliche Radioaktivität Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 1.1 rten der Radioaktivität........................... 2 1.2 ktivität und Halbwertszeit.........................
Aufbau der Atome und Atomkerne
ufbau der tome und tomkerne tome bestehen aus dem tomkern (d 10-15 m) und der Elektronenhülle (d 10-10 m). Der Raum dazwischen ist leer. (Rutherfordscher Streuversuch (1911): Ernest Rutherford beschoss
Klausur -Informationen
Klausur -Informationen Datum: 4.2.2009 Uhrzeit und Ort : 11 25 im großen Physikhörsaal (Tiermediziner) 12 25 ibidem Empore links (Nachzügler Tiermedizin, bitte bei Aufsichtsperson Ankunft melden) 11 25
Versuch A07: Zählstatistik und β-spektrometer
Versuch A07: Zählstatistik und β-spektrometer 5. April 2018 I Theorie I.1 Das Zerfallsgesetz Instabile Atomkerne zerfallen spontan nach einem gewissen Zeitintervall dt, mit einer Wahrscheinlichkeit, die
1) Targetmasse für neutrinolosen doppelten β-zerfall:
1) Targetmasse für neutrinolosen doppelten β-zerfall: Ein vielversprechender Kandidat für die Suche nach dem neutrinolosen doppelten β- Zerfall ist. Die experimentelle Observable ist die Halbwertszeit.
Abgabetermin
Aufgaben Serie 1 1 Abgabetermin 20.10.2016 1. Streuexperiment Illustrieren Sie die Streuexperimente von Rutherford. Welche Aussagen über Grösse und Struktur des Kerns lassen sich daraus ziehen? Welches
Strahlung. Arten und Auswirkungen
Strahlung Arten und Auswirkungen Themen Alpha-Strahlung (α) Strahlung Zerfall Entdeckung Verwendung Beta-Strahlung (β) Entstehung Wechselwirkung mit Materie Anwendungen Forschungsgeschichte Gamma-Strahlung
Gedanken zur Messtechnik im Strahlenschutz FT-B Ing. Wolfgang Aspek FF Hürm - AFK Mank - BFK Melk
Gedanken zur Messtechnik im Strahlenschutz FT-B Ing. Wolfgang Aspek FF Hürm - AFK Mank - BFK Melk Allgemeine Unfallversicherungsanstalt Unfallverhütungsdienst Wer misst...... misst Mist!! Leerwertmessungen
d 10 m Cusanus-Gymnasium Wittlich Das Bohrsche Atomodell Nils Bohr Atomdurchmesser 10 Kerndurchmesser 14 d 10 m Atom
Das Bohrsche Atomodell Nils Bohr 1885-1962 Atomdurchmesser 10 d 10 m Atom Kerndurchmesser 14 http://www.matrixquantenenergie.de d 10 m Kern 14 dkern 10 m 10 datom 10 m Masse und Ladung der Elementarteilchen
R. Brinkmann Seite
R. Brinkmann http://brinkmann-du.de Seite 25..203 Oberstufe: se und ausführliche Lösungen zur Klassenarbeit zur Elektrik und Kernphysik se: E Eine Glühlampe 4V/3W (4 Volt, 3 Watt) soll an eine Autobatterie
Radon als Gebäudeschadstoff
Fachkongress Asbest- und Bauschadstoffe 09. Dezember 2016 Radon als Gebäudeschadstoff Radonfachstelle Deutschschweiz Institut Energie am Bau /Fachhochschule Nordwestschweiz Falk Dorusch Dipl. Ing. Umwelt-
Strahlenschutzbelehrung zum Umgang mit radioaktiven Quellen im Physikalischen Fortgeschrittenen-Praktikum. Strahlenart Versuch Energie
Strahlenschutzbelehrung zum Umgang mit radioaktiven Quellen im Physikalischen Fortgeschrittenen-Praktikum Strahlenarten im F.-Praktkum Strahlenart Versuch Energie α-teilchen (Energieverlust) E α < 6 MeV
Zusammenhang. Aktivität Zählrate - Dosisleistung. Strahlungsquelle Aktivität Becquerel. Strahlenbelastung Äquivalentdosisleistung
Zusammenhang Aktivität Zählrate - Dosisleistung Strahlungsquelle Aktivität Becquerel Strahlenbelastung Äquivalentdosisleistung µsv/h Strahlungsmessgerät Impulse, Anzahl, Zeit Strahlungsquelle Cs-37 Strahlungsquelle
Abschwächung von γ-strahlung
K10 Name: Abschwächung von γ-strahlung Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von jedem Teilnehmer eigenständig (keine
Arbeitsfragen zur Vorbereitung auf den Quali
Arbeitsfragen zur Vorbereitung auf den Quali Atombau 1 Was bedeutet das Wort Atom? 2 Welche Aussage mache Dalton über die Atome? 3 Was ist der größte Teil eines Atoms? 4 Was sind Moleküle? 5 Durch welchen
13 Radioaktivität. I in na. Der Ionisationsstrom ist ein Maß für die pro Sekunde erzeugte Ladung Q und damit für die Aktivität des Präparats.
13 Radioaktivität 13.1 Historisches Röntgen, Becquerel, Curie 13.2 Nachweismethoden Einführungsversuch: Die rad. Strahlung ionisiert die Luft und entlädt ein aufgeladenes Elektroskop a) Ionisationskammer
9. Dosimetrie 2L. 1. Radioaktivität. Stabile Kerne. Kern oder A Kern oder Kern A,
9. 2L 1. Radioaktivität Stabile Kerne tome enthalten Elektronenhüllen, welche die meisten makroskopischen Eigenschaften der Materie bestimmen (Magnetismus, Lichtabsorption, Leitfähigkeit, chemische Struktur,
Physikalisches Anfängerpraktikum Teil 1. Protokollant: Versuch 1/1 Poisson-Statistik. Sebastian Helgert, Sven Köppel
Physikalisches Anfängerpraktikum Teil 1 Protokoll Versuch 1/1 Poisson-Statistik Sebastian Helgert Meterologie Bachelor 3. Semester Physik Bachelor 3. Semester Versuchsdurchführung: Do. 12. November 2009,
Examensaufgaben RADIOAKTIVITÄT
Examensaufgaben RADIOAKTIVITÄT Aufgabe 1 (September 2007) a) Stellen Sie das Grundgesetz des radioaktiven Zerfalls auf und leiten sie aus diesem Gesetz den Zusammenhang zwischen der Halbwertszeit und der
Thema heute: Aufbau der Materie: Kernumwandlungen, Spaltung von Atomkernen
Wiederholung der letzten Vorlesungsstunde: Experiment von Rutherford, Atombau, atomare Masseneinheit u, 118 bekannte Elemente, Isotope, Mischisotope, Massenspektroskopie, Massenverlust 4H 4 He, Einstein:
Szintillationszähler Zählstatistik
Physikalisches Grundpraktikum IV Universität Rostock :: Institut für Physik 10 Szintillationszähler Zählstatistik Name: Daniel Schick Betreuer: Dr. Enenkel & Dr. Holzhüter Versuch ausgeführt: 01.06.05
Versuch 1.2: Radioaktivität
1 Versuch 1.2: Radioaktivität Sicherheitshinweis: Schwangere dürfen diesen Versuch nicht durchführen. Sollten Sie als Schwangere zu diesem Versuch eingeteilt worden sein, so wenden Sie sich zwecks Zuweisung
Examensaufgaben RADIOAKTIVITÄT
Examensaufgaben RADIOAKTIVITÄT Aufgabe 1 (September 2007) a) Stellen Sie das Grundgesetz des radioaktiven Zerfalls auf und leiten sie aus diesem Gesetz den Zusammenhang zwischen der Halbwertszeit und der
1. Versuchsaufbau 2. Versuchsauswertung a. Diagramme b. Berechnung der Zerfallskonstanten und Halbwertszeit c. Fehlerbetrachtung d.
Christian Müller Jan Philipp Dietrich K2 Halbwertszeit (Thoron) Protokoll 1. Versuchsaufbau 2. Versuchsauswertung a. Diagramme b. Berechnung der Zerfallskonstanten und Halbwertszeit c. Fehlerbetrachtung
Radiologie Modul I. Teil 1 Grundlagen Röntgen
Radiologie Modul I Teil 1 Grundlagen Röntgen Teil 1 Inhalt Physikalische Grundlagen Röntgen Strahlenbiologie Technische Grundlagen Röntgen ROENTGENTECHNIK STRAHLENPHYSIK GRUNDLAGEN RADIOLOGIE STRAHLENBIOLOGIE
Strahlungslose Übergänge. Pumpen Laser
Prof Ch Berger, Physik f Maschinenbauer, WS 02/03 15 Vorlesung 44 Strahlungsprozesse 441 Das Zerfallsgesetz Elektronen aus energetisch hoher liegenden Zustanden gehen in die tieferen Zustande uber, falls
Thomas Kuster. 30. Mai 2007
Zerfälle Thomas Kuster 30. Mai 2007 1 Information ˆ Unterrichtsziele Kernumwandlung kennenlernen (Element wird in ein anderes Element umgewandelt) Die gebildeten Kerne (Tochterkerne) im Periodensystem
Physikalische. Grundlagen. L. Kölling, Fw Minden
Physikalische Grundlagen L. Kölling, Fw Minden Radioaktivität kann man weder sehen, hören, fühlen, riechen oder schmecken. Daher muss sie der FA (SB) zumindest verstehen, um im Einsatzfall die erforderlichen
Protokoll zum Grundversuch Radioaktität
Protokoll zum Grundversuch Radioaktität Fabian Schmid-Michels & Nils Brüdigam Universität Bielefeld Sommersemester 2007 Grundpraktikum II 12.06.2007 Inhaltsverzeichnis 1 Ziel 2 2 Theorie 2 2.1 Nuklid....................................
Physik-Vorlesung. Radioaktivität.
3 Physik-Vorlesung. Radioaktivität. SS 16 2. Sem. B.Sc. Oec. und B.Sc. CH 5 Themen Aufbau der Atomkerns Isotope Zerfallsarten Messgrößen Strahlenschutz 6 Was ist Radioaktivität? Radioaktivität = Umwandlungsprozesse
Physik am Samstagmorgen 19. November Radioaktivität. Ein unbestechlicher Zeitzeuge. Christiane Rhodius
Physik am Samstagmorgen 19. November 2005 Radioaktivität Ein unbestechlicher Zeitzeuge Christiane Rhodius Archäochronometrie Warum und wie datieren wir? Ereignisse innerhalb der menschlichen Kulturentwicklung
Atomphysik NWA Klasse 9
Atomphysik NWA Klasse 9 Radioaktive Strahlung Strahlung, die im Inneren der Atomkerne entsteht heißt radioaktive Strahlung. Wir unterscheiden zwischen Teilchen- und Wellenstrahlung! Strahlung in der Natur
UNIVERSITÄT BIELEFELD
UNIVERSITÄT BIELEFELD 7 Kernphysik 7.1 - Grundversuch Radioaktivität Durchgeführt am 15.11.06 Dozent: Praktikanten (Gruppe 1): Dr. Udo Werner Marcus Boettiger R. Kerkhoff Marius Schirmer E3-463 [email protected]
Atomphysik NWA Klasse 9
Atomphysik NWA Klasse 9 Atome wurden lange Zeit als die kleinsten Teilchen angesehen, aus denen die Körper bestehen. Sie geben den Körpern ihre chemischen und physikalischen Eigenschaften. Heute wissen
Abiturprüfung Physik, Grundkurs. Induktionsspannungen an einer im Magnetfeld schwingenden Leiterschaukel
Seite 1 von 8 Abiturprüfung 2009 Physik, Grundkurs Aufgabenstellung: Aufgabe 1: Induktionsspannungen an einer im Magnetfeld schwingenden Leiterschaukel Ein Kupferstab der Länge L = 14 cm hängt wie in Abbildung
Welcher Wissenschaftler sagte, dass sich die Materie aus unteilbaren Teilchen ("atomos") zusammensetzen würde?
Posten 1a Welcher Wissenschaftler sagte, dass sich die Materie aus unteilbaren Teilchen ("atomos") zusammensetzen würde? a) Leukipp von Milet (=> Posten 2a) b) Demokrit (=> Posten 3d) c) Rutherford (=>
2. Der Aufbau der Atome wird mit dem Rutherford schen und dem Bohr schen Atommodellen beschrieben. Ordne die Aussagen zu und verbinde.
Atommodelle 1. Vervollständige den Lückentext. Atome bestehen aus einer mit negativ geladenen und einem mit positiv geladenen und elektrisch neutralen. Die Masse des Atoms ist im konzentriert. Die Massenzahl
Hauptseminar Quantenmechanisches Tunneln WS 2010/2011. Thema: Tunneln durch einfache Potentialbarrieren und Alphazerfall
Hauptseminar Quantenmechanisches Tunneln WS 2010/2011 Thema: Tunneln durch einfache Potentialbarrieren und Alphazerfall Torben Kloss, Manuel Heinzmann Gliederung Was ist tunneln? Tunneln durch ein beliebiges
Klausurinformation. Sie dürfen nicht verwenden: Handy, Palm, Laptop u.ae. Weisses Papier, Stifte etc. Proviant, aber keine heiße Suppe u.dgl.
Klausurinformation Zeit: Mittwoch, 3.Februar, 12:00, Dauer :90 Minuten Ort: Veterinärmediziner: Großer Phys. Hörsaal ( = Hörsaal der Vorlesung) Geowissenschaftler u.a.: Raum A140, Hauptgebäude 1. Stock,
Neutronenaktivierung (NAK) Fortgeschrittenen Praktikum, SS 2008
Fortgeschrittenen Praktikum, SS 28 1. Juli 28 Neutronenaktivierung (NAK) Fortgeschrittenen Praktikum, SS 28 Alexander Seizinger, Michael Ziller, Philipp Buchegger, Tobias Müller Betreuer: Georg Meierhofer
Skript zum Masterpraktikum. Studiengang: Radiochemie. Radioaktivität und Strahlenschutz
Skript zum Masterpraktikum Studiengang: Radiochemie Radioaktivität und Strahlenschutz Stand: Sommersemester 2010 1 Gliederung 1. Einführung 1.1. Grundlagen zur Radioaktivität 1.2. Messgrößen der Radioaktivität
Abiturprüfung Physik, Leistungskurs. Aufgabe: Anregung von Vanadium und Silber durch Neutronen
Seite 1 von 6 Abiturprüfung 2013 Physik, Leistungskurs Aufgabenstellung: Aufgabe: Anregung von Vanadium und Silber durch Neutronen Vanadium besteht in der Natur zu 99,75 % aus dem stabilen Isotop 51 23
Atombau. Chemie. Zusammenfassungen. Prüfung Mittwoch, 14. Dezember Elektrische Ladung. Elementarteilchen. Kern und Hülle
Chemie Atombau Zusammenfassungen Prüfung Mittwoch, 14. Dezember 2016 Elektrische Ladung Elementarteilchen Kern und Hülle Atomsorten, Nuklide, Isotope Energieniveaus und Schalenmodell Steffi Alle saliorel
