Mikrocomputertechnik. Unterprogramm

Größe: px
Ab Seite anzeigen:

Download "Mikrocomputertechnik. Unterprogramm"

Transkript

1 Unterprogramm Ein Teilproblem wird entweder zur mehrmaligen Verwendung oder zur Programmstrukturierung als Unterprogramm codiert. Ein Unterprogramm wird von einem übergeordneten Programm (Hauptprogramm) aufgerufen. Nach Ablauf des Programms wird das aufrufende Programm fortgesetzt. Unterschied zwischen Verzweigung und Unterprogramm LB1 LB2 JMP LB2 STOP UP JSR UP JSR UP STOP Der Rücksprung aus dem Unterprogramm führt auf unterschiedliche Adressen, d.h. die Rücksprungadresse ist nicht wie bei der Verzweigung fest im Programm codiert, sondern wird erst beim Unterprogrammaufruf ermittelt und auf dem Stack abgespeichert JMP LB1 RTS

2 Befehle : JSR (Jump to Subroutine) BSR (Branch to Subroutine) absoluter Sprung zum Unterprogramm, Rückkehradresse wird auf dem Stack abgelegt relativer Sprung zum Unterprogramm, Rückkehradresse wird auf dem Stack abgelegt RTS (Return from Subroutine) Rückkehr aus dem Unterprogramm, Rückkehradresse wird vom Stack gelesen Im Befehlsatz des Prozessors gibt es (leider) keine bedingten Unterprogrammsprünge.

3 Stack (Stapel, Kellerspeicher) ein besonderer Speicherbereich innerhalb des normalen Arbeitsspeichers Arbeitsprinzip: Zuletzt auf den Stack geschriebener Wert wird als erstes wieder gelesen. LIFO (Last In First Out) Stackpointer Der Stackpointer ist ein Zeiger auf den zuletzt eingetragenen Wert im Stack. Spezielle Befehle Für Stackzugriffe werden typischerweise die Befehle push und pop verwendet. o push auf den Stack schreiben o pop vom Stack lesen Stack Stackpointer Pop Push Der Stackpointer wird dabei automatisch mitgeführt. Der Stack wird typischerweise von hohen Adressen zu tiefen Adressen beschrieben.

4 Stack beim Als Stackpointer wird das Register A7 verwendet. Der Stackbereich wird durch die Initialisierung des Registers A7 festgelegt. Diese Initialisierung muss vor der ersten Verwendung des Stacks erfolgen, also vor dem ersten Unterprogrammaufruf. Im Simulator wird der Stackpointer automatisch mit $1 belegt. Der Befehlsatz des kennt keinen Push und Pop- Befehl. Diese Befehle ergeben sich aus dem Move-Befehl kombiniert mit den Adressierungsarten Postinkrement und Pedekrement. Move.w D0, -(A7) => Push D0 Move.w (A7)+, D0 => Pop D0 Abhängig von der verwendetet Datenbreite wird A7 automatisch um 1,2 oder 4 inkrementiert oder dekrementiert.

5 Beispiel: BlockmoveUP1: PROG move.l #$1,A7 ;Stackpointer auf $1 bsr MOVE ; Sprung ins Unterprogramm ENDE stop #$2700 ;***************************************************** ; Unterprogramm MOVE MOVE... FERTIG RTS ; Rücksprung end PROG

6 BlockmoveUP2: Wird das Unterprogramm MOVE ein zweites mal aufgerufen und z.b. zu A1 ein Wert addiert, um ein neues Ziel zu erhalten, so wird das Programm fehlerhaft reagieren, wenn im Unterprogramm die Registerinhalte verändert wurden. Es müssen daher immer alle im Unterprogramm verwendeten Register am Beginn des Unterprogramms auf den Stack gerettet und am Ende des Unterprogramms wieder hergestellt werden. PROG move.l #$1,A7 ;Stackpointer auf $1 bsr MOVE ; Sprung ins Unterprogramm add.l #$20,A1 ; Block auf neue Adresse verschieben bsr MOVE ENDE stop #$2700 ;***************************************************** ; Unterprogramm MOVE MOVE move.l A0,-(A7) move.l A1,-(A7) move.w D2,-(A7) ;Register retten FERTIG move.w (A7)+,D2 ;Register zurückholen move.l (A7)+,A1 move.l (A7)+,A0 RTS ; Rücksprung end PROG

7 Das Retten und Zurückholen der Register muss in umgekehrter Reihenfolge erfolgen. Diese Aktion tritt sehr häufig auf. Daher steht dazu ein spezieller Befehl zur Verfügung. MOVEM (Move Multiple) Assembler-Syntax: MOVEM.X Registerliste, < ea > MOVEM.X < ea >, Registerliste MOVEM ermöglicht das Kopieren einer ganzen Liste von Registern, maximal 16 Register. Erlaubt sind Wort- oder Langwortoperationen (.W oder.l). Die Liste wird in folgender Syntax angegeben: Auflistung einzelner Register, getrenn mit / Registerbereich z.b. D0-D3 Die Register werden unabhängig von der Aufzählungsreihenfolge in einer festen, internen Reihenfolge abgelegt. Der Befehl MOVEM wird in erster Linie zum Retten von Registern auf den Stack verwendet. Beispiel: movem.l D0-D7/A0-A6, -(A7) movem.l (A7)+, D0-D7/A0-A6 ; alle Register bis auf Stackpointer ;auf den Stack retten ; alle Register vom Stack holen movem.l D0/D3/D7/A4-A6, -(A7) ; D0,D3,D7,A4,A5,A6 auf den Stack retten

8 Beispiel: BlockmoveUP3: Verschachtelte Unterprogrammaufrufe ;***************************************************** ; Unterprogramm MOVE MOVE move.w D2,-(A7);Register retten V bsr VORW bra FERTIG R bsr RUECKW FERTIG move.w (A7)+,D2;Register zurückholen RTS ; Unterprogramm VORW, Länge in D0 VORW movem.l D0/A0-A1,-(A7) movem.l (A7)+,D0/A0-A1 rts ; Unterprogramm RUECKW, Länge in D0 RUECKW movem.l D0/A0-A1,-(A7) movem.l (A7)+,D0/A0-A1 rts

9 Vor BSR MOVE Im UP MOVE Im UP RUECK 1 FFFE Rück Rück FFFC 041C adr 041C adr FFFA 10 D2 10 D2 FFF8 Rück FFF adr FFF4 FFF A1 FFF0 FFEE 0500 A0 FFEC FFEA 0010 D0

10 1 FFFE FFFC FFFA FFF8 FFF6 FFF4 FFF2 FFF0 FFEE FFEC FFEA Im UP RUECK Rück 041C adr 10 D2 Rück 0448 adr 0520 A A D0 Im UP RUECK vor RTS Rück 041C adr 10 D2 Rück 0448 adr 0520 A A D0 Im UP MOVE Rück 041C adr 10 D2 Rück 0448 adr 0520 A A D0 Im Hauptprogramm Rück 041C adr 10 D2 Rück 0448 adr 0520 A A D0

11 Parameterübergabe Parameter sind Daten, die an ein Unterprogramm übergeben werden oder vom Unterprogramm zurückgegeben werden. Folgende Varianten sind möglich: Parameter im Register Übliche Methode! Wichtig ist, dass Register, die Rückgabeparameter enthalten, nicht auf dem Stack gesichert werden dürfen. Beim Zurückschreiben der Register wird sonst das gerade berechnete Ergebnis überschrieben. Parameter im Speicher ( = globale Variable ) Parameter auf dem Stack Dabei werden die Parameter vor dem UP- Aufruf auf den Stack geschrieben. Für Rückgabeparameter müssen Platzhalter auf den Stack geschrieben werden. Im UP wird auf die Parameter mit einer Adressdistanz ausgehend vom aktuellen Stackpointer auf die Parameter zugegriffen. Nach der Rückkehr vom UP muss der Stackpointer korrigiert werden.

12 Beispiel : BlockmoveUP4 (Parameterübergabe über Stack) PROG move.l #BL1_END,D4 ; Laenge berechnen-> D4 sub.l #BL1_ANF,D4 move.l #BL1_ANF,-(A7) ; BL_ANFANG auf Stack move.l #BL2_ANF,-(A7) ; Ziel auf Stack move.w D4,-(A7) bsr MOVE ; Block verschieben add.l #10,A7 ; Stack korrigieren ENDE stop #2700 ;***************************************************** MOVE movem.l D2/A0-A1,-(A7) ;Register retten (12 Byte) move.w 16(A7),D2 ;Parameter vom Stack lesen move.l 18(A7),A1 move.l 22(A7),A0 FERTIG movem.l (A7)+,D2/A0-A1 ;Register zurückholen RTS 1 FFFE FFFC FFFA FFF8 FFF6 FFF4 FFF2 FFF0 FFEE FFEC FFEA FFE8 FFE6 BL1_ 041C ANF BL2_ 041C ANF 10 Len Rück 0448 adr 0520 A A D

Mikrocomputertechnik - Programmierung

Mikrocomputertechnik - Programmierung 3 Programmierung Assembler Aufgaben: Übersetzt mnemotechnische Abkürzungen (z.b. move, add...) in die Maschinenbefehle des Prozessors Ermöglicht die Vergabe von Namen für Speicheradressen (Label) Berechnet

Mehr

11. Unterprogrammtechnik

11. Unterprogrammtechnik 11 Unterprogrammtechnik 111 Sprung und Rücksprung 112 Retten der Register 113 Parameter-Übergabe Programmierkurs II Wolfgang Effelsberg 11 Unterprogrammtechnik 11-1 111 Sprung und Rücksprung BSR Verzweige

Mehr

Computersysteme. Stacks Anwendung in der Assembler-Programmierung

Computersysteme. Stacks Anwendung in der Assembler-Programmierung Computersysteme Stacks Anwendung in der Assembler-Programmierung 1 Unterprogramme Betrachten wir zunächst folgendes Programm m_mod_n : /Berechne m modulo n für positive Integerwerte m und n. /Beim Programmstart

Mehr

Mikrocomputertechnik. Adressierungsarten

Mikrocomputertechnik. Adressierungsarten Adressierungsarten Ein Mikroprozessor bietet meist eine Reihe von Möglichkeiten, die Operanden für eine Rechenoperation zu bestimmen. Diese Möglichkeiten bezeichnet man als Adressierungsarten. unmittelbare

Mehr

Unterprogramme. Unterprogramme

Unterprogramme. Unterprogramme Unterprogramme Unterprogramme wichtiges Hilfsmittel für mehrfach benötigte Programmabschnitte spielen in höheren Programmiersprachen eine wesentliche Rolle in Assembler sind bestimmte Konventionen nötig

Mehr

Adressierungsarten des 6809 (Forts.)

Adressierungsarten des 6809 (Forts.) Adressierungsarten des 6809 (Forts.) Zusammenfassung zur indizierten Adressierung: 19 Beispiel-Programm 1 für 6809 6809-Assemblerprogramm zur Suche nach Leerzeichen (space, tab, return) in einem String:

Mehr

Assembler Unterprogramme

Assembler Unterprogramme Assembler Unterprogramme Dr.-Ing. Volkmar Sieh Department Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2008 Assembler Unterprogramme 1/43 2008-06-03 Unterprogramme

Mehr

Zusammenfassung der Assemblerbefehle des 8051

Zusammenfassung der Assemblerbefehle des 8051 Zusammenfassung der Assemblerbefehle des 8051 Seite 1 von 5 Befehl Bezeichnung Syntax Wirkung / Beispiel Befehle zum Datentransfer MOV Move MOV [Ziel],[Quelle] MOV P1,P3 Kopiert den Inhalt von P3 nach

Mehr

Schritt Aktion Erläuterung 1 UBRR auf 25 setzen Baudrate auf 9600 TXEN-Bit von UCSRB auf 1 setzen

Schritt Aktion Erläuterung 1 UBRR auf 25 setzen Baudrate auf 9600 TXEN-Bit von UCSRB auf 1 setzen Das Attiny-Projekt Unterprogramme in Assembler 1 Unterprogramme Unterprogramme haben wir schon im Zusammenhang mit BASCOM kennen gelernt. Auch Assemblerprogramme können durch Unterprogramme strukturiert

Mehr

5.1 Beschreibung des Prozessors M Programmierung in Maschinensprache. 5.1 Beschreibung des Prozessors M 68000

5.1 Beschreibung des Prozessors M Programmierung in Maschinensprache. 5.1 Beschreibung des Prozessors M 68000 5. Programmierung in Maschinensprache (Assembler) 5.1 Beschreibung des Prozessors M 68000 5.1 Beschreibung des Prozessors M 68000 5.2 Adressierungsarten des M 68000 5.3 Maschinenbefehle des M 68000 5.4

Mehr

5. Programmierung in Maschinensprache

5. Programmierung in Maschinensprache 5. Programmierung in Maschinensprache (Assembler) 5.1 Beschreibung des Prozessors M 68000 5.2 Adressierungsarten des M 68000 5.3 Maschinenbefehle des M 68000 5.4 Unterprogrammtechnik 5. Maschinensprache

Mehr

Mikrocomputertechnik 2.Mikroprozessor

Mikrocomputertechnik 2.Mikroprozessor 2.3 Programmiermodell des 68000 Aus Sicht des Programmierers besteht der Prozessor aus Registersatz Befehlssatz Adressierungsarten Registersatz des 68000 8 universelle Datenregister (32 Bit) D0 D7 8 Adress-Register

Mehr

Welche Register werden zur Parameterübergabe verwendet? In welcher Reihenfolge werden die Parameter auf dem Stack bzw. in den Registern abgelegt?

Welche Register werden zur Parameterübergabe verwendet? In welcher Reihenfolge werden die Parameter auf dem Stack bzw. in den Registern abgelegt? 6.5 MMIX Befehle 291 Aufrufkonventionen Eine Aufrufkonvention (engl. calling convention) legt fest, wie einer Funktion Parameter übergeben werden und wie der Rückgabewert zurückgegeben wird. Damit spezifiziert

Mehr

Selbststudium Informationssysteme - H1102 Christian Bontekoe & Felix Rohrer

Selbststudium Informationssysteme - H1102 Christian Bontekoe & Felix Rohrer Übung RA, Kapitel 1.5 1. Beantworten Sie bitte folgende Repetitionsfragen 1. Beschreiben Sie in eigenen Worten und mit einer Skizze die Schichtung einer Multilevel Maschine. Folie 5, rechte Seite 2. Welche

Mehr

Fachhochschule Augsburg WS01/02 Mikrocomputertechnik Fachbereich Elektrotechnik Blatt 1/8. Prüfung Mikrocomputertechnik WS 01/02

Fachhochschule Augsburg WS01/02 Mikrocomputertechnik Fachbereich Elektrotechnik Blatt 1/8. Prüfung Mikrocomputertechnik WS 01/02 Fachbereich Elektrotechnik Blatt 1/8 Prüfung Mikrocomputertechnik WS 01/02 Prüfungsfach: Mikrocomputertechnik Prüfer: Prof.Dr.Bayer Prüfungszeit: 90 min Datum: 4.Februar 2002 Hilfsmittel: nicht prog. Taschenrechner

Mehr

Organisatorisches. PDV und Robotik Fakultät 4 TUB 1 INFO4 Übung Assembler 1

Organisatorisches. PDV und Robotik Fakultät 4 TUB 1 INFO4 Übung Assembler 1 Organisatorisches Die Großübung findet zweimal mit gleichen Inhalt statt: Montag 16-18 und Mittwoch 14-16 jeweils im MA001. Betreute Rechnerzeit: Donnerstag 10-18 und Freitag 10-16 jeweils FR2516 Code:

Mehr

Speicher und Adressraum

Speicher und Adressraum Linearer Speicher (Adressraum) Technische Universität München Speicher und Adressraum Freie Speicherhalde (Heap) Freier Speicherstapel (Stack) Globale Variablen Bibliotheksfunktionen Laufzeitsystem Programmcode

Mehr

Unterprogramme mittels Stack (Forts.)

Unterprogramme mittels Stack (Forts.) Unterprogramme mittels Stack (Forts.) gleiches Beispiel mit direkter Übergabe aller Parameter (8-Bit Wert a, 16-Bit Wert b, 16-Bit Ergebnis) durch call by value auf Stack: LDB a * Lade 8-Bit Wert a PSHS

Mehr

Rechnern netze und Organisatio on

Rechnern netze und Organisatio on Rechnernetze und Organisation Subroutines 1 Übersicht Motivation Bibliotheken Call und Return Stack Parameterübergabe Lokale Variablen Shared Libraries Interrupts und Exceptions 2 Reusability von Code

Mehr

Übungsblatt 10 (Block C 2) (16 Punkte)

Übungsblatt 10 (Block C 2) (16 Punkte) georg.von-der-brueggen [ ] tu-dortmund.de ulrich.gabor [ ] tu-dortmund.de pascal.libuschewski [ ] tu-dortmund.de Übung zur Vorlesung Rechnerstrukturen Wintersemester 2016 Übungsblatt 10 (Block C 2) (16

Mehr

Übungsblatt 10 (Block C 2) (16 Punkte)

Übungsblatt 10 (Block C 2) (16 Punkte) georg.von-der-brueggen [ ] tu-dortmund.de ulrich.gabor [ ] tu-dortmund.de marco.duerr [ ] tu-dortmund.de Übung zur Vorlesung Rechnerstrukturen Wintersemester 2018 Übungsblatt 10 (Block C 2) (16 Punkte)

Mehr

Grundlagen der Informatik III Wintersemester 2010/ Vorlesung Dr.-Ing. Wolfgang Heenes

Grundlagen der Informatik III Wintersemester 2010/ Vorlesung Dr.-Ing. Wolfgang Heenes Grundlagen der Informatik III Wintersemester 2010/2011 7. Vorlesung Dr.-Ing. Wolfgang Heenes int main() { printf("hello, world!"); return 0; } msg: main:.data.asciiz "Hello, world!".text.globl main la

Mehr

Technische Informatik I Übung 3: Assembler

Technische Informatik I Übung 3: Assembler Technische Informatik I Übung 3: Assembler Roman Trüb Computer Engineering Group, ETH Zürich 1 Lernziele Übung 3 Aufgabe 1 Aufbau und Aufruf von Funktionen in Assembler Assembler Codeanalyse Aufgabe 2

Mehr

Vorlesung Programmieren

Vorlesung Programmieren Vorlesung Programmieren 17 Vom Programm zur Maschine Prof. Dr. Ralf H. Reussner Version 1.0 LEHRSTUHL FÜR SOFTWARE-DESIGN UND QUALITÄT (SDQ) INSTITUT FÜR PROGRAMMSTRUKTUREN UND DATENORGANISATION (IPD),

Mehr

Stack, Stackpointer, Unterprogramm HP: 0 * 1 * 2 * 3 CAL UP1 4 * 5 * 6 CAL UP2 7 *... UP1: 30 * 33 RET UP2: 40 * 41 CAL UP1 42 * 43 RET

Stack, Stackpointer, Unterprogramm HP: 0 * 1 * 2 * 3 CAL UP1 4 * 5 * 6 CAL UP2 7 *... UP1: 30 * 33 RET UP2: 40 * 41 CAL UP1 42 * 43 RET Stack, Stackpointer, Unterprogramm HP: 0 * 1 * 2 * 3 CAL UP1 4 * 5 * 6 CAL UP2 7 *... UP1: 30 * 33 RET UP2: 40 * 41 CAL UP1 42 * 43 RET Stack, Stackpointer, UP Stack (Stapel, FIFO) wird benötigt UP-Ruf:

Mehr

B1 Stapelspeicher (stack)

B1 Stapelspeicher (stack) B1 Stapelspeicher (stack) Arbeitsweise des LIFO-Stapelspeichers Im Kapitel "Unterprogramme" wurde schon erwähnt, dass Unterprogramme einen so genannten Stapelspeicher (Kellerspeicher, Stapel, stack) benötigen

Mehr

Institut für Informatik Prof. Dr. D. Hogrefe Dipl.-Inf. R. Soltwisch, Dipl.-Inform. M. Ebner, Prof. Dr. D. Hogrefe Informatik II - SS 04.

Institut für Informatik Prof. Dr. D. Hogrefe Dipl.-Inf. R. Soltwisch, Dipl.-Inform. M. Ebner, Prof. Dr. D. Hogrefe Informatik II - SS 04. Kontrollstrukturen Informatik II SS 2004 Teil 4: Assembler Programmierung Sprünge (bedingte und unbedingte) If-then-else, Case Loop (n Durchläufe) While (Abbruchbedingung) Institut für Informatik Prof.

Mehr

Technische Informatik 1 Übung 2 Assembler (Rechenübung) Georgia Giannopoulou (ggeorgia@tik.ee.ethz.ch) 22./23. Oktober 2015

Technische Informatik 1 Übung 2 Assembler (Rechenübung) Georgia Giannopoulou (ggeorgia@tik.ee.ethz.ch) 22./23. Oktober 2015 Technische Informatik 1 Übung 2 Assembler (Rechenübung) Georgia Giannopoulou (ggeorgia@tik.ee.ethz.ch) 22./23. Oktober 2015 Ziele der Übung Aufgabe 1 Aufbau und Aufruf von Funktionen in Assembler Codeanalyse

Mehr

Betriebssysteme Teil 3: Laufzeitsystem für Programme

Betriebssysteme Teil 3: Laufzeitsystem für Programme Betriebssysteme Teil 3: Laufzeitsystem für Programme 23.10.15 1 Literatur [3-1] Stack: http://fbim.fh-regensburg.de/~hab39652/pg1/skriptum/ ausdruecke/maschinenmodell.html [3-2] https://de.wikipedia.org/wiki/dynamischer_speicher

Mehr

Grundlagen der Stackorganisation und -adressierung

Grundlagen der Stackorganisation und -adressierung GRUNDLAGEN DER STACKORGANISATION UND -ADRESSIERUNG 1 Grundlagen der Stackorganisation und -adressierung Das Stack- (Kellerspeicher-) Prinzip ist in der Informatik von grundsätzlicher Bedeutung, namentlich

Mehr

Computer-Systeme Teil 11: Routinen

Computer-Systeme Teil 11: Routinen Computer-Systeme Teil 11: Routinen Computer-Systeme WS 12/13 - Teil 11/Routinen 03.12.2012 1 Übersicht Stack Subroutinen Makros CPU-Modi Traps Computer-Systeme WS 12/13 - Teil 11/Routinen 2 Die einzelnen

Mehr

Technische Informatik II Rechnerarchitektur

Technische Informatik II Rechnerarchitektur Technische Informatik II Rechnerarchitektur 3.Unterprogramme in MMIX Matthias Dräger E-Mail: www: mdraeger@mi.fu-berlin.de www.matthias-draeger.info/lehre/sose2010ti2/ tinyurl.com/sose2010ti2 Zuletzt bearbeitet:

Mehr

Grundlagen zur Assemblerprogrammierung unter SPIM im Sommersemester Lorenz Schauer Mobile & Verteilte Systeme

Grundlagen zur Assemblerprogrammierung unter SPIM im Sommersemester Lorenz Schauer Mobile & Verteilte Systeme Grundlagen zur Assemblerprogrammierung unter SPIM im Sommersemester 2016 Lorenz Schauer Mobile & Verteilte Systeme 12. Juli 2016 Agenda heute Grundlagen: Unterprogramme I Call-by-Value (CBV) vs. Call-by-Reference

Mehr

Assembler DOS (Beta 1) Copyright 2000 Thomas Peschko. Assembler II - DOS. ASSEMBLER Arbeiten mit Dateien und Daten.

Assembler DOS (Beta 1) Copyright 2000 Thomas Peschko. Assembler II - DOS. ASSEMBLER Arbeiten mit Dateien und Daten. Assembler II - DOS ASSEMBLER Arbeiten mit Dateien und Daten peschko@aol.com 1 Wer nun den Eindruck hat, dass unsere Programme hauptsächlich nur Unterprogramme vor ihren Karren spannen und sich darauf beschränken

Mehr

Teil 1: Prozessorstrukturen

Teil 1: Prozessorstrukturen Teil 1: Prozessorstrukturen Inhalt: Mikroprogrammierung Assemblerprogrammierung Motorola 6809: ein einfacher 8-Bit Mikroprozessor Mikrocontroller Koprozessoren CISC- und RISC-Prozessoren Intel Pentium

Mehr

10. Die Adressierungsarten des MSP 430

10. Die Adressierungsarten des MSP 430 10. Die Adressierungsarten 10.1 Übersicht über die Adressierungsarten 10.2 -Operanden 10.3 Indexregister mit Distanz 10.4 Symbolische (relativ zum ) 10.5 Absolute 10.6 Indirekte 10.7 Indirekte Adressierung

Mehr

Vorlesung Rechnerarchitektur

Vorlesung Rechnerarchitektur Vorlesung Rechnerarchitektur Sommersemester 2017 Carsten Hahn 8. Juni 2017 Agenda Grundlagen: Wiederholung Kontroll-Strukturen Stack-Speicher Unterprogramme I Unterprogramme II Call-by-Value (CBV) vs.

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 22: Mima-X Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik

Mehr

9. Die Adressierungsarten des MSP 430

9. Die Adressierungsarten des MSP 430 9. Die Adressierungsarten 9.1 Übersicht über die Adressierungsarten 9.2 -Operanden 9.3 Indexregister mit Distanz 9.4 Symbolische (relativ zum ) 9.5 Absolute 9.6 Indirekte 9.7 Indirekte Adressierung mit

Mehr

Technische Informatik I - HS 18

Technische Informatik I - HS 18 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik I - HS 18 Musterlösung zu Übung 3 Datum : 25.-26. Oktober 2018 Aufgabe 1: Wurzelverfahren nach Heron Das

Mehr

... Adressierung und Befehlsfolgen (1) Speicherbelegung. Hauptspeicheradressen. Inhalt von Speicherbelegungen: Operanden - Zahlen - Zeichen Befehle

... Adressierung und Befehlsfolgen (1) Speicherbelegung. Hauptspeicheradressen. Inhalt von Speicherbelegungen: Operanden - Zahlen - Zeichen Befehle Adressierung und Befehlsfolgen (1) Speicherbelegung Hauptspeicheradressen Inhalt von Speicherbelegungen: Operanden - Zahlen - Zeichen Befehle Address 0 1 i k 2-1 n bits...... word 0 word 1 b n-1 b 1 b

Mehr

Datenstrukturen, Alignment Stack Prozeduraufruf, Parameterübergabe und -rückgabe (Calling Conventions) Leaf procedures

Datenstrukturen, Alignment Stack Prozeduraufruf, Parameterübergabe und -rückgabe (Calling Conventions) Leaf procedures Vorbesprechung U8 Datenstrukturen, Alignment Stack Prozeduraufruf, Parameterübergabe und -rückgabe (Calling Conventions) Leaf procedures Basistypen Alignment der Basistypen auf deren Grösse Grössen (abhängig

Mehr

Mikrocontroller-Programmierung

Mikrocontroller-Programmierung Mikrocontroller-Programmierung Anhand des HC12 Fabian Wiesel Überblick Überblick Mikrocontroller Überblick HC12 CPU Peripherie des DG128 Assemblerprogrammierung Mikrocontroller Leistungsfähigkeit: zwischen

Mehr

Assembler-Unterprogramme

Assembler-Unterprogramme Assembler-Unterprogramme Rolle des Stack Prinzipieller Ablauf Prinzipieller Aufbau Unterprogramme void main(void) int sub(int i) { { int i,k; return i*2; i = sub(13); } k = sub(14); } Wie macht man das

Mehr

6 Speicherorganisation

6 Speicherorganisation Der Speicher des Programms ist in verschiedene Speicherbereiche untergliedert Speicherbereiche, die den eigentlichen Programmcode und den Code der Laufzeitbibliothek enthalten; einen Speicherbereich für

Mehr

Assembler - Adressierungsarten

Assembler - Adressierungsarten Assembler - Adressierungsarten Dr.-Ing. Volkmar Sieh Department Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2008 Assembler - Adressierungsarten 1/31 2008-04-01

Mehr

Vorlesung: Rechnerstrukturen, Teil 2 (Modul IP7)

Vorlesung: Rechnerstrukturen, Teil 2 (Modul IP7) Vorlesung: Rechnerstrukturen, Teil 2 (Modul IP7) Vorlesung: Rechnerstrukturen, Teil 2 (Modul IP7) J. Zhang zhang@informatik.uni-hamburg.de Universität Hamburg AB Technische Aspekte Multimodaler Systeme

Mehr

Programmierung mit C Funktionen

Programmierung mit C Funktionen Programmierung mit C Funktionen Funktionen... sind Unterprogramme (Subroutinen), mit denen Sie Teilprobleme einer größeren Aufgabe lösen können.... fassen Anweisungen zu einem Block zusammen, der eine

Mehr

Vorlesung Programmieren

Vorlesung Programmieren Vorlesung Programmieren 16 Vom Programm zur Maschine Dr.-Ing. Erik Burger Version 1.0 ARBEITSGRUPPE ARCHITECTURE-DRIVEN REQUIREMENTS ENGINEERING (ARE) INSTITUT FÜR PROGRAMMSTRUKTUREN UND DATENORGANISATION

Mehr

MMIX Crashkurs Teil 3 Unterprogramme und Parameterübergabe. Freiling/Wienzek/Mink Vorlesung Rechnerstrukturen RWTH Aachen Sommersemester 2005

MMIX Crashkurs Teil 3 Unterprogramme und Parameterübergabe. Freiling/Wienzek/Mink Vorlesung Rechnerstrukturen RWTH Aachen Sommersemester 2005 MMIX Crashkurs Teil 3 Unterprogramme und Parameterübergabe Freiling/Wienzek/Mink Vorlesung Rechnerstrukturen RWTH Aachen Sommersemester 2005 Unterprogramme Hauptproblem heutiger Softwareentwicklung liegt

Mehr

Einführung in AVR Assembler

Einführung in AVR Assembler Einführung in AVR Assembler Dennis Fassbender Institut für Technik Autonomer Systeme (LRT8) Universität der Bundeswehr München 09042014 Was ist Assembler? Low-level-Programmiersprache Erlaubt direkten

Mehr

9. Assembler: Der Prozessor Motorola 68000

9. Assembler: Der Prozessor Motorola 68000 9.1 Architektur des Prozessors M 68000 9.2 Adressierungsarten des M 68000 9-1 9.1 Beschreibung des Prozessors M 68000 Charakteristische Daten des 56 Maschinenbefehle 14 Adressierungsarten Zweiadressmaschine

Mehr

9. Assembler: Der Prozessor Motorola 68000

9. Assembler: Der Prozessor Motorola 68000 9.1 Architektur des Prozessors M 68000 9.2 Adressierungsarten des M 68000 9-1 9.1 Beschreibung des Prozessors M 68000 Charakteristische Daten des 56 Maschinenbefehle 14 Adressierungsarten Zweiadressmaschine

Mehr

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java 1 / 27 Einstieg in die Informatik mit Java Methoden / Funktionen Gerd Bohlender Institut für Angewandte und Numerische Mathematik Gliederung 2 / 27 1 Überblick 2 Zweck von Methoden 3 Methodendefinition

Mehr

6 Speicherorganisation

6 Speicherorganisation 6 Speicherorganisation Der Speicher des Programms ist in verschiedene Speicherbereiche untergliedert Speicherbereiche, die den eigentlichen Programmcode und den Code der Laufzeitbibliothek enthalten; einen

Mehr

5.GTypische Anwendungsfälle

5.GTypische Anwendungsfälle Die Maschinenprogrammebene eines Rechners Jörg Roth 337 5.GTypische Anwendungsfälle Wir betrachten im Folgenden typische Fälle aus dem Bereich imperativer Programmiersprachen und beschreiben, wie diese

Mehr

Heap vs. Stack vs. statisch. 6 Speicherorganisation. Beispiel Statische Variablen. Statische Variablen

Heap vs. Stack vs. statisch. 6 Speicherorganisation. Beispiel Statische Variablen. Statische Variablen Heap vs. vs. statisch Der Speicher des Programms ist in verschiedene Speicherbereiche untergliedert Speicherbereiche, die den eigentlichen Programmcode und den Code der Laufzeitbibliothek enthalten; einen

Mehr

Heap vs. Stack vs. statisch. 6 Speicherorganisation. Beispiel Statische Variablen. Statische Variablen

Heap vs. Stack vs. statisch. 6 Speicherorganisation. Beispiel Statische Variablen. Statische Variablen Heap vs. vs. statisch Der Speicher des Programms ist in verschiedene Speicherbereiche untergliedert Speicherbereiche, die den eigentlichen Programmcode und den Code der Laufzeitbibliothek enthalten; einen

Mehr

10.1 MOVE-Befehle 10.2 Arithmetische Befehle 10.3 Sprungbefehle 10.4 Programmbeispiele

10.1 MOVE-Befehle 10.2 Arithmetische Befehle 10.3 Sprungbefehle 10.4 Programmbeispiele 10.1 MOVE-Befehle 10.2 Arithmetische Befehle 10.3 Sprungbefehle 10.4 Programmbeispiele 10-1 10.1 MOVE-Befehle MOVE Übertrage Daten von der Quelle zum Ziel Assembler-Syntax: MOVE.X , Operation:

Mehr

Technische Informatik 2 Adressierungsarten

Technische Informatik 2 Adressierungsarten Technische Informatik 2 Adressierungsarten Prof. Dr. Miroslaw Malek Sommersemester 2009 www.informatik.hu-berlin.de/rok/ca Thema heute X-Adressmaschine 0-Adressmaschine 1-Adressmaschine 2-Adressmaschine

Mehr

Name : Klasse : Punkte : Note :

Name : Klasse : Punkte : Note : ESI Semesterendprüfung 15.6.2009 Name : Klasse : Punkte : Note : Zeit: 12.50 bis 13.35 Die Aufgaben sind möglichst direkt auf den Blättern zu lösen (Antworten bitte in ganzen Sätzen!), bei Bedarf die Rückseite

Mehr

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java 1 / 34 Einstieg in die Informatik mit Java Klassen mit Instanzmethoden Gerd Bohlender Institut für Angewandte und Numerische Mathematik Gliederung 2 / 34 1 Definition von Klassen 2 Methoden 3 Methoden

Mehr

Einführung. Saalübung Informatik II SS Einführung. Einführung

Einführung. Saalübung Informatik II SS Einführung. Einführung Saalübung Informatik II SS 2006 SPIM-Assembler Teil 1 Einführung Übung zur SPIM-Assemblerprogrammierung Assembler ist die elementare Sprache eines Prozessors Assemblerbefehle repräsentieren die Basisoperationen

Mehr

U23 Assembler Workshop

U23 Assembler Workshop Ike e.v. http://koeln.ccc.de 2016-11-05 Überblick 1 CPU, Assembler Überblick x86 x86 Assembler 2 RAM, Stack, Calling Conventions Stack Calling Conventions Stackframes 3 Branches Jumps 4 Speicher, C-Interface

Mehr

3AA. Prozeduren und Rekursion Prof. Dr. Wolfgang P. Kowalk Universität Oldenburg WS 2005/2006

3AA. Prozeduren und Rekursion Prof. Dr. Wolfgang P. Kowalk Universität Oldenburg WS 2005/2006 3AA Prozeduren und Rekursion 29.11.05 Prof. Dr. Wolfgang P. Kowalk Universität Oldenburg WS 2005/2006 3AA Prozeduren Berechnete Sprungadresse Ausführung bestimmter Anweisungen durch Schleifen Stattdessen:

Mehr

Unterstützung von Jump Tables

Unterstützung von Jump Tables Unterstützung von Jump Tables Assembler Code: Label_ 1: Label_2: Label_n: Maschinen Code: 0x05342120: 1011010110 0x05443004: 0001011101 0x06756900: 0000111000 Jump Table Nr Label Adresse 0 Label_1 0x05342120

Mehr

1.9 Atmega-Programmierung in ASM/LED-Ziffernanzeige

1.9 Atmega-Programmierung in ASM/LED-Ziffernanzeige 1.9 Atmega-Programmierung in ASM/LED-Ziffernanzeige 1.9.1 Idee Bei der Programmentwicklung braucht man es ab und zu, dass man sich an bestimmten Stellen des Programms Variablenwerte anzeigen lässt. Bei

Mehr

Teil 1: Prozessorstrukturen

Teil 1: Prozessorstrukturen Teil 1: Prozessorstrukturen Inhalt: Mikroprogrammierung Assemblerprogrammierung Motorola 6809: ein einfacher 8-Bit Mikroprozessor Mikrocontroller Koprozessoren CISC- und RISC-Prozessoren Intel Pentium

Mehr

Lösungsvorschlag zur 3. Übung

Lösungsvorschlag zur 3. Übung Prof Frederik Armknecht Sascha Müller Daniel Mäurer Grundlagen der Informatik Wintersemester 09/10 1 Präsenzübungen 11 Schnelltest Lösungsvorschlag zur Übung a) Welche der folgenden Aussagen entsprechen

Mehr

7 Laufzeit-Speicherverwaltung

7 Laufzeit-Speicherverwaltung 7.1 Grundlagen Bevor wir die Code-Generierung betrachten, müssen wir uns Gedanken über zur Laufzeit des zu generierenden Programms notwendige Aktivitäten zur Zuordnung und Freigabe von Speicherplatz machen.

Mehr

Informatik II SS Inhalt. Objektlebensdauer (2/3) Objektlebensdauer (1/3)

Informatik II SS Inhalt. Objektlebensdauer (2/3) Objektlebensdauer (1/3) Inhalt Informatik II SS 2004 Teil 6: Sprachen, Compiler und Theorie 5 Lebensdauer von Objekten Speichermanagement Weiterführende Spracheigenschaften und Bindungen Implementierung von statischen Gültigkeitsbereichen

Mehr

FAKULTÄT FÜR INFORMATIK

FAKULTÄT FÜR INFORMATIK FAKULTÄT FÜR INFORMATIK TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Rechnertechnik und Rechnerorganisation Prof. Dr. Arndt Bode Einführung in die Rechnerarchitektur Wintersemester 2016/2017 Zentralübung

Mehr

Operationsmodi des Timers Modus 0 : Ausschalten des Zählers

Operationsmodi des Timers Modus 0 : Ausschalten des Zählers Ergänzung PIAT Operationsmodi des Timers Modus 0 : Ausschalten des Zählers LC und UC wird angehalten. IRQT wird gesperrt (Bit 7 im CMCR wird 0) UF Bit wird gelöscht (Bit 7 im SR) Die Daten in UC, LC, UL,

Mehr

Übungscomputer mit Prozessor 8085 - Bedienungsanleitung

Übungscomputer mit Prozessor 8085 - Bedienungsanleitung Seite 1 von 9 Pinbelegung der Steckerleisten im Übungsgerät Seite 2 von 9 Inbetriebnahme: Schalter S1, S2, und S3 in Stellung 1 (oben) schalten. Spannung 5 V anlegen. ACHTUNG auf Polarität achten. Taste

Mehr

[6-1] Engelmann, Lutz (Hrsg.): Abitur Informatik Basiswissen Schule. Duden-Verlag, 2003, S.43-53, , , S.

[6-1] Engelmann, Lutz (Hrsg.): Abitur Informatik Basiswissen Schule. Duden-Verlag, 2003, S.43-53, , , S. Literatur [6-1] Engelmann, Lutz (Hrsg.): Abitur Informatik Basiswissen Schule. Duden-Verlag, 2003, S.43-53, 214-224, 239-242, S. 267-299,304-313 [6-2] Hübscher, Heinrich et al.: IT-Handbuch, IT-System-elektroniker/-

Mehr

Rechnerne etze und -O Organisatio on

Rechnerne etze und -O Organisatio on Rechnernetze und -Organisation Rechnerne etze und -O Organisatio on Teil B (30. März 2011) 2011 Michael Hutter Karl C. Posch www.iaik.tugraz.at/content/teaching/bachelor_courses/rechnernetze_und_organisation/

Mehr

SMP Übung 9 - Lösungsvorschlag

SMP Übung 9 - Lösungsvorschlag 1. Aufgabe: Sieben Segment Anzeigen, Multiplexing, a) Bestimmung der Zeichenkodierung Bei der Zeichenkodierung ist zu beachten, dass ein Low-Pegel auf der Leitung PDA(j) (in Verbindung mit einem Low- Pegel

Mehr

Mikroprozessoren Grundlagen AVR-Controller Input / Output (I/O) Interrupt Mathematische Operationen

Mikroprozessoren Grundlagen AVR-Controller Input / Output (I/O) Interrupt Mathematische Operationen Mikroprozessoren Grundlagen Aufbau, Blockschaltbild Grundlegende Datentypen AVR-Controller Anatomie Befehlssatz Assembler Speicherzugriff Adressierungsarten Kontrollstrukturen Stack Input / Output (I/O)

Mehr

Rechnernetze und -Organisation. Teil B 2012 Tomislav Nad Karl C. Posch

Rechnernetze und -Organisation. Teil B 2012 Tomislav Nad Karl C. Posch Rechnernetze und -Organisation Teil B 2012 Tomislav Nad Karl C. Posch www.iaik.tugraz.at/content/teaching/bachelor_courses/rechnernetze_und_organisation/ 1 Two different assemblers GNU Assembler as : Uses

Mehr

3. Basiskonzepte von Java

3. Basiskonzepte von Java 3. Basiskonzepte von Java Die in Abschnitt 3 vorgestellten Konzepte von Java sind allgemein gültig und finden sich so oder so ähnlich in eigentlich jeder gängigen Programmiersprache. Abschnitt 3.2.3, Klassen

Mehr

Name: ES2 Klausur Thema: ARM Name: Punkte: Note:

Name: ES2 Klausur Thema: ARM Name: Punkte: Note: Name: Punkte: Note: Hinweise für das Lösen der Aufgaben: Zeit: 75 min. Name nicht vergessen! Geben Sie alle Blätter ab. Die Reihenfolge der Aufgaben ist unabhängig vom Schwierigkeitsgrad. Erlaubte Hilfsmittel

Mehr

Kapitel 4. Kontrollstrukturen

Kapitel 4. Kontrollstrukturen Kapitel 4 Kontrollstrukturen Kontrollstrukturen 1 Ziele Kontrollstrukturen in imperativen Programmen kennenlernen und verstehen. Realisierung der Kontrollstrukturen in Java. Kontrollstrukturen 2 Anweisungen

Mehr

Kapitel 4. Kontrollstrukturen

Kapitel 4. Kontrollstrukturen Kapitel 4 Kontrollstrukturen Kontrollstrukturen 1 Ziele Kontrollstrukturen in imperativen Programmen kennenlernen und verstehen. Realisierung der Kontrollstrukturen in Java. Kontrollstrukturen 2 Anweisungen

Mehr

Rechnernetze und -Organisation. Teil B (30. März 2011) 2011 Michael Hutter Karl C. Posch

Rechnernetze und -Organisation. Teil B (30. März 2011) 2011 Michael Hutter Karl C. Posch Rechnernetz R Teil B (30. März 2011) 2011 Michael Hutter Karl C. Posch www.iaik.tugraz.at/content/teaching/bachelor_courses/rechnernetze_und_organisation/ 1 Zeitplan für Teil B Mittwoch 23. März 2011 Mittwoch

Mehr

U23 Assembler Workshop

U23 Assembler Workshop Ike e.v. http://koeln.ccc.de 2016-11-05 Überblick 1 CPU, Assembler Überblick x86 x86 Assembler 2 RAM, Stack, Calling Conventions Stack Calling Conventions Stackframes 3 Branches Jumps 4 Speicher, C-Interface

Mehr

PC/XT/AT ASSEMBLER-BUCH

PC/XT/AT ASSEMBLER-BUCH PC/XT/AT ASSEMBLER-BUCH Alle Befehle + Makro-Assembler KLAUS-DIETER THIES t

Mehr

Rechnerstrukturen Wintersemester 2002/03. Maschinensprache Opcode, Operanden, Adressierung Für Menschen schwer verdauliche Folgen von 0 und 1

Rechnerstrukturen Wintersemester 2002/03. Maschinensprache Opcode, Operanden, Adressierung Für Menschen schwer verdauliche Folgen von 0 und 1 (c) Peter Sturm, Universität Trier 1 Rechnerstrukturen 8. Assembler Für Hartgesottene Maschinensprache Opcode, Operanden, Adressierung Für Menschen schwer verdauliche Folgen von 0 und 1 Assembler Symbolische

Mehr

Name : Klasse : Punkte : Note :

Name : Klasse : Punkte : Note : Name : Klasse : Punkte : Note : Zeit: 08.00 bis 09.30 Es dürfen alle Unterlagen verwendet werden. Die Aufgaben sind möglichst direkt auf den Blättern zu lösen (Antworten bitte in ganzen Sätzen!), bei Bedarf

Mehr

FAKULTÄT FÜR INFORMATIK

FAKULTÄT FÜR INFORMATIK FAKULTÄT FÜR INFORMATIK TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Rechnertechnik und Rechnerorganisation Prof. Dr. Martin Schulz Einführung in die Rechnerarchitektur Wintersemester 2017/2018 Lösungsvorschlag

Mehr

Klausur Kompaktkurs Einführung in die Programmierung Dr. T. Weinzierl & M. Sedlacek 25. März 2011

Klausur Kompaktkurs Einführung in die Programmierung Dr. T. Weinzierl & M. Sedlacek 25. März 2011 Kompaktkurs Einführung in die Programmierung Klausur Seite 1/10 Name, Vorname, Unterschrift: Matrikelnummer: Wichtig: Klausur Kompaktkurs Einführung in die Programmierung Dr. T. Weinzierl & M. Sedlacek

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Grundlagen der Informatik Musterklausur 1. Dynamische Datenstrukturen und objektorientierte Programmierung Zur Verwaltung einer digitalen Fotogalerie sollen Techniken der objektorientierten Programmierung

Mehr

Informatik Rechnerinterne Vorgänge: Programmstrukt. (Lsg.) Gierhardt

Informatik Rechnerinterne Vorgänge: Programmstrukt. (Lsg.) Gierhardt Informatik Rechnerinterne Vorgänge: Programmstrukt. (Lsg.) Gierhardt 1. Die Zahlen von 1 bis 10 sollen ausgegeben werden (a) absteigend mit einer do while-schleife 3 zehn DEF 10 ; int zehn = 10 4 Anfang

Mehr

A ProgrAmmer s Guide to KIM Programming

A ProgrAmmer s Guide to KIM Programming A ProgrAmmer s Guide to KIM Programming by Erik Bartmann - Vers. 0.1 1 - Die Hardware Organisation des 6502 Wie schaut es im Inneren aus Wie ich es schon angedroht hatte, ist es doch notwendig, sich ein

Mehr

FORTRAN77. eine höllische Programmiersprache. Christian Sternecker. Sommersemester TU-München

FORTRAN77. eine höllische Programmiersprache. Christian Sternecker. Sommersemester TU-München FORTRAN77 eine höllische Programmiersprache Christian Sternecker TU-München Sommersemester 2010 Aufbau des Vortrags Geschichte Merkmale Höllische Konzepte Typsicherheit Programmstruktur Speicherverwaltung

Mehr

2. Rechnerarchitektur 2.1 einfache Computer

2. Rechnerarchitektur 2.1 einfache Computer Fakultät Informatik Institut Systemarchitektur Professur Rechnernetze WS 2012 LV Informatik-I für Verkehrsingenieure 2. Rechnerarchitektur 2.1 einfache Computer Dr. rer.nat. D. Gütter Mail: WWW: Dietbert.Guetter@tu-dresden.de

Mehr

x86 Assembler Praktische Einführung Sebastian Lackner Michael Müller 3. Juni 2013

x86 Assembler Praktische Einführung Sebastian Lackner Michael Müller 3. Juni 2013 x86 Assembler Praktische Einführung Sebastian Lackner Michael Müller 3. Juni 2013 1 / 53 Inhaltsverzeichnis 1 Einführung 2 Assembler Syntax, Register und Flags 3 Hauptspeicher 4 Stack 5 Assemblerbefehle

Mehr