Flansche im (Kunststoff)-Rohrleitungsbau: von der Holz- zur High-Performance-Lösung

Ähnliche Dokumente
PE100 Formteile mit zugfester Steckverbindung System REINOGRIP

Leistungsbeschreibung / Mustertexte SIMONA PE 100 FM-Line Formteile für erdverlegte Feuerlöschleitungen

Flanschnorm DIN EN

GROßROHR-FORMTEILE AUS PE 100 bis d 1600 mm in der Praxis bewährt

Muttern nach DIN EN ISO Sechskantschrauben nach DIN EN ISO 4016

Georg Fischer Waga N.V. Maßgeschneiderte Kundenlösungen von DN40 bis DN2800 ST-System

Der Verbinder. Mit losem Stützrohr.

Großrohre und Verbindungen für Druckleitungen, PE 100

Der Verbinder. Mit losem Stützrohr.

Der Verbinder. Mit festem Stützrohr made in Germany

Losflansche aus GFK DIN 2501 Flanschanschlussmaß PN10 Werknorm. Gepresste GFK-Losflansche aus Polyesterharzen.

Der Verbinder. Mit festem Stützrohr.

NORM für Druckrohrnetze Oktober Rohrkupplungen/Formstücke für die Verbindung von Rohren aus GGG, GG, Stahl, AZ, PE und PVC

NORM für Druckrohrnetze November Stahlrohrabzweige 90 WN 130-1

Verbindungs- und Anschlußtechnik Fabrikat Mücher. Canada Plus, Typ 2A und Canada 2, Typ 2B

Vorschweißbund aus PE-HD, kurze Form

NORM für Druckrohrnetze November Stahlrohrabzweige 60 WN 130-2

IRRI-ROC Biaxiale PVC-Rohre für Druckbewässerungssysteme

Mauerhülsen. aus pvc

SIEIMMUUER. Taschenbuch ROHRLEITUNGSTECHNIK. Zusammengestellt von Prof. Dr.-Ing. D. Schmidt unter Mitarbeit von Dipl.-Ing. H.-J. Lumpe.

Rohrklassen Editor AutoCAD Plant 3D 2012

Georg Fischer Waga N.V. Die zuverlässigen Großbereichs-Kupplungen für Rohrdurchmesser DN450 DN600 MULTI/JOINT XL

Regelblatt 106. Leipziger Wasserwerke. Innendurchmesser zur Berechnung der hydraulischen Leistungsfähigkeit von PP- und PE-HD-Rohren im Abwasser

NORM für Druckrohrnetze Juni Heizwendel-Schweißfittings für Anschlussleitungen aus Polyethylen (PE)

TECHNISCHE PRODUKT- INFORMATION

Rohrleitungen aus GFK

Leistungsbeschreibung / Mustertexte SIMONA Rohre in chemischen und industriellen Anlagen

Druckrohre PE 100 RC EVOLUTION. Polyethylen PE100 RC Evolution Druckrohre mit extrem hoher Beständigkeit gegen langsames Risswachstum

Schutzrohr zum Einschweißen oder mit Flansch (einteilig) Ausführung nach DIN Form 4, 4F Typen TW55-6, TW55-7

FGFA FRIAGRIP+ Flanschadapter (E-Stück) Zugfester Flanschadapter zur Anbindung von Rohren unterschiedlicher

FRIAGRIP KUPPLUNGS- UND REPARATURTECHNIK.

Rückschlagklappe K6 PVC

WESTFÄLISCHE KUNSTSTOFF TECHNIK ROHRIGINAL WKT. FÜR HÄRTESTE ANFORDERUNGEN. GASVERSORGUNG.

FRIAGRIP KUPPLUNGS- UND REPARATURTECHNIK.

Bestellung DVGW-Regelwerk Rohrleitungsbau PLUS

deutsch Duktile Gussrohrsysteme für technische Beschneiungsanlagen

streng guide Kabelschutzrohr System aus Polyethylen Technisches Datenblatt 1) Kabelschutzrohre Werkstoffvariante:

Presse-Information. Funke schafft Rohrverbindungen für fast alle Dimensionen. 14. Mai 2018 Seite/page: 01

Megapress G. Rohrleitungstechnik. DE 1/18 Katalog 2018 Änderungen vorbehalten.

91N Sonderentnahmen wie z.b. Vena Contracta oder andere sind möglich und werden speziell berechnet.

Technische Information

5 FLANSCHVERBINDUNGEN, ROHRE UND FORMSTÜCKE

NORM für Druckrohrnetze Dezember UA Stücke Geteilter Überschieber mit Flanschabgang

BAIO -System. Die schnelle Verbindung im Rohrleitungsbau

PRODUKTINFO. Ausgabe 02/2017. DOCK Anschluss-Systeme

Fachvortrag über DIN EN

Schlauchtechnik Armaturentechnik Fluidtechnik

VAG Anbohrbrücke TERRA-M1 für Guss-,Stahl- und zementgebundene Rohre PN 16 DN für Wasser

Deckendurchführungen Aus Edelstahl (1.4301) Deckendurchführungen zum Rohreinbau 436

NORM für Druckrohrnetze Oktober Rohrbruchdichtschellen WN 417

S c h we iß fittin g s

HAUSTECHNIK. Schweissen + Stecken

Technisches Handbuch

NORM für Druckrohrnetze Mai Schächte für Durchfluss- und Druckmessungen WN 20

VAG Hausanschlussarmaturen

ZW125. Reglement. Trinkwasserverteilsysteme mit Rohren aus PE-X. ZW125 d Ausgabe Januar 2016 REGELWERK

Molchen ohne Schacht - mit Sicherheit. Entwicklung und Einbau der Molchstation QUICK-PIG der Reinert-Ritz GmbH

deutsch Duktile Gussrohrsysteme für technische Beschneiungsanlagen

Rückschlagklappe RSK 500. Nennweite DN Nennweite 1 1/2 8 Druck PN 5 8 bar. Hinweis.

Allgemeine Hinweise - Kapitel 5 Formstücke, Fittings, Flansche, Zugsicherungen, Reparaturschellen

Δ p (bar/100 m)

HERZ-Kunstoffrohranschlüsse

Pressfitting-Rohrsysteme aus Metall

FRIAGRIP. Ausschreibungstext

Ductile iron pipes and fittings Marking of ductile iron pipes and fittings Ersatz für Ausgabe Anwendungsbereich 2

Megapress S. Rohrleitungstechnik. DE 1/18 Katalog 2018 Änderungen vorbehalten.

AiF-DECHEMA-Forschungsvorhaben Nr N Auslegung von Flanschverbindungen aus glasfaserverstärktem Kunststoff (GFK) für die chemische Industrie

Technische Dokumentation. Rohrsystem WEHOLITE

ZW134. Reglement. Trinkwasserverteilsysteme mit Rohren aus PVC-C. ZW134 d Ausgabe Januar 2016 REGELWERK

Dichtungen und Flanschdichtflächen für Rohrleitungen mit Weichgummi - Auskleidung Anforderungen

Flanschverbindungen für PE-Rohre, schubgesichert Synoflex Flansch Seite E 4/1

ZW127. Reglement. Trinkwasserverteilsysteme mit Rohren aus PP-R. ZW127 d Ausgabe Januar 2016 REGELWERK

Vortrag Anbohrungen-Allgemein durch die folgenden Unternehmen: SBV Weiterbildungskurse 2019

PSI Gleitkufenringe aus Segmenten Typ AZ/AC System DSI ALLGEMEINE INFORMATIONEN. Rohraußendurchmesser von 98 mm bis 385 mm

Klebsystem Trinkwasser. FRIATHERM starr. FRIATHERM starr Fittings. Übergang AG, kurz. Übergangsverschraubung mit AG.

2 Wege-Kugelhahn S4 mit integriertem Praher Labelling System

RHD-Hochdruckrohrleitungen mit System

- WÄRMEDEHNUNG - WÄRMEDEHNUNG

PSI Gummi/Stahl- Flanschdichtungen

Wie man ein Kunststoffrohrsystem herstellt

ZW163. Reglement. Rohrkupplungen, Werkstoffübergangsund Grossbereichskupplungen sowie Reparaturkupplungen. ZW163 d Ausgabe Januar 2016 REGELWERK

Schweißfittings. RO-FI Ihr starker Partner in Sachen Edelstahl. Zuverlässig durch Qualitätsmanagement - ISO 9001 STAINLESS STEEL

Megapress. Rohrleitungstechnik. DE 1/18 Katalog 2018 Änderungen vorbehalten.

Technische Regel Arbeitsblatt GW 335 B 2 September 2004

Abwasser sicher transportieren...

PE 100 Flanschverbindungen PE 100 Flange connections

Anschlussschläuche. Serie FS. Anschlussschläuche zum wasserseitigen Anschluss von Luft-Wasser-Systemen und dezentralen Lüftungsgeräten PD FS 1

Rohre aus nichtrostenden Stählen. Lebensmittel-, Pharma- und chemische Industrie / AISI / AISI 304L 1.

Kanalrohre. Kanalrohre. Preisliste

Brunnen- und Spezialtiefbau

Mechanischer Durchfluss-Schalter für zwei-punkt-regelung

Seite 4-8. Seite 9, 10. Seite Seite 14, 15. Seite Seite 22-28

FRIAGRIP. Ausschreibungstext

Schutzrohre aus PP SCHUTZ ROHRE

PSI Gleitkufen.

PSI MAUERHÜLSEN FÜR JEDE ANWENDUNG DIE PASSENDE MAUERHÜLSE MAUERHÜLSEN AUS FASERZEMENT AUCH IN GETEILTER AUSFÜHRUNG HYDROSTATISCHE ABDICHTUNG

Transkript:

Sonderdruck aus 04-05 2018 ISSN 2191-9798 Fachzeitschrift für sichere und effiziente Rohrleitungssysteme Flansche im (Kunststoff)-Rohrleitungsbau: von der Holz- zur High-Performance-Lösung Von Michael Stichternath

LEITUNGSBAU Flansche Flansche im (Kunststoff)-Rohrleitungsbau: von der Holz- zur High-Performance-Lösung Von Michael Stichternath Seit Jahrtausenden werden Rohrleitungen für die definierte Zu- bzw. Ableitung von Fluiden eingesetzt. Entsprechend der jeweiligen Epoche wurde die Materialwahl bestimmt von der Verfügbarkeit und dem jeweiligen Stand der Technik. Beispiele gibt es genügend: Funde einiger unterirdischer gemauerter Kanalisationsanlagen reichen sogar zurück bis 3800 v. Chr., in die Zeit des Altertums. Zeugnisse für die Wasserversorgung der Städte des Römischen Reiches stammen aus der Zeit bis 500 v. Chr. Diese können als gemauerte Aquädukte auch heute noch besichtigt werden. Eine Weiterentwicklung der Rohrleitungstechnik für die Wasserversorgung war dann im Mittelalter gekennzeichnet durch den Einsatz von ausgebohrten Holzstämmen. Immer wieder werden bis zum heutigen Tage bei Tiefbauarbeiten hölzerne Wasserrohre oder Fragmente davon gefunden, deren Alter bis ins 17. Jahrhundert datiert werden kann. Historie Aufgrund der kurzen Lebensdauer des Materials mussten diese Rohre ständig repariert und ausgetauscht werden. Hierzu wurden auch früher schon geflanschte Rohrstücke eingesetzt, wie u. a. ein Fund im thüringischen Ronneburg, Landkreis Greiz, belegt. 1 Neben diesen Versorgungsleitungen aus Holz gab es jedoch auch schon einzelne Gussleitungen, die für die Speisung diverser Brunnen sowie die Wasserversorgung herrschaftlicher Güter verlegt worden waren. Beispiele hierfür sind die aus dem Jahr 1455 stammende Versorgung des Schlosses Dillenburg sowie die aus dem Jahr 1668 stammende Versorgung der Wasserspiele im Park des Schlosses von Versailles letztere sogar als Gussrohrleitung mit Flanschverbindungen in den Nennweiten DN 350 bis DN 500, mit einer Gesamtlänge von etwa 24 km. 2 Im Zuge der industriellen Revolution breitete sich die Verwendung des Gussrohrs dann immer weiter aus; bereits ab 1885 wurde es industriell gefertigt. Zur Sicherstellung der Kompatibilität erforderte dies eine Standardisierung der Produkte der unterschiedlichen Hersteller. Die Normung der gusseisernen Rohre erfolgte bereits im Jahre 1873 und die Festlegung auf einheitliche Flanschmaße folgte dann schon bald als Normalien vom Jahre 1882 durch den Verein deutscher Gas- und Wasserfachmänner in Zusammenarbeit mit dem Verein Deutscher Ingenieure. Im Jahre 1926 wurde festgelegt, dass die Anordnung der Schraubenlöcher an Flanschen unabhängig vom Werkstoff symmetrisch zu beiden Hauptachsen liegen und ihre Anzahl stets durch vier teilbar sein muss. 3 Dies hat auch heute noch Bestand und wird in Europa aktuell durch die EN 1092 4 bestimmt. In den 1930er Jahren kamen zusätzlich zu den bislang verwendeten Rohrmaterialien Guss, Stahl, Steinzeug usw. erste, künstlich hergestellte Materialien, nämlich das Hart- PVC (Polyvinylchlorid ohne Weichmacher) und das PE-HD bzw. PE-LD (Polyethylen hoher Dichte = high density bzw. niederer Dichte = low density) auf den Markt. 5 Analog zu den bekannten Rohren wurden die Dimensionierung und die Qualitätsmerkmale für diese innovativen Rohre dann auch nach und nach in Normen festgeschrieben, um die Bedeutung für den Rohrleitungsbau zu unterstreichen. Die erste Norm für Rohre aus Hart-PVC (heute PVC-U) stammt beispielsweise aus dem Jahr 1941. Das langsamer an Bedeutung gewinnende Polyethylen wurde in den 1950er Jahren für die Rohrherstellung interessant und dann erstmals im Jahre 1960 mit den Rohr-Normen DIN 8074/8075 6 für PE-HD sowie DIN 8072/8073 7 für PE-LD standardisiert. Über die Jahre wurde der Werkstoff PE-HD ständig weiterentwickelt. Die Materialeigenschaften hinsichtlich der Zeitstandfestigkeit wurden in mehreren Schritten deutlich verbessert, was zur Folge hatte, dass PE-HD heutzutage eines der Hauptmaterialien im kommunalen Ver- und Entsorgungsmarkt ist. Den verwendeten Polyethylenwerkstoff unterscheidet man in PE 63 (erste Generation) mit einer MRS von 6,3 MPa (wobei MRS die Abkürzung der englischen Entsprechung von Mindest-Zeitstandfestigkeit Minimum Required Strength ist), PE 80 (zweite Generation) mit einer MRS von 8,0 MPa und dem heute am weitesten verbreiteten PE 100 (dritte Generation) mit einer MRS von 10,0 MPa. Die Zahl hinter dem Kürzel PE ist eine dimensi- 1 Quelle: Festschrift 700 Jahre Stadt Ronneburg/Thür 2 Quelle: Historische Entwicklung der Rohrleitungstechnik, Harald Roscher und Ulf Herbig, Springer 2016 3 Quelle: E-Book Gussrohre 05.2014 4 EN 1092 Flansche und ihre Verbindungen 5 Quelle: W. Müller und E. Ant, Geschichte der Kunststoffrohre, Kunststoffrohr Handbuch, KRV 6 DIN 8074 und DIN 8075 Rohre aus Polyethylen (PE) PE 80, PE 100 7 DIN 8072 und DIN 8073 Rohre aus Polyethylen weich Achtung: Dokument zurückgezogen 2 04-05 2018

Flansche LEITUNGSBAU onslose Zahl, die nach der Zeitstand-Innendruckfestigkeit bei 20 C nach 50 Jahren mit dem Prüfmedium Wasser festgelegt wird. Für Übergänge auf andere Rohrmaterialien sowie auch für lösbare Verbindungen dieser Rohre untereinander stand damals nur die Flanschverbindung zur Auswahl. Aus dem Stahlrohrbereich bediente man sich genormter Losflansche, die eine Paarung mit den entsprechenden Gegenflanschen gleicher Dimensionierung ermöglichten. Der für den Einsatz mit Losflanschen erforderliche Vorschweißbund aus Polyethylen wurde beispielsweise dann in Anlehnung auch an die Norm für Stahlflansche entwickelt (s. Bild 1) Flansch- und Rohrdimensionierung Flanschverbindungen dienen dazu, Rohrabschnitte dicht, aber dennoch lösbar miteinander zu verbinden. Der richtige Anpressdruck der kreisringförmigen Dichtflächen der Flansche auf die dazwischenliegende Dichtung gewährleistet die Dichtheit des Systems. Der Flansch wird meist durch Schrauben aufgebracht, die durch Bohrungen in den Flanschblättern gesteckt sind. Eine Flanschverbindung ist als System zu betrachten, welches aus zwei Flanschen, einer der Dichtfläche entsprechenden Dichtung und einer bestimmten Anzahl an Schrauben mit Muttern und Unterlegscheiben besteht. Wir unterscheiden zwischen den beiden Ausführungen Festflansch und Losflansch. Der Losflansch liegt, wie der Name bereits andeutet, lose auf dem Rohr und erfordert eine weitere Komponente, den Bund oder Bördel, damit eine Flanschverbindung hergestellt werden kann. Er lässt sich im Gegensatz zum Festflansch für die Montage noch entsprechend des Lochbildes des Gegenflansches ausrichten. Festflansche werden entweder bei der Herstellung von Gussrohren gleich mitgegossen (Flanschenrohre: F-Stücke oder FF-Stücke) oder können als separate Formteile stirnseitig an das Rohr geschweißt werden. Für die Auslegung eines Rohrsystems sind u. a. Faktoren wie Druck, Temperatur, Medium und Massendurchsatz zu berücksichtigen, wobei der Massenstrom und der maximal annehmbare Druckverlust im Wesentlichen den erforderlichen Rohrquerschnitt bestimmen. Da damals wie heute nicht für jeden berechneten Rohrinnendurchmesser ein Rohr hergestellt werden konnte, legte man in den Normen sogenannte Nenndurchmesser für die Rohre fest. Basierend auf diesen Rohrnennweiten erfolgte dann auch die Auslegung sowohl der Rohre als auch der Flansche nach ebenso zuvor festgelegten Druckstufen. So kann das Anschlussmaß eines Flansches nach Nennweite DN und Druckstufe PN eindeutig bestimmt werden. In Deutschland legt die DIN EN 1092 Abmessungen und Ausführungen für Flansche der Nennweiten DN 25 bis DN 4000 und für die Druckstufen PN 2,5 bis PN 400 hinsichtlich des größten Außendurchmessers D, des Lochkreisdurchmessers K, der Anzahl an Schraubenlöchern und deren Durchmessern fest. DN (engl.: Diameter Nominal) und PN (engl.: Pressure Nominal), gefolgt von einer dimensionslosen Zahl, sind Bild 1: V-Bund in Anlehnung an Stahlflansch Losflansch Stahlbördel PE V-Bund dabei jeweils alphanumerische Kenngrößen für Referenzzwecke eines Bauteils in einem Rohrleitungssystem. Sie stehen indirekt mit der physikalischen Größe der Bohrung oder dem Außendurchmesser der Anschlüsse in Millimetern bzw. dem maximal zulässigen Druck in Bar, bezogen auf eine Kombination von mechanischen und maßlichen Eigenschaften eines Bauteils, in Beziehung. Die Herstellung von PE-HD-Rohren nach der Norm DIN 8074/8075 erfolgt beispielsweise in der Regel im Vakuum-Extrusionsverfahren. Hierbei wird die plastische Masse des kreisringförmig extrudierten PE-HDs in einer Kalibrierung über ein Vakuum in Form gebracht, wodurch der Außendurchmesser erhalten wird. Die gewünschte Wanddicke des Rohres erhält man über ein genau abgestimmtes Zusammenspiel von Materialzugabe und Abzugsgeschwindigkeit. Die in dieser Norm festgelegten Außendurchmesser folgen bestimmten Normzahlen, der sogenannten Renard-Serie nach ISO 3 8 bzw. ISO 4065 9 bzw. DIN 323 10. Über die Festlegung von Rohrserien S, die jeweils für ein bestimmtes Verhältnis von Außendurchmesser zu Wanddicke, SDR (Standard Dimension Ratio), stehen, lassen sich so die entsprechenden Wanddicken der Rohre bestimmen. Unter Berücksichtigung der jeweiligen Materialeigenschaften und eines Gesamtbetriebs(berechnungs)-koeffizienten (Sicherheitsfaktors) erfolgt dann die Zuordnung zu den Druckklassen. Die Bezeichnung eines PE-HD-Rohres muss normgerecht mindestens Angaben zum verwendeten Material (Festigkeitswert), der entsprechenden Norm sowie zum Außendurchmesser und der Rohrserie S bzw. dem Außendurchmesser/Wanddicken-Verhältnis SDR enthalten. Der Innendurchmesser oder die tatsächliche Nennweite ist also nur indirekt gegeben. Dies ist bei der Berechnung von Rohrnetzen und besonders bei der Auswahl von Flanschen zu berücksichtigen. Dass bei der Planung besonders auf die Bezeichnung der Rohre (und Formteile) geachtet werden muss, verdeutlicht die Benennung von PE-HD-Rohren beispielsweise nach 8 ISO 3 Normzahlen; Normzahlreihen 9 ISO 4065 Rohre aus Thermoplasten Universelle Wanddickentabelle 10 DIN 323 Normzahlen und Normzahlreihen 04-05 2018 3

LEITUNGSBAU Flansche Bild 2: Kippen des V-Bundes unter Belastung Bild 3: Sonderflansch DIN EN 12201-2 11 bzw. DIN EN 1555-2 12. Hierin werden die Nenn-Außendurchmesser d n der Rohre einer Nennweite DN/OD zugewiesen. Die Nennweite DN/OD ist eine numerische Zahl für die Größe eines Rohrleitungsteiles, ausgenommen solcher, die durch ein Gewinde gekennzeichnet sind, die ungefähr dem Herstellungsmaß in Millimeter entspricht und auf den Außendurchmesser bezogen ist. Beispiel: der Nenn-Außendurchmesser d n 250 mm entspricht der Nennweite DN/OD 250 mit einem rechnerischen Innendurchmesser bzw. der Nennweite 204,6 mm in der Ausführung nach SDR 11. Es ist also wichtig, zu wissen, von welcher Nennweite man spricht. 11 DIN EN 12201 Kunststoff-Rohrleitungssysteme für die Wasserversorgung und für Entwässerungs- und Abwasserdruckleitungen Polyethylen (PE) 12 DIN EN 1555 Kunststoff-Rohrleitungssysteme für die Gasversorgung Polyethylen (PE) Kunststoffrohr-Flansch-Verbindungen Wie oben bereits erwähnt, bestanden die ersten Flanschverbindungen für Kunststoffrohre aus den Losflanschen und entsprechend ausgelegten Vorschweißbunden. Diese Kombination kommt so auch heute noch flächendeckend zum Einsatz. Die Ausführungen der Losflansche variieren dabei. So gibt es Losflansche aus Stahl in verzinkter Ausführung, solche aus Edelstahl und solche mit einer Kunststoffummantelung (PP-St) und Kunststoffbeschichtung oder solche, die komplett aus Kunststoff mit oder ohne Faserverstärkung bestehen. Jede Rohr- bzw. Vorschweißbunddimension kann nur mit einem Losflansch bestimmter Abmessung (Nennweite DN) gepaart werden. Beispiel: Rohr DN/OD 250 bzw. d n 250 mm mit entsprechendem Vorschweißbund für ein Rohr d n 250 mm erfordert einen Losflansch DN 250. Mit diesem Flansch könnte man beispielsweise einen Flanschübergang auf eine Armatur oder einen Flansch einer Stahl- Bild 4: Nennweiten-Dilemma Stahl/Guss: DN = Nennweite = Innendurchmesser = Flanschmaß PE-HD: d = DN/OD = Nennweite bezogen auf Außendurchmesser; Innendurchmesser rechnerisch; Flanschmaß = f (Flanschlösung) 4 04-05 2018

Flansche LEITUNGSBAU DN Sprung Bild 5: Kleinere Armatur durch Verwendung von Sonderflansch bzw. VP-Flansch oder Gussleitung der Nennweite DN 250 herstellen. Dass die Lochbilder entsprechend der Druckstufe beider Flanschpartner gleich sein müssen, ist selbsterklärend. Das Bild Nennweiten Dilemma verdeutlicht, dass das Flanschmaß DN 250 übereinstimmt, die Innendurchmesser der beiden Systemkomponenten sich jedoch stark unterscheiden und es zu Sprüngen im Innendurchmesser der Nennweite kommt. Zu dieser Besonderheit kommt hinzu, dass der PE-Vorschweißbund in Anlehnung an die Stahlflansche konstruiert wurde und aufgrund der mechanischen Eigenschaften von PE-HD ein anderes Verhalten bei Belastungen im Grenzbereich besonders bei Dimensionen ab d n 200 mm bzw. DN/OD 200 (Flanschmaß DN 200) zeigt. Bei Rohrsystemen unter Innendruck im Bereich des zulässigen Bauteilbetriebsdruckes PFA (franz.: pression de fonctionnement admissible) kommt es daher bei den Vorschweißbund-Losflansch-Verbindungen häufig zum Versagen. Die wirkenden Kräfte des hohen Innendrucks bewirken eine Verformung des Bundes (s. Bild 2), die ein Ausstellen des Bundes und zwangsläufig eine Verkleinerung der Dichtfläche zur Folge hat. Die spezielle Anordnung von Losflansch und Vorschweißbund mit entsprechend geringer Kontaktfläche zur Kraftübertragung begünstigt diesen Effekt noch. Eine genaue Aussage, wann es zum Versagen der Losflansch-Vorschweißverbindung unter den genannten Bedingungen kommt, sucht man vergebens. Selbst in der DVS 2210-1 Beiblatt 313 Teil 2.1 Vorschweißbunde findet man lediglich den Hinweis darauf, dass die Dimensionierung des Vorschweißbundes keinen Aufschluss über seine Belastbarkeit bzw. die der Flanschverbindung gibt. 13 DVS Richtlinie 2210-1 Beiblatt 3 Industrierohrleitungen aus thermoplastischen Kunststoffen. Projektierung und Ausführung Oberirdische Rohrsysteme Flanschverbindungen: Beschreibung, Anforderungen, Montage Dieses Nennweiten-Dilemma wurde konstruktiv vor Jahren bereits in Angriff genommen und kunststoffgerecht gelöst. Das Ergebnis war der sogenannte Sonderflansch, ein durchbohrter PE-Bund mit Stahl-Hinterlegflansch (s. Bild 3). Die Firma Europlast aus Oberhausen, ein Kunststoffrohr- Hersteller und Pionier der damaligen Zeit, führte erstmals um 1980 einen solchen Sonderflansch in ihrem technischen Katalog auf. Auch heute noch finden Sonderflansche weite Verbreitung. Die Besonderheit dabei ist, dass nicht das gleiche Flanschmaß wie das des entsprechenden Losflansches für diese Rohrdimension herangezogen wird, was zur Folge hätte, dass nur ein Festflansch aus der Losflanschverbindung würde, sondern die Nennweite eine Stufe kleiner ausfällt. Der Lochkreis K liegt damit näher am Rohraußendurchmesser. Zur Verteilung der Schraubenkräfte auf die Hinterseite des Bundes und ergo für die Festigkeit der Flanschlösung wird ein spezieller Stahlflansch mit gleichem Lochbild hinterlegt. Gleichzeitig wird mit dieser Lösung das weitere Manko der Losflansch-Vorschweißbund-Verbindung, nämlich das Kippen des Bundes, verhindert. Hiermit ist nicht nur eine druckklassengerechte Flanschverbindung, sondern auch der nennweitengleiche (auf den Innendurchmesser bezogene) Anschluss von PE-Rohr an Armaturen und Flanschenrohre aus Guss bzw. Stahl möglich und es können dadurch kleinere Armaturen eingesetzt werden. Beispiel: an ein Rohr DN/OD 250 bzw. dn 250 mm SDR 11 mit Innendurchmesser (Nennweite) 204,6 mm kann mit Verwendung eines Sonderflansches DN 200/d 250 SDR 11 eine Armatur DN 200 angeschlossen werden. Die Wahl einer Losflansch-Vorschweißverbindung ließe da nur eine Armatur der Dimension DN 250 zu (s. Bild 4 und Bild 5). Aber auch für den Fall, dass eine druckklassengerechte, 04-05 2018 5

LEITUNGSBAU Flansche Umwelt Bund Planung tung entgegen und sorgt mit der passenden Dichtung für eine sichere und dichte Flanschverbindung. Einflüsse von Dichtfläche, Dichtung, Schrauben und Flansch an sich gelten übrigens für alle Übergänge, die mit Flanschen hergestellt werden. Sie sind wesentliche Bestandteile des Systems Flanschverbindung (s. Bild 7). Die Druckklassengerechtheit, sprich hohe Leistungsfähigkeit der HP- Flanschlösung, führte dann auch zur Namensgebung: HP steht in diesem Zusammenhang für High Performance. Eine neue, zukunftweisende Variante der Hinterlegflansche sowohl für Sonderflansche als auch HP-Flansche aus dem Hause Reinert-Ritz setzt sich immer stärker durch: die äußerst leichte Version aus faserverstärktem Kunststoff (s. Bild 8 und Bild 9). Aufgrund des geringen Gewichts wird, je nach Größe, die Handhabung und Weiterverarbeitung deutlich vereinfacht. Ein weiterer großer Vorteil ist die völlige Korrosionsfreiheit des Flan- Schraub- Verbindung Flansch Betrieb Dichtung Montage Bild 6: Vergleich V-Bund zu HP-Flansch-Fläche Bild 7: System Flanschverbindung dauerhaft dichte Flanschverbindung gefordert ist, bei der eine Sonderflansch-Lösung maßlich nicht möglich oder der Freiheitsgrad einer Losflansch-Verbindung erforderlich ist, hat man bei Reinert-Ritz eine kunststoffgerechte Lösung im Produkt-Portfolio. Seit Ende der 1990er Jahre gibt es mit dem HP-Flansch eine Variante, die sogar für bestimmte Anwendungen bis 25 bar und andere Anwendungen bis DN/OD 2000 ausgelegt werden kann. Die Besonderheit des kunststoffgerecht konstruierten HP- Flansches besteht darin, dass der PE-Bund und der Hinterlegflansch als eine Einheit geliefert werden und genau aufeinander abgestimmt sind. Der speziell ausgelegte Hinterlegflansch greift formschlüssig über eine vergrößerte Kontaktfläche direkt am Rohraußendurchmesser auf den Bundrücken und stützt den Bund zudem noch am Außendurchmesser ab (s. Bild 6). Dies wirkt einer Verformung des PE-Bundes durch allgemein hohe Belas- Bild 8: VP-Flansch mit faserverstärktem Kunststoff-Hinterlegflansch Bild 9: HP-Flansch mit faserverstärktem Kunststoff-Hinterlegflansch 6 04-05 2018

Flansche LEITUNGSBAU Bild 10: Tellerfeder-Effekt VP-Flansch Bild 11: HP-Flansch Ausschnitt sches, die ihn auch in aggressiver Umgebung problemlos einsetzbar macht. Die Kombination aus Kunststoffflansch mit weiteren konstruktiven Optimierungen bildet die Grundlage für den Valve Performance VP-Flansch, der im PE-Bund Langlöcher aufweist, die ein Ausrichten der Armatur bzw. des Bundes bei der fachgerechten Montage wesentlich erleichtern. Nach der Installation bietet der VP-Flansch dank der Konstruktion seines Hinterlegflansches mit Tellerfeder-Effekt eine kontinuierliche Schraubenvorspannung (s. Bild 10), die auch nach der Dichtheitsprüfung noch vorherrscht. Dauerhaft dichte Flanschübergänge in Kunststoffrohr-Systemen sowohl auf Armaturen als auch Flansche anderer Druckrohrsysteme sind mit durchdachten Lösungen aus dem Hause Reinert-Ritz sicher und verlässlich realisierbar. Hier finden Sie verlässliche Komponenten auch für Ihre Flansch-Herausforderung. SCHLAGWÖRTER: kunststoffgerechte Flanschverbindung, druckklassengerechte Flanschverbindung, nennweitengleiche Flanschverbindung, HP-Flansch, VP-Flansch, Sonderflansch MICHAEL STICHTERNATH Reinert-Ritz GmbH, Nordhorn Tel. +49 5921 8347-58 michael.stichternath@reinert-ritz.de AUTOR 04-05 2018 7

062018 Reinert-Ritz GmbH Ernst-Heinkel-Straße 2 48531 Nordhorn Germany T +49 (0) 5921 83 47 0 F +49 (0) 5921 83 47 25 contact@reinert-ritz.com www.reinert-ritz.de