Datenbanksysteme Kapitel 5: SQL Data Manipulation Language

Ähnliche Dokumente
Datenbanksysteme Kapitel 5: SQL Data Manipulation Language

Datenbanksysteme Kapitel 5: SQL - Grundlagen

Datenbanksysteme Kapitel 5: SQL Grundlagen Teil 1

Einführung in die Wirtschaftsinformatik Kapitel 4: Relationale Datenbanksprachen: SQL

SQL als Zugriffssprache

Datenbanksysteme SQL Grundlagen

Daten-Definitionssprache (DDL) Bisher: Realwelt -> ERM -> Relationen-Modell -> normalisiertes Relationen-Modell. Jetzt: -> Formulierung in DDL

SQL. Ziele. Grundlagen von SQL. Beziehung zur relationalen Algebra SELECT, FROM, WHERE. Joins ORDER BY. Aggregatfunktionen. dbis.

Abfragen (Queries, Subqueries)

Wiederholung VU Datenmodellierung

ACCESS SQL ACCESS SQL

insert, update, delete Definition des Datenbankschemas select, from, where Rechteverwaltung, Transaktionskontrolle

SQL Data Manipulation Language (DML) und Query Language (QL)

Wiederholung VU Datenmodellierung

Übersicht der wichtigsten MySQL-Befehle

Kapitel 6. Datenmalipulation (DML) d. h. insert, update, delete, select im Relationenmodell (in Oracle)

ISU 1. Ue_08/02_Datenbanken/SQL. 08 Datenbanken. Übung. SQL Einführung. Eckbert Jankowski.

Informationsmanagement u. Numerische Methoden

3 Query Language (QL) Einfachste Abfrage Ordnen Gruppieren... 7

SQL-Sprachvielfalt. Peter Willadt (Ludwig-Erhard-Schule) SQL-Befehle / 47

Anwendungsentwicklung Datenbanken SQL. Stefan Goebel

[1] DBS-exercice

SQL. Komplexe Abfragen. SQL-Komplexe Abfragen. SQL-Komplexe Abfragen. Komplexe Abfragen verknüpfen mehrere Tabellen miteinander.

Es geht also im die SQL Data Manipulation Language.

Rückblick. SQL bietet viele Möglichkeiten zur Anfrageformulierung

Inhaltsverzeichnis. Vorwort 13. Kapitel 1 Einleitung 15

Oracle 10g Einführung

Auf einen Blick. Abfrage und Bearbeitung. Erstellen einer Datenbank. Komplexe Abfragen. Vorwort... 13

Inhaltsverzeichnis. Vorwort Kapitel 1 Einleitung... 15

Microsoft Access 2010 SQL nutzen

Auf einen Blick. Abfrage und Bearbeitung. Erstellen einer Datenbank. Komplexe Abfragen. Vorwort 13

WS 2010/11 Datenbanksysteme Fr 15:15 16:45 R Vorlesung #3. SQL (Teil 1)

Praktische SQL-Befehle

SQL ist eine relational vollständige Datenbanksprache.

1. Einleitung. SQL-Abfragen. 3. Das ERM der Übungsdatenbank. 2. Grundstruktur von SQL-Abfragen

Seminar 2. SQL - DML(Data Manipulation Language) und. DDL(Data Definition Language) Befehle.

Datenbanksysteme Kapitel 2: SQL Data Definition Language

Datenmanipulation in SQL (1): Subselect:

Tabellen verknüpfen: Joins

SQL. DDL (Data Definition Language) Befehle und DML(Data Manipulation Language)

MySQL-Befehle. In diesem Tutorial möchte ich eine kurze Übersicht der wichtigsten Befehle von MySQL geben.

SQL: Weitere Funktionen

Datenbankabfragen und Datenmanipulation

Einführung in SQL. Sprachumfang: Indizes. Datensätzen. Zugriffsrechten

Verbunde (Joins) und mengentheoretische Operationen in SQL

Verbunde (Joins) und mengentheoretische Operationen in SQL

Relationentheorie grundlegende Elemente

SQL. strukturierte Datenbankabfragesprache eine Datenbanksprache zur. Structured Query Language:

Grundlagen von SQL. Informatik 2, FS18. Dr. Hermann Lehner (Material von Dr. Markus Dahinden) Departement Informatik, ETH Zürich

5/14/18. Grundlagen von SQL. Grundlagen von SQL. Google, Facebook und Co. setzen auf SQL. Whatsapp

SQL Tutorial. SQL - Tutorial SS 06. Hubert Baumgartner. INSO - Industrial Software

Relationen-Algebra. Prof. Dr. T. Kudraß 1

Datenmanipulation in SQL. Select Anweisung

SQL. DDL (Data Definition Language) Befehle und DML(Data Manipulation Language)

Übung Datenbanken in der Praxis. Anfragen an Datenbanken mit SQL

DB-Datenbanksysteme. DB SQL-DML 1 Mario Neugebauer

Webbasierte Informationssysteme

Inhaltsverzeichnis. Inhalt. 1 Einführung in die Datenbanktechnologie

Nachtrag: Farben. Farbblindheit. (Light und Bartlein 2004)

Datenbanksysteme Kapitel: SQL Data Definition Language

SQL. SQL SELECT Anweisung SQL-SELECT SQL-SELECT

SQL. DDL (Data Definition Language) Befehle und DML(Data Manipulation Language)

Üben von DDL und DML. Ergebnis:

Bibliografische Informationen digitalisiert durch

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER

Datenbanken im WI-Unterricht mit

SQL: Abfragen für einzelne Tabellen

Datenbanksysteme I WS 17/18 HS-Übung. Universität Leipzig, Institut für Informatik Abteilung Datenbanken Prof. Dr. E. Rahm, V. Christen, M.

Query Languages (QL) Relationale Abfragesprachen/Relational

Wirtschaftsinformatik 7a: Datenbanken. Hochschule für Wirtschaft und Recht SS 16 Dozent: R. Witte

Datenbanken. Zusammenfassung. Datenbanksysteme

Die Anweisung create table

Daniel Warner SQL. Das Praxisbuch. Mit 119 Abbildungen. Franzis

SQL structured query language

Schlüssel. Definition: Ein Schlüssel (key) einer Relation r(r) ist eine Til Teilmenge K von R, so dass für je zwei verschiedene Tupeln t 1

Vorlesung Datenbankmanagementsysteme

Datenbanken und SQL. Kapitel 4. Die Datenbankzugriffssprache SQL. Edwin Schicker: Datenbanken und SQL (4)

2.5 Relationale Algebra

Grundlagen von Datenbanken

Marcus Throll, Oliver Bartosch. Einstieg in SQL. Verstehen, einsetzen, nachschlagen. Galileo Press

Einführung SQL Data Definition Language (DDL)

Mengen- oder SET-Operatoren fassen das Ergebnis von zwei oder mehreren Teilabfragen zu einem Ergebnis zusammen.

Relationale Datenbanksprachen

dbis Praktikum DBS I SQL Teil 2

Transkript:

Datenbanksysteme Kapitel 5: SQL Data Manipulation Language Prof. Dr. Peter Chamoni Mercator School of Management Lehrstuhl für Wirtschaftsinformatik, insb. Business Intelligence Prof. Dr. Peter Chamoni Prof. Dr. Peter Chamoni - Datenbanksysteme - Wintersemester 2014/2015 1 1

Gliederung 1 Grundlagen - Datenbanksysteme 2 SQL Data Definition Language 3 Datenorganisation 4 Datenintegrität und Transaktionsverwaltung 5 SQL Data Manipulation Language 6 Neue Konzepte der Datenbanktechnologie Prof. Dr. Peter Chamoni Datenbanksysteme 2 2

Gliederung 5 SQL Data Manipulation Language 5.1 DML - Befehle für Mutationen 5.2 DML - Abfrage von Daten Prof. Dr. Peter Chamoni Datenbanksysteme 3 3

5.1 DML - Befehle für Mutationen Standardoperationen für Mutationen INSERT Einfügen neuer Tupel in eine Relation Einfügen von Zeilen in eine existierende Tabelle UPDATE Änderung von Tupeln einer Relation Ändern von Zeilen in einer existierenden Tabelle DELETE Löschen von Tupeln aus einer Relation Löschen von Zeilen aus einer existierenden Tabelle Prof. Dr. Peter Chamoni Datenbanksysteme 4 4

5.1 DML - Befehle für Mutationen Einfügen neuer Tupel in eine Relation (I) Syntax INSERT INTO <Tabelle >[(Spaltenliste)] VALUES (Auswahlliste); Relation Beispiel Pilot (PilotID, Nachname, Vorname, GKID) Fügen Sie in die Relation Pilot folgenden Personaldatensatz ein. Günter, Neumann, PilotID 4444 und GKID 69. INSERT INTO Pilot VALUES (4444, 'Neumann', 'Günter', 69); Prof. Dr. Peter Chamoni Datenbanksysteme 5 5

5.1 DML - Befehle für Mutationen Einfügen neuer Tupel in eine Relation (II) Syntax INSERT INTO <Tabellenname> [(Spaltenliste)] Anfrage; Relation Beispiel Pilot (PilotID, Nachname, Vorname, GKID) Fügen Sie in die Relation Pilot_Neu alle Piloten aus der Relation Pilot ein, die den Gehaltsklassen 60 oder 69 angehören. INSERT INTO Pilot_Neu SELECT * FROM Pilot WHERE (GKID = 60) OR (GKID = 69); Prof. Dr. Peter Chamoni Datenbanksysteme 6 6

5.1 DML - Befehle für Mutationen Ändern von Tupeln einer Relation Syntax UPDATE <Tabellenname> SET <Spalte = Spaltenausdruck>, [WHERE <Bedingung>]; Relation Pilot (PilotID, Nachname, Vorname, GKID) Beispiel Ändern Sie die Gehaltsklasse von Michael Meier (PilotID=3333) in 23. UPDATE Pilot SET GKID = 23 WHERE PilotID = 3333; Prof. Dr. Peter Chamoni Datenbanksysteme 7 7

5.1 DML - Befehle für Mutationen Löschen von Tupeln einer Relation Syntax DELETE FROM <Tabellenname> [WHERE <Bedingung>]; Relation Beispiel Pilot (PilotID, Nachname, Vorname, GKID) Löschen Sie das Tupel des Piloten Günter Neumann (PilotID=4444) aus der Relation Pilot. DELETE FROM Pilot WHERE PilotID = 4444; Prof. Dr. Peter Chamoni Datenbanksysteme 8 8

Gliederung 5 SQL Data Manipulation Language 5.1 DML - Befehle für Mutationen 5.2 DML - Abfrage von Daten Prof. Dr. Peter Chamoni Datenbanksysteme 9 9

SQL - Relationenalgebra Teil des Relationalen Modells - Definition von Operationen mit 1 bzw. 2 Eingabetabellen sowie 1 Ausgabetabelle Operationen über 1 Tabelle - Selektion Auswahl bestimmter Zeilen einer Tabelle - Projektion Auswahl bestimmter Spalten einer Tabelle Operationen über 2 Tabellen - Kartesisches Produkt - Verbund / Join - Natürlicher Verbund - Mengenoperationen (Voraussetzung: Gleichförmigkeit der verknüpften Tabellen) Prof. Dr. Peter Chamoni Datenbanksysteme 10 10

Optional Notwendig 5.2 DML Abfrage von Daten Vereinfachtes Standardabfrageschema SELECT * Attributliste FROM Tab 1, Tab 2,, Tab n Projektion / Attributauswahl Kartesisches Produkt / Join WHERE GROUP BY HAVING Bedingung Attributliste Bedingung Selektion einzelner Tupel Bildung von Tupelgruppen, Aggregation, Selektion von Tupelgruppen ORDER BY Attributliste ASC DESC Sortierung Prof. Dr. Peter Chamoni Datenbanksysteme 11

Verarbeitung einer Datenbankabfrage (1) 5 4 6 1 2 3 Prof. Dr. Peter Chamoni Datenbanksysteme 12

Verarbeitung einer Datenbankabfrage (2) 1. Alle in der Tabellenliste angegebenen Relationen werden über das kartesische Produkt miteinander verknüpft. 2. Aus dieser verknüpften Relation werden die Tupel ausgewählt, die die angegebene WHERE-Bedingung erfüllen. 3. Gemäß der Attributliste am Anfang des SELECT-Befehls wird auf das bisherige Resultat eine Projektion auf die gegebenen Attribute vorgenommen. 4. Nun wird eine Gruppierung gemäß der GROUP-BY-Klausel durchgeführt. Eine Gruppierung fasst dabei mehrere Tupel zu einem Ergebnistupel zusammen, so dass die Ergebnisrelation ggf. weniger Tupel enthält. 5. Eine nachfolgende HAVING-Klausel führt jetzt auf das Ergebnis der Gruppierung nochmals eine Restriktion auf bestimmte Tupel durch. 6. Die Ergebnisrelation wird nach den Vorgaben in der Ordnungsliste der ORDER-BY- Klausel sortiert. Prof. Dr. Peter Chamoni Datenbanksysteme 13 13

Abfragen über mehrere Tabellen Mengenoperationen Voraussetzung: Gleichförmigkeit der verknüpften Tabellen Gleiche Anzahl und gleicher Datentyp der Attribute Verbund von Tabellen (JOIN) keine Voraussetzung Prof. Dr. Peter Chamoni Datenbanksysteme 14 14

Abfragen über mehrere Tabellen - Mengenoperatoren Mengenoperatoren Mehrere SELECT-Befehle können durch Mengenoperatoren miteinander verknüpft werden: UNION (Vereinigung) INTERSECT (Durchschnitt) EXCEPT (Differenz) Prof. Dr. Peter Chamoni Datenbanksysteme 15 15

Mengenoperatoren UNION Syntax Beispiel SELECT * FROM <Tabellenname1> UNION SELECT * FROM <Tabellenname2>; Stellen Sie die Vereinigungsmenge von Flug und Flug2 dar. SELECT * FROM Flug UNION SELECT * FROM Flug2; Ergebnisrelation Flug Flug 2 Prof. Dr. Peter Chamoni Datenbanksysteme 16 16

Mengenoperatoren EXCEPT Syntax Beispiel SELECT * FROM <Tabellenname1> EXCEPT SELECT * FROM <Tabellenname2>; Stellen Sie die Differenzmenge von Flug und Flug2 dar. SELECT * FROM Flug EXCEPT SELECT * FROM Flug2; Ergebnisrelation Flug \ Flug 2 In MS ACCESS und der Übungsdatenbank stehen die Mengenoperatoren INTERSECT und EXCEPT nicht zur Verfügung. Prof. Dr. Peter Chamoni Datenbanksysteme 17 17

Mengenoperatoren INTERSECT Syntax Beispiel SELECT * FROM <Tabellenname1> INTERSECT SELECT * FROM <Tabellenname2>; Stellen Sie die Durchschnittsmenge von Flug und Flug2 dar. SELECT * FROM Flug INTERSECT SELECT * FROM Flug2; Ergebnisrelation Flug Flug 2 In MS ACCESS und der Übungsdatenbank stehen die Mengenoperatoren INTERSECT und EXCEPT nicht zur Verfügung. Prof. Dr. Peter Chamoni Datenbanksysteme 18 18

Mengenoperatoren Ausgangsrelationen Flug Flug2 Ergebnisrelationen Flug Flug 2 Flug \ Flug 2 Flug Flug 2 Prof. Dr. Peter Chamoni Datenbanksysteme 19 19

Allgemeine Informationen zu diesem Abschnitt (I) Die nachfolgenden Beispiele beziehen sich auf folgendes relationale Datenmodell Prof. Dr. Peter Chamoni Datenbanksysteme 20

Abfragen über mehrere Tabellen Übersicht möglicher Verbundarten Inner-Join Equi-Join Theta-Join Natural-Join Left-Outer-Join Full-Outer-Join Right-Outer-Join Cross-Join Prof. Dr. Peter Chamoni Datenbanksysteme 21 21

Abfragen über mehrere Tabellen Cross-Join Cross-Join Beim Cross-Join wird das kartesische Produkt über zwei Relationen gebildet, d. h. jeder Datensatz der ersten Relation wird mit jedem Datensatz der zweiten Relation kombiniert. Hinweis Für den praktischen Einsatz ist diese Reinform der Verknüpfungsregel unbrauchbar, da keinerlei Beziehungen zwischen den Daten beachtet werden. Beispiel: Stellen Sie das kartesische Produkt über die Relationen Passagier und Buchung dar. SELECT * FROM Passagier, Buchung; Prof. Dr. Peter Chamoni Datenbanksysteme 22 22

Abfragen über mehrere Tabellen Inner-Join (I) Inner-Join (1) Beim Inner-Join (Equi-Join) wird das kartesische Produkt über zwei Relationen gebildet, verbunden mit der Prüfung, ob ein oder mehrere gemeinsame Attribute den gleichen Wert haben. (Vergleichsoperator = ) In der Relationenalgebra wird mit Verbund der innere Verbund bezeichnet! Beispiel Innerer Verbund zwischen den beiden Relationen Pilot und Gehaltsklasse. SELECT * FROM Pilot, Gehaltsklasse WHERE Pilot.GKID = Gehaltsklasse.GKID; Prof. Dr. Peter Chamoni Datenbanksysteme 23 23

Abfragen über mehrere Tabellen Inner-Join (II) Inner-Join (2) SELECT * FROM Pilot AS P, Gehaltsklasse AS G WHERE P.GKID = G.GKID; Umbenennung der Tabellen oder SELECT * Änderung der JOIN-Syntax FROM Pilot INNER JOIN Gehaltsklasse ON Pilot.GKID = Gehaltsklasse.GKID; oder SELECT * Änderung der JOIN-Syntax FROM Pilot JOIN Gehaltsklasse ON Pilot.GKID = Gehaltsklasse.GKID; Prof. Dr. Peter Chamoni Datenbanksysteme 24 24

Abfragen über mehrere Tabellen Inner-Join (III) Inner-Join (3) Beispiel Stellen Sie den inneren Verbund zwischen den Relationen Passagier und Flug dar. Relationen Passagier (PassID, Name, Vorname) Buchung ( PassID, FlugNr, Datum, Kategorie, Preis) Flug ( FlugNr, Datum, Gate, PilotID) SELECT P.PassID, Name, B.FlugNr, B.Datum, F.Gate FROM Passagier AS P, Buchung AS B, Flug AS F WHERE P.PassID = B.PassID AND B.FlugNr = F.FlugNr AND B.Datum = F.Datum; Prof. Dr. Peter Chamoni Datenbanksysteme 25 25

Abfragen über mehrere Tabellen Theta-Join Theta-Join Beim Theta-Join wird das kartesische Produkt über zwei Relationen gebildet, wobei für ein oder mehrere gemeinsame Attribute eine Bedingung gilt, für die ein beliebiger Vergleichsoperator verwendet werden kann. Beachte: Der Inner-Join ist somit ein Theta-Join, bei dem der Gleichheitsoperator in der Bedingung verwendet wird. Prof. Dr. Peter Chamoni Datenbanksysteme 26 26

Abfragen über mehrere Tabellen Natural-Join (I) Natural-Join (1) Der Natural-Join (Natürlicher Verbund) ist ein Inner-Join, bei dem die Duplikate von identischen Attributen eliminiert werden. Beispiel Relationen Stellen Sie den natürlichen Verbund zwischen den Relationen Flug und Flugstrecke her. Flug ( FlugNr, Datum, Gate, PilotID) Flugstrecke (FlugNr, Flugdauer, Abflugort, Ankunftsort) SELECT Flug.FlugNr, Datum, Gate, PilotID, Flugdauer, Abflugort, Ankunftsort FROM Flug, Flugstrecke WHERE Flug.FlugNr = Flugstrecke.FlugNr; Prof. Dr. Peter Chamoni Datenbanksysteme 27 27

Abfragen über mehrere Tabellen Natural-Join (II) Natural-Join (2) SELECT Flug.*, Flugdauer, Abflugort, Ankunftsort FROM Flug, Flugstrecke WHERE Flug.FlugNr = Flugstrecke.FlugNr; Beschreibung Ergebnisrelation! oder SELECT Flug.*, Flugdauer, Abflugort, Ankunftsort Änderung der JOIN-Syntax FROM Flug INNER JOIN Flugstrecke ON Flug.FlugNr = Flugstrecke.FlugNr; oder SELECT Flug.*, Flugdauer, Abflugort, Ankunftsort Änderung der JOIN-Syntax FROM Flug JOIN Flugstrecke ON Flug.FlugNr = Flugstrecke.FlugNr; Prof. Dr. Peter Chamoni Datenbanksysteme 28 28

Abfragen über mehrere Tabellen Natural-Join (III) Natural-Join (3) Beispiel Stellen Sie den natürlichen Verbund zwischen den Relationen Passagier und Flug dar. Relationen Passagier (PassID, Name, Vorname) Buchung ( PassID, FlugNr, Datum, Kategorie, Preis) Flug ( FlugNr, Datum, Gate, PilotID) SELECT P.PassID, Name, Vorname, B.FlugNr, B.Datum, Kategorie, Preis,Gate, PilotID FROM Passagier AS P, Buchung AS B, Flug AS F WHERE B.PassID = P.PassID AND B.FlugNr = F.FlugNr AND B.Datum = F.Datum; Prof. Dr. Peter Chamoni Datenbanksysteme 29 29

Abfragen über mehrere Tabellen Natural-Join (IV) Natural-Join (4) Fortsetzung des Beispiels Beispiel Stellen Sie den natürlichen Verbund zwischen den Relationen Passagier und Flug dar. Relationen Alternativ Passagier (PassID, Name, Vorname) Buchung ( PassID, FlugNr, Datum, Kategorie, Preis) Flug ( FlugNr, Datum, Gate, PilotID) Beschreibung Ergebnisrelation! SELECT P.*, B.*, F.* FROM Passagier AS P, Buchung AS B, Flug AS F WHERE B.PassID = P.PassID AND B.FlugNr = F.FlugNr AND B.Datum = F.Datum; Prof. Dr. Peter Chamoni Datenbanksysteme 30 30

Abfragen über mehrere Tabellen Left-Outer-Join Left-Outer-Join Beim Left-Outer-Join (Linke Inklusionsverknüpfung) werden von der ersten Relation alle Tupel in die Ergebnismenge aufgenommen. Von der zweiten Relation werden nur die dazugehörigen Tupel übernommen. Die Attributwerte der zweiten Relation bleiben leer (NULL), wenn kein entsprechendes Tupel vorhanden ist. Beispiel SELECT * FROM Pilot LEFT OUTER JOIN Gehaltsklasse ON Pilot.GKID = Gehaltsklasse.GKID; Prof. Dr. Peter Chamoni Datenbanksysteme 31 31

Abfragen über mehrere Tabellen Right-Outer-Join Right-Outer-Join Beim Right-Outer-Join (rechte Inklusionsverknüpfung) werden von der zweiten Relation alle Tupel in die Ergebnismenge aufgenommen. Von der ersten Relation werden nur die dazugehörigen Tupel übernommen. Die Attributwerte der ersten Relation bleiben leer (NULL), wenn kein entsprechendes Tupel vorhanden ist. Beispiel SELECT * FROM Pilot RIGHT OUTER JOIN Gehaltsklasse ON Pilot.GKID = Gehaltsklasse.GKID; Prof. Dr. Peter Chamoni Datenbanksysteme 32 32

Abfragen über mehrere Tabellen Full-Outer-Join Full-Outer-Join Der Full-Outer-Join ist eine Kombination aus dem Left- und dem Right-Outer-Join. Er kommt dem ursprünglichen Cross-Join am nächsten. Alle Datensätze beider Relationen werden in die Ergebnisrelation übernommen. Passen die Tupel beider Relationen lt. Vergleichsoperator zusammen, so werden diese verbunden. Das Ergebnis der Abfrage entspricht einer nicht normalisierten Speicherung aller Daten in einer Tabelle. Beispiel SELECT * FROM Pilot FULL OUTER JOIN Gehaltsklasse ON Pilot.GKID = Gehaltsklasse.GKID; Prof. Dr. Peter Chamoni Datenbanksysteme 33 33

Abfragen über mehrere Tabellen Self-Join Self-Join Der Self-Join (Eigen-Verbund) ist eine Verbundform, bei dem nicht zwei verschiedene Tabellen miteinander verbunden werden, sondern zweimal dieselbe. Beispiel Interpretieren Sie das Attribut Abflugort in der Relation Flug- strecke als Basis und stellen Sie die Basis jedes Fluges dar. SELECT A.*, B.Abflugort AS Basis FROM Flugstrecke AS A, Flugstrecke AS B WHERE A.FlugNr = B.FlugNr; Alternativ SELECT A.*, B.Abflugort AS Basis FROM Flugstrecke AS A JOIN Flugstrecke AS B ON A.FlugNr = B.FlugNr; Prof. Dr. Peter Chamoni Datenbanksysteme 34 34

Abfragen über mehrere Tabellen Anmerkungen (I) Ein Join ist und bleibt in Abhängigkeit von der Tabellengröße eine aufwendige Operation. Ist DB-Performance ein kritischer Faktor, so sollten die verwendeten Joins dahingehend untersucht werden, ob: sämtliche in den Kriterien (ON) verwendeten Spalten indiziert sind; der Join tatsächlich nötig ist und nicht aus reiner Bequemlichkeit einer weiteren Abfrage vorgezogen wird; die Tabellenreihenfolge optimal gewählt ist. Als Faustregel gilt: Immer mit der kleinsten Tabelle beginnen. Unterstützt das Datenbanksystem Unterabfragen, so kann es effizienter sein, statt der gesamten Tabelle nur eine durch Kriterien beschränkte Teilmenge der Datensätze im Join zu verwenden. Prof. Dr. Peter Chamoni Datenbanksysteme 35 35

Abfragen über mehrere Tabellen Anmerkungen (II) Join vs. View Wird eine komplexe Join-Abfrage ständig aufgerufen, empfiehlt sich eher der Einsatz von Views. Ein View kann durchaus auf einer beliebig komplexen SQL-Abfrage basieren. Er stellt das Ergebnis in Form einer Tabelle zur Verfügung. Vorteil: Das DBMS kann das Ergebnis dieser Abfrage u.u. cachen und somit beim zweiten Zugriff schneller zur Verfügung stellen als ein Join. Beim Lesezugriff auf einen View gibt es i.d.r. keine Probleme, hingegen sind Schreiboperationen mit Vorsicht auszuführen. Prof. Dr. Peter Chamoni Datenbanksysteme 36 36