Schulinterner Kernlehrplan für die Oberstufe

Ähnliche Dokumente
Schulinternes Curriculum im Fach Physik SII Einführungsphase

Schulinternen Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Physik

MCG Physik Einführungsphase

Physik. Schulinternes Curriculum zum Kernlehrplan für die gymnasiale Oberstufe. Einführungsphase. (Stand: )

Physik. Einführungsphase (EF) Friedrich-Harkort-Schule Herdecke. Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe

Schulinterner Lehrplan Physik Franz-Stock-Gymnasium Arnsberg

Schulinterner Lehrplan (SILP) Physik

Konkretisierte Unterrichtsvorhaben

Kräfte und Bewegungen. Energie und Impuls. Gravitation Kräfte und Bewegungen. Energie und Impuls. Schwingungen und Wellen Kräfte und Bewegungen

Heinrich-Mann-Gymnasium. Schulinterner Lehrplan zum Kernlehrplan für die Einführungsphase. Physik

Übersichtsraster Unterrichtsvorhaben

Schulinternes Curriculum Fachgruppe Physik Jahrgangsstufe EF

Schulinterner Lehrplan Gymnasium Thusneldastraße. Einführungsphase. Physik

Albertus-Magnus-Gymnasium Bergisch Gladbach. Schulinterner Lehrplan der Stufe EF zum Kernlehrplan für die gymnasiale Oberstufe.

Übersichtsraster Unterrichtsvorhaben Einführungsphase - 80 Stunden

Physik Einführungsphase

Unterrichtsvorhaben der Einführungsphase Kontext und Leitfrage Inhaltsfelder, Inhaltliche Schwerpunkte Kompetenzschwerpunkte Physik und Sport

Schulinterner Lehrplan für die Einführungsphase im Fach PHYSIK

Schulinterner Kernlehrplan für die gymnasiale Oberstufe (Physik Einführungsphase)

Schulcurriculum Physik

Wo. Kontext Inhalte Kompetenzen: Die SuS Vorschlag für Versuche Weitere Absprachen 5 Physik in Sport und Verkehr. unterscheiden gleichförmige und

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe am Städtischen Gymnasium Bergkamen. Chemie

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Physik. Städtisches Gymnasium Wülfrath. Einführungsphase

Inhalt Kompetenzen Medien/Experimente Kommentar. Luftkissenfahrbahn mit digitaler Messwerterfassung: Messreihen zur gleichförmigen und

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe am Max-Planck-Gymnasium. Physik

Viktoriagymnasium. Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Physik. Einführungsphase

Vorläufiges schulinternes Curriculum des Fachbereichs Physik Einführungsphase (EF)

Mechanik Kräfte und Bewegungen Energie und Impuls. Mechanik Gravitation Kräfte und Bewegungen Energie und Impuls

Mechanik Kräfte und Bewegungen Energie und Impuls

Schulinterner Lehrplan zum Kernlehrplan für die Einführungsphase am Apostelgymnasium Köln. Physik

Schulinterner Lehrplan EBG Unna, Sek. II. Physik

Lehrplan im Fach Physik EF (Einführungsphase)

Chemie Sekundarstufe II

Curriculum EF Physik am HJK mit Methoden

Schulinterner Lehrplan Einführungsphase Physik Einführungsphase. Bewegungen und Kräfte

Schulinterner Lehrplan des Fachs Physik in der Einführungsphase der Hans-Ehrenberg-Schule

1 Die Fachgruppe Mathematik am Dietrich-Bonhoeffer-Gymnasium

EF Q1 Q2 Seite 1

Hausinternes Curriculum Biologie: Inhalte, Methoden

Technisch praktikable Generatoren - Schwingende Leiterschaukel - Erzeugung sinusförmiger Wechselspannung

Präambel: Vielfalt macht stark! Vielfalt der pädagogischen Arbeit, der außerunterrichtlichen Aktivitäten und des Fächerangebots.

Klasse 9/10 Blatt 1. Kerncurriculum für das Fach Physik Schulcurriculum (kursiv) Rosenstein- Gymnasium Heubach

Bildungsplan Gymnasium Physik Kompetenzen und (verbindliche) Inhalte Klasse 8

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe am Gymnasium der Stadt Frechen. Physik - Einführungsphase

FACH: PHYSIK JAHRGANG: 11

Lehrplan. Physik. Handelsschule. Ministerium für Bildung, Kultur und Wissenschaft

Schulinterner Lehrplan (Übersichtsraster) des Joseph-Haydn-Gymnasiums Senden zum Kernlehrplan für die gymnasiale Oberstufe. Physik

Schulinternes Curriculum Physik

Gymnasium Köln-Nippes Schulinternes Curriculum Physik Jahrgangsstufe 8

Schulinternes Curriculum für die Einführungsphase

ARBEITSBLATT STUDIUM EINFACHER BEWEGUNGEN

Schulinterner Lehrplan Sek. II Physik EF

Umsetzung des Kernlehrplans Physik (G8) Stoffverteilungsplan für die Klassen 8 und 9 ( beschlossen am , Red. Sti) Klassenstufe 8.

Chemie am Friedrich-Leopold-Woeste-Gymnasium Hemer

Chemie am Friedrich-Leopold-Woeste-Gymnasium Hemer

Physik. Lernziele (Kl. 9) Lerninhalte (Kl. 9)

Stoffverteilungsplan Physik Gymnasium

CURRICULUM AUS NATURWISSENSCHAFTEN Physik und Chemie 1. Biennium FOWI

3. N. I Einführung in die Mechanik. II Grundbegriffe der Elektrizitätslehre

Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler.

LEHRPLAN FÜR DAS GRUNDLAGENFACH PHYSIK

Unterrichtsvorhaben IV: Thema/Kontext: Enzyme im Alltag Welche Rolle spielen Enzyme in unserem Leben/beim Ablauf verschiedener Stoffwechselreaktionen?

2. Klassenarbeiten Im Fach Biologie werden in der Sekundarstufe I keine Klassenarbeiten geschrieben.

Einführung Einleitung Grundlagen Bewegung und Energie. 1.1 Grundbegriffe... 16

Gymnasium an der Wolfskuhle. Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Physik

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Physik

Schulinterner Lehrplan für die gymnasiale Oberstufe. Physik

Mechanik. Entwicklung der Mechanik

Beispiel für einen schulinternen Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Physik

Grundkurs Q 1: Inhaltsfeld: IF 5 Ökologie. Inhaltliche Schwerpunkte: Basiskonzepte:

Schulinternen Lehrplan. Chemie. Max-Ernst-Gesamtschule

Absprachen und Beschlüsse in der Jahrgangsstufe 8

Implementationsveranstaltung Kernlehrplan Physik

Umsetzungshilfe zur Promotionsverordnung: Fachdidaktische Grundlagen zum Fach Physik

Erkenntnisgewinnung Kommunikation Bewertung

Physik 8. Jahrgang Übersicht

Kantonsschule Ausserschwyz. Mathematik. Kantonsschule Ausserschwyz 83

Schulinterner Lehrplan (Stand Juni 2015)

und folgenden Unterricht Kooperation Vorunterrichtliche Erfahrungen,

Chemie. Gymnasium Borghorst Herderstr Steinfurt. Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe.

Schulcurriculum des Evangelischen Gymnasiums Siegen-Weidenau im Fache Chemie, Einführungsphase:

Schulinterner Lehrplan zum Kernlehrplan für die Einführungsphase Städt. Gymnasium Köln-Deutz Schaurtestraße. Physik

Schulinternes Curriculum Physik

Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Physik

Inhalte Klasse 5 Konzeptbezogene Kompetenzen Prozessbezogene Kompetenzen

Schulinternes Curriculum für das Fach Physik Klasse 8

Ü Übersichtsraster Unterrichtsvorhaben Jahrgangstufe 10. Jahrgangsstufe 10 (2-stündig im ganzen Schuljahr)

Energie und Energieerhaltung

Fachcurriculum Physik JS (4-stündig)

Kompetenzorientiertes Fachcurriculum Physik, Weidigschule Butzbach Jahrgangsstufe 8

CHEMIE Oberstufe Übersichtsraster Unterrichtsvorhaben

Periodendauer eines Fadenpendels 9/10

2.1.1 Übersichtsraster Unterrichtsvorhaben

Bildungsplan 2004 Allgemein bildendes Gymnasium

4 an Beispielen Energiefluss und Energieentwertung quantitativ darstellen.

Gutenberg-Gymnasium, Schulinternes Curriculum im Fach Physik, Klasse 5

Schulinternen Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe am Albertus-Magnus-Gymnasium. Physik

Übersichtsraster: Unterrichtsvorhaben Praktische Philosophie, Jgst. 9

Schulinternes Curriculum Katholische Religionslehre EF

Physik besser verstehen!

Transkript:

Schulinterner Kernlehrplan für die Oberstufe im Fach Physik am Willy-Brandt-Gymnasium in Oer-Erkenschwick

Hinweis: Die nachfolgend dargestellte Umsetzung der verbindlichen Kompetenzerwartungen des Kernlehrplans findet auf zwei Ebenen statt. Das Übersichtsraster gibt den Lehrkräften einen raschen Überblick über die laut Fachkonferenz verbindlichen Unterrichtsvorhaben pro Schuljahr. In dem Raster sind, außer dem Thema des jeweiligen Vorhabens, das schwerpunktmäßig damit verknüpfte Inhaltsfeld bzw. die Inhaltsfelder, inhaltliche Schwerpunkte des Vorhabens sowie Schwerpunktkompetenzen ausgewiesen. Die Konkretisierung von Unterrichtsvorhaben führt weitere Kompetenzerwartungen auf. Unterrichtsvorhaben: Die Darstellung der Unterrichtsvorhaben im schulinternen Lehrplan besitzt den Anspruch, sämtliche im Kernlehrplan angeführten zu berücksichtigen. Dies entspricht der Verpflichtung jeder Lehrkraft, Lerngelegenheiten für ihre Lerngruppe so anzulegen, dass alle Kompetenzerwartungen des Kernlehrplans von den Schülerinnen und Schülern erworben werden können. Die entsprechende Umsetzung erfolgt auf zwei Ebenen: der Übersichts- und der Konkretisierungsebene. Im Übersichtsraster Unterrichtsvorhaben wird die für alle Lehrerinnen und Lehrer gemäß Fachkonferenzbeschluss verbindliche Verteilung der Unterrichtsvorhaben dargestellt. Das Übersichtsraster dient dazu, den Kolleginnen und Kollegen einen schnellen Überblick über die Zuordnung der Unterrichtsvorhaben zu den einzelnen Jahrgangsstufen sowie den im Kernlehrplan genannten, Inhaltsfeldern und inhaltlichen Schwerpunkten sowie in der Fachkonferenz verabredeten verbindlichen Kontexten zu verschaffen. Um Klarheit für die Lehrkräfte herzustellen und die Übersichtlichkeit zu gewährleisten, werden in der Kategorie an dieser Stelle nur die übergeordneten Kompetenzerwartungen ausgewiesen, während die konkretisierten Kompe - tenzerwartungen erst auf der Ebene konkretisierter Unterrichtsvorhaben Berücksichtigung finden. Der ausgewiesene Zeitbedarf ver - steht sich als grobe Orientierungsgröße, die nach Bedarf über- oder unterschritten werden kann. Um Spielraum für Vertiefungen, besondere Schülerinteressen, aktuelle Themen bzw. die Erfordernisse anderer besonderer Ereignisse (z. B. Praktika, Kursfahrten o. ä.) zu erhalten, wurden im Rahmen dieses schulinternen Lehrplans ca. 75 Prozent der Bruttounterrichtszeit verplant. Während der Fachkonferenzbeschluss zum Übersichtsraster Unterrichtsvorhaben einschließlich der dort genannten Kontexte zur Gewährleistung vergleichbarer Standards sowie zur Absicherung von Lerngruppenübertritten und Lehrkraftwechseln für alle Mitglieder der Fachkonferenz Bindekraft entfalten soll, besitzt die exemplarische Ausweisung konkretisierter Unterrichtsvorhaben empfehlenden Charakter, es sei denn, die Verbindlichkeit bestimmter Aspekte ist dort, markiert durch Fettdruck, explizit angegeben. Insbesondere Referendarinnen und Referendaren sowie neuen Kolleginnen und Kollegen dienen die konkretisierten Unterrichtsvorhaben vor allem zur standardbezogenen Orientierung in der neuen Schule, aber auch zur Verdeutlichung von unterrichtsbezogenen fachgruppeninternen Absprachen zu didaktisch-methodischen Zugängen, fächerübergreifenden Kooperationen, Lernmitteln und -orten sowie vorgesehenen Leistungsüberprüfungen. Abweichungen von den empfohlenen Vorgehensweisen bezüglich der konkretisierten Unterrichtsvorhaben sind im Rahmen der pädagogischen Freiheit der Lehrkräfte jederzeit möglich. Sicherzustellen bleibt allerdings auch hier, dass im Rahmen der Umsetzung der Unterrichtsvorhaben insgesamt alle Kompetenzerwartungen des Kernlehrplans Berücksichtigung finden. 2

Übersicht der Umgang mit Fachwissen UF1 Wiedergabe UF2 Auswahl UF3 Systematisierung UF4 Vernetzung Schülerinnen und Schüler können in Zusammenhängen mit eingegrenzter Komplexität physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien/Gesetzen und Basiskonzepten beschreiben und erläutern, zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen, physikalische Sachverhalte und Erkenntnisse nach fachlichen Kriterien ordnen und strukturieren, Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen. Erkenntnisgewinnung E1 Probleme und Fragestellungen E2 Wahrnehmung und Messung E3 Hypothesen E4 Untersuchungen und Experimente E5 Auswertung E6 Modelle E7 Arbeits- und Denkweisen Schülerinnen und Schüler können in Zusammenhängen mit eingegrenzter Komplexität in unterschiedlichen Kontexten physikalische Probleme identifizieren, analysieren und in Form physikalischer Fragestellungen präzisieren, kriteriengeleitet beobachten und messen sowie auch komplexe Apparaturen für Beobachtungen und Messungen erläutern und sachgerecht verwenden, mit Bezug auf Theorien, Modelle und Gesetzmäßigkeiten auf deduktive Weise Hypothesen generieren sowie Verfahren zu ihrer Überprüfung ableiten, Experimente auch mit komplexen Versuchsplänen und Versuchsaufbauten mit Bezug auf ihre Zielsetzungen erläutern und diese zielbezogen unter Beachtung fachlicher Qualitätskriterien durchführen, Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern, Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen, naturwissenschaftliches Arbeiten reflektieren sowie Veränderungen im Weltbild und in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen. 3

Kommunikation K1 Dokumentation K2 Recherche K3 Präsentation K4 Argumentation Schülerinnen und Schüler können Fragestellungen, Untersuchungen, Experimente und Daten nach gegebenen Strukturen dokumentieren und stimmig rekonstruieren, auch mit Unterstützung digitaler Werkzeuge, in vorgegebenen Zusammenhängen selbstständig physikalischtechnische Fragestellungen mithilfe von Fachbüchern und anderen Quellen, auch einfachen historischen, Texten, bearbeiten, physikalische Sachverhalte, Arbeitsergebnisse und Erkenntnisse adressatengerecht sowie formal, sprachlich und fachlich korrekt in Kurzvorträgen oder kurzen Fachtexten darstellen, physikalische Aussagen und Behauptungen mit sachlich fundierten und überzeugenden Argumenten begründen bzw. kritisieren. Bewertung B1 Kriterien B2 Entscheidungen B3 Werte und Normen Schülerinnen und Schüler können bei Bewertungen in naturwissenschaftlich-technischen Zusammenhängen Bewertungskriterien angeben, für Bewertungen in physikalisch-technischen Zusammenhängen kriteriengeleitet Argumente abwägen und einen begründen Standpunkt beziehen, in bekannten Zusammenhängen Konflikte bei Auseinandersetzungen mit physikalisch-technischen Fragestellungen darstellen sowie mögliche Konfliktlösungen aufzeigen. 4

Unterrichtsvorhaben in der Einführungsphase Kontext und Leitfrage Inhaltsfelder, Inhaltliche Schwerpunkte Kompetenzschwerpunkte Bewegungen im Alltag Wie lassen sich Bewegungen vermessen und analysieren? Zeitbedarf: 42 Ustd. Mechanik Kräfte und Bewegungen - Gesetze der gleichförmigen und gleichmäßig beschleunigten Bewegung - Wurfbewegungen - Träge Masse, Trägheitssatz - Kraft, Grundgleichung der Mechanik (Newton II) Energie, Arbeit und Impuls - Lageenergie, Hubarbeit, Bewegungsenergie, Beschleunigungsarbeit - Spannenergie, Spannarbeit - Energieentwertung und Reibungsarbeit - Energiebilanzierung, Energieerhaltung - Wirkungsgrad - Impuls, Impulserhaltung und Impulsänderung - Stoßvorgänge E7 Arbeits- und Denkweisen K4 Argumentation E5 Auswertung E6 Modelle UF2 Auswahl Auf dem Weg in den Weltraum Wie kommt man zu physikalischen Erkenntnissen über unser Sonnensystem? Zeitbedarf: 28 Ustd. Schall Wie lässt sich Schall physikalisch untersuchen? Zeitbedarf: 10 Ustd. Summe Einführungsphase: 81 Stunden Mechanik Kreisbewegung, Zentripetalkraft Gravitationsgesetz Kräfte und Bewegungen Energie und Impuls Mechanik Schwingungen und Wellen - Entstehung von Schwingungen - Erzeugung von Wellen - Transversal- und Longitudinalwellen - Resonanz UF4 Vernetzung E3 Hypothesen E6 Modelle E7 Arbeits- und Denkweisen E2 Wahrnehmung und Messung UF1 Wiedergabe K1 Dokumentation 5

Konkretisierte Unterrichtsvorhaben Einführungsphase Inhaltsfeld: Mechanik Kontext: Bewegungen im Alltag Leitfrage: Wie lassen sich Bewegungen vermessen, analysieren und optimieren? Inhaltliche Schwerpunkte: Kräfte und Bewegungen, Energie und Impuls Kompetenzschwerpunkte: Schülerinnen und Schüler können (E7) naturwissenschaftliches Arbeiten reflektieren sowie Veränderungen im Weltbild und in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen (K4) physikalische Aussagen und Behauptungen mit sachlich fundierten und überzeugenden Argumenten begründen bzw. kritisieren. (E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse ver - allgemeinern, (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen, (UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen, Inhalt Beschreibung von Bewegungen im Alltag Aristoteles vs. Galilei (2 Ustd.) stellen Änderungen in den Vorstellungen zu Bewegungen und zum Sonnensystem beim Übergang vom Mittelalter zur Neuzeit dar (UF3, E7), entnehmen Kernaussagen zu naturwissenschaftlichen Positionen zu Beginn der Neuzeit aus einfachen historischen Texten (K2, K4). Handexperimente zur qualitativen Beobachtung von Fallbewegungen (z. B. Stahlkugel, glattes bzw. zur Kugel zusammengedrücktes Papier, evakuiertes Fallrohr mit Feder und Metallstück) Analyse alltäglicher Bewegungsabläufe, Analyse von Kraftwirkungen auf reibungsfreie Körper Vorstellungen zur Trägheit und zur Fallbewegung, Diskussion von Alltagsvorstellungen und physikalischen Konzepten Vergleich der Vorstellungen von Aristoteles und Galilei zur Bewegung 6

Inhalt Beschreibung und Analyse von linearen Bewegungen (16 Ustd.) unterscheiden gleichförmige und gleichmäßig beschleunigte Bewegungen und erklären zugrundeliegende Ursachen (UF2), vereinfachen komplexe Bewegungs- und Gleichgewichtszustände durch Komponentenzerlegung bzw. Vektoraddition (E1), planen selbstständig Experimente zur quantitativen und qualitativen Untersuchung einfacher Zusammenhänge (u.a. zur Analyse von Bewegungen), führen sie durch, werten sie aus und bewerten Ergebnisse und Arbeitsprozesse (E2, E5, B1), stellen Daten in Tabellen und sinnvoll skalierten Diagrammen (u. a. t-s- und t-v-diagramme, Vektordiagramme) von Hand und mit digitalen Werkzeugen angemessen präzise dar (K1, K3), erschließen und überprüfen mit Messdaten und Diagrammen funktionale Beziehungen zwischen mechanischen Größen (E5), bestimmen mechanische Größen mit mathematischen Verfahren und mithilfe digitaler Werkzeuge (u.a. Tabellenkalkulation, GTR) (E6), Luftkissenfahrbahn (evtl. mit digitaler Messwerterfassung): Messreihe zur gleichmäßig beschleunigten Bewegung Freier Fall und Bewegung auf einer schiefen Ebene Wurfbewegungen Wasserspritze, Kugelwurfgerät, günstigster Winkel Unterscheidung von gleichförmigen und (beliebig) beschleunigten Bewegungen (insb. auch die gleichmäßig beschleunigte Bewegung) Erarbeitung der Bewegungsgesetze der gleichförmigen Bewegung Erarbeitung der Bewegungsgesetze der gleichmäßig beschleunigten Bewegung Erstellung von t-s- und t-v-diagrammen (evtl. mithilfe digitaler Hilfsmittel), die Interpretation und Auswertung derartiger Diagramme sollte intensiv geübt werden. Planung von Experimenten durch die Schüler. Schlussfolgerungen bezüglich des Einflusses der Körpermasse bei Fallvorgängen, auch die Argumentation von Galilei ist besonders gut geeignet, um Argumentationsmuster in Physik explizit zu besprechen. Wesentlich: Erarbeitung des Superpositionsprinzips (Komponentenzerlegung und Addition vektorieller Größen). Herleitung der Gleichung für die Bahnkurve nur optional. 7

Inhalt Newtonsche Gesetze, Kräfte und Bewegung (12 Ustd.) berechnen mithilfe des Newtonschen Kraftgesetzes Wirkungen einzelner oder mehrerer Kräfte auf Bewegungszustände und sagen sie unter dem Aspekt der Kausalität vorher (E6), entscheiden begründet, welche Größen bei der Analyse von Bewegungen zu berücksichtigen oder zu vernachlässigen sind (E1, E4), reflektieren Regeln des Experimentierens in der Planung und Auswertung von Versuchen (u. a. Zielorientierung, Sicherheit, Variablenkontrolle, Kontrolle von Störungen und Fehlerquellen) (E2, E4), geben Kriterien (u. a. Objektivität, Reproduzierbarkeit, Widerspruchsfreiheit, Überprüfbarkeit) an, um die Zuverlässigkeit von Messergebnissen und physikalischen Aussagen zu beurteilen, und nutzen diese bei der Bewertung von eigenen und fremden Untersuchungen (B1), Luftkissenfahrbahn (evtl. mit digitaler Messwerterfassung): Messung der Beschleunigung eines Körpers in Abhängigkeit von der beschleunigenden Kraft Protokolle: Funktionen und Anforderungen Kennzeichen von Laborexperimenten im Vergleich zu natürlichen Vorgängen besprechen, Ausschalten bzw. Kontrolle bzw. Vernachlässigen von Störungen Erarbeitung des Newtonschen Bewegungsgesetzes Definition der Kraft als Erweiterung des Kraftbegriffs aus der Sekundarstufe I. Berechnung von Kräften und Beschleunigungen beim Kugelstoßen, bei Ballsportarten, Einfluss von Reibungskräften Energie und Leistung Impuls (12 Ustd.) erläutern die Größen Position, Strecke, Geschwindigkeit, Beschleunigung, Masse, Kraft, Arbeit, Energie, Impuls und ihre Beziehungen zueinander an unterschiedlichen Beispielen (UF2, UF4), analysieren in verschiedenen Kontexten Bewegungen qualitativ und quantitativ sowohl aus einer Wechselwirkungsperspektive als auch aus einer energetischen Sicht (E1, UF1), verwenden Erhaltungssätze (Energie- und Impulsbilanzen), um Bewegungszustände zu erklären sowie Bewegungsgrößen zu berechnen (E3, E6), beschreiben eindimensionale Stoßvorgänge mit Wechselwirkungen und Impulsänderungen (UF1), begründen argumentativ Sachaussagen, Behauptungen und Vermutungen zu mechanischen Vorgängen und ziehen dabei erarbeitetes Wissen sowie Messergebnisse oder andere objektive Daten heran (K4), In Absprache mit der Fachschaft Mathematik: Einsatz des GTR zur Bestimmung des Integrals Fadenpendel (Schaukel) Luftkissenfahrbahn (evtl. mit digitaler Messwerterfassung): Messreihen zu elastischen und unelastischen Stößen Begriffe der Arbeit und der Energie aus der SI aufgreifen und wiederholen Deduktive Herleitung der Formeln für die mechanischen Energiearten aus den Newtonschen Gesetzen und der Definition der Arbeit Energieerhaltung an Beispielen (Pendel, Achterbahn, Halfpipe) erarbeiten und für Berechnungen nutzen Energetische Analysen in verschiedenen Sportarten (Hochsprung, Turmspringen, Turnen, Stabhochsprung, Bobfahren, Skisprung) Begriff des Impulses und Impuls als Erhaltungsgröße Elastischer und inelastischer Stoß auch an anschaulichen Beispielen aus dem Sport (z. B. Impulserhaltung bei Ballsportarten, Kopfball beim Fußball, Kampfsport) 42 Ustd. Summe 8

Kontext: Auf dem Weg in den Weltraum Leitfrage: Wie kommt man zu physikalischen Erkenntnissen über unser Sonnensystem? Inhaltliche Schwerpunkte: Gravitation, Kräfte und Bewegungen, Energie und Impuls Kompetenzschwerpunkte: Schülerinnen und Schüler können (UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen. (E3) mit Bezug auf Theorien, Modelle und Gesetzmäßigkeiten auf deduktive Weise Hypothesen generieren sowie Verfahren zu ihrer Überprüfung ableiten, (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen, (E7) naturwissenschaftliches Arbeiten reflektieren sowie Veränderungen im Weltbild und in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen. Inhalt Aristotelisches Weltbild, Kopernikanische Wende (1 Ustd.) stellen Änderungen in den Vorstellungen zu Bewegungen und zum Sonnensystem beim Übergang vom Mittelalter zur Neuzeit dar (UF3, E7), Einstieg über Film zur Entwicklung des Raketenbaus und der Weltraumfahrt Besuch in einer Sternwarte, Planetarium Bochum Historie: Verschiedene Möglichkeiten der Interpretation der Beobachtungen Planetenbewegungen und Keplersche Gesetze (4 Ustd.) ermitteln mithilfe der Kepler schen Gesetze und des Gravitationsgesetzes astronomische Größen (E6), beschreiben an Beispielen Veränderungen im Weltbild und in der Arbeitsweise der Naturwissenschaften, die durch die Arbeiten von Kopernikus, Kepler, Galilei und Newton initiiert wurden (E7, B3). Orientierung am Himmel Tycho Brahes Messungen, Keplers Schlussfolgerungen Newtonsches Gravitationsgesetz, Gravitationsfeld (4 Ustd.) beschreiben Wechselwirkungen im Gravitationsfeld und verdeutlichen den Unterschied zwischen Feldkonzept und Kraftkonzept (UF2, E6), Arbeit mit dem Lehrbuch, Recherche im Internet Newtonsches Gravitationsgesetz als Zusammenfassung bzw. Äquivalent der Keplerschen Gesetze Newtonsche Mondrechnung Anwendung des Newtonschen Gravitationsgesetzes und der Keplerschen Gesetze zur Berechnung von Satellitenbahnen Feldbegriff diskutieren, Definition der Feldstärke über Messvorschrift Kraft auf Probekörper 9

Inhalt Kreisbewegungen (10 Ustd.) analysieren und berechnen auftretende Kräfte bei Kreisbewegungen (E6), Messung der Zentralkraft An dieser Stelle sollen das experimentell-erkundende Verfahren und das deduktive Verfahren zur Erkenntnisgewinnung am Beispiel der Herleitung der Gleichung für die Zentripetalkraft als zwei wesentliche Erkenntnismethoden der Physik bearbeitet werden. Beschreibung von gleichförmigen Kreisbewegungen, Winkelgeschwindigkeit, Periode, Bahngeschwindigkeit, Frequenz Experimentell-erkundende Erarbeitung der Formeln für Zentripetalkraft und Zentripetalbeschleunigung: Herausstellen der Notwendigkeit der Konstanthaltung der restlichen Größen bei der experimentellen Bestimmung einer von mehreren anderen Größen abhängigen physikalischen Größe (hier bei der Bestimmung der Zentripetalkraft in Abhängigkeit von der Masse des rotierenden Körpers) Ergänzend: Deduktion der Formel für die Zentripetalbeschleunigung Massenbestimmungen im Planetensystem Bahnen von Satelliten und Planeten Impuls und Impulserhaltung, Rückstoß (8 Ustd.) verwenden Erhaltungssätze (Energie- und Impulsbilanzen), um Bewegungszustände zu erklären sowie Bewegungsgrößen zu berechnen (E3, E6), erläutern unterschiedliche Positionen zum Sinn aktueller Forschungsprogramme (z. B. Raumfahrt, Mobilität) und beziehen Stellung dazu (B2, B3). Luftkissenbahn Wasserrakete Raketentriebwerke für Modellraketen Impuls und Rückstoß Bewegung einer Rakete im luftleeren Raum Untersuchungen mit einer Wasserrakete. 27 Ustd. Summe 10

Kontext: Schall Leitfrage: Wie lässt sich Schall physikalisch untersuchen? Inhaltliche Schwerpunkte: Schwingungen und Wellen, Kräfte und Bewegungen, Energie und Impuls Kompetenzschwerpunkte: Schülerinnen und Schüler können (E2) kriteriengeleitet beobachten und messen sowie auch komplexe Apparaturen für Beobachtungen und Messungen erläutern und sachgerecht verwenden, (UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien/Gesetzen und Basiskonzepten beschreiben und erläutern, (K1) Fragestellungen, Untersuchungen, Experimente und Daten nach gegebenen Strukturen dokumentieren und stimmig rekonstruieren, auch mit Unterstützung digitaler Werkzeuge Inhalt Entstehung und Beschreibung von Schwingungen (2 Ustd.) erklären qualitativ die Entstehung der Schwingung und beschreiben Schwingungsabläufe mithilfe der physikalischen Fachsprache (UF1, UF4). Feder-Schwerependel und Fadenpendel Auf konsequente Benutzung der Fachsprache ist zu achten. Entstehung und Ausbreitung von Schall (4 Ustd.) erklären qualitativ die Ausbreitung mechanischer Wellen (Transversal- und Longitudinalwelle) mit den Eigenschaften des Ausbreitungsmediums (E6), Stimmgabeln, Lautsprecher, Frequenzgenerator, rußgeschwärzte Glasplatte, Schreibstimmgabel, Klingel und Vakuumglocke Erarbeitung der Grundgrößen zur Beschreibung von Schwingungen und Wellen: Frequenz (Periode) und Amplitude mittels der Höreindrücke des Menschen Modelle der Wellenausbreitung (4 Ustd.) beschreiben Schwingungen und Wellen als Störungen eines Gleichgewichts und identifizieren die dabei auftretenden Kräfte (UF1, UF4), Lange Schraubenfeder, Wellenwanne Entstehung von Longitudinal- und Transversalwellen Ausbreitungsmedium, Möglichkeit der Ausbreitung longitudinaler. bzw. transversaler Schallwellen in Gasen, Flüssigkeiten und festen Körpern Erzwungene Schwingungen und Resonanz (2 Ustd.) erläutern das Auftreten von Resonanz mithilfe von Wechselwirkung und Energie (UF1). Stimmgabeln Resonanz (auch Tacoma-Bridge, Millennium- Bridge) Resonanzkörper von Musikinstrumenten 12 Ustd. Summe 11