1D-Example - Finite Difference Method (FDM)

Ähnliche Dokumente
Finite Difference Method (FDM) Integral Finite Difference Method (IFDM)

Finite Difference Method (FDM)

Introduction FEM, 1D-Example

Introduction FEM, 1D-Example

FEM Isoparametric Concept

2. Basic concepts of computations in engineering sciences

Magic Figures. We note that in the example magic square the numbers 1 9 are used. All three rows (columns) have equal sum, called the magic number.

FEM Isoparametric Concept

Bayesian Networks. Syntax Semantics Parametrized Distributions Inference in Bayesian Networks. Exact Inference. Approximate Inference

Unit 4. The Extension Principle. Fuzzy Logic I 123

Interpolation Functions for the Finite Elements

Where are we now? The administration building M 3. Voransicht

Einführung in die Finite Element Methode Projekt 2

A Classification of Partial Boolean Clones

a) Name and draw three typical input signals used in control technique.

Seeking for n! Derivatives

Übungsblatt 6. Analysis 1, HS14

Inverse Problems In Medical Imaging

Number of Maximal Partial Clones

Attention: Give your answers to problem 1 and problem 2 directly below the questions in the exam question sheet. ,and C = [ ].

Word-CRM-Upload-Button. User manual

DICO Dimension Coupling

prorm Budget Planning promx GmbH Nordring Nuremberg

Transport Equation. Institut für Wasserbau, Lehrstuhl für Hydromechanik und Hydrosystemmodellierung. . p.1/21. home/lehre/vl-mhs-1-e/cover_sheet.

Tube Analyzer LogViewer 2.3

Transport Equation. Institut für Wasserbau, Lehrstuhl für Hydromechanik und Hydrosystemmodellierung

Rätsel 1: Buchstabensalat klassisch, 5 5, A C (10 Punkte) Puzzle 1: Standard As Easy As, 5 5, A C (10 points)

Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach

Allgemeine Mechanik Musterlösung 11.

Level 2 German, 2015

Mixed tenses revision: German

Weather forecast in Accra

Wie man heute die Liebe fürs Leben findet

Level 2 German, 2016

Unit 6. Fuzzy Inference. Fuzzy Logic I 159

Field-Circuit Coupling for Mechatronic Systems: Some Trends and Techniques

Level 1 German, 2012

Application Note. Import Jinx! Scenes into the DMX-Configurator

Statistics, Data Analysis, and Simulation SS 2015

Guidance Notes for the eservice 'Marketing Authorisation & Lifecycle Management of Medicines' Contents

SAMPLE EXAMINATION BOOKLET

PONS DIE DREI??? FRAGEZEICHEN, ARCTIC ADVENTURE: ENGLISCH LERNEN MIT JUSTUS, PETER UND BOB

Unit 1. Motivation and Basics of Classical Logic. Fuzzy Logic I 6

Causal Analysis in Population Studies

Ein Stern in dunkler Nacht Die schoensten Weihnachtsgeschichten. Click here if your download doesn"t start automatically

Hydroinformatik II: Grundlagen der Kontinuumsmechanik V3

Konfiguration von eduroam. Configuring eduroam

Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach

VGM. VGM information. HAMBURG SÜD VGM WEB PORTAL USER GUIDE June 2016

Geometrie und Bedeutung: Kap 5

Rev. Proc Information

VGM. VGM information. HAMBURG SÜD VGM WEB PORTAL - USER GUIDE June 2016

Einführung in die Computerlinguistik

Algebra. 1. Geben Sie alle abelschen Gruppen mit 8 und 12 Elementen an. (Ohne Nachweis).

How-To-Do. Hardware Configuration of the CC03 via SIMATIC Manager from Siemens

device is moved within brightness is

Harry gefangen in der Zeit Begleitmaterialien

Supplementary material for Who never tells a lie? The following material is provided below, in the following order:

Die besten Chuck Norris Witze: Alle Fakten über den härtesten Mann der Welt (German Edition)

Hydrosystemanalyse: Finite-Elemente-Methode (FEM)

Hazards and measures against hazards by implementation of safe pneumatic circuits

Priorities (time independent and time dependent) Different service times of different classes at Type-1 nodes -

Handbuch der therapeutischen Seelsorge: Die Seelsorge-Praxis / Gesprächsführung in der Seelsorge (German Edition)

Bowlingcenter Schillerpark Berlin

Extract of the Annotations used for Econ 5080 at the University of Utah, with study questions, akmk.pdf.

FAHRZEUGENTWICKLUNG IM AUTOMOBILBAU FROM HANSER FACHBUCHVERLAG DOWNLOAD EBOOK : FAHRZEUGENTWICKLUNG IM AUTOMOBILBAU FROM HANSER FACHBUCHVERLAG PDF

Taxation in Austria - Keypoints. CONFIDA Klagenfurt Steuerberatungsgesellschaft m.b.h

German translation: technology

Accelerating Information Technology Innovation

ONLINE LICENCE GENERATOR

Geometry Of Algebraic Curves: Volume II With A Contribution By Joseph Daniel Harris (Grundlehren Der Mathematischen Wissenschaften) By Maurizio

Open queueing network model of a computer system: completed jobs

Fachübersetzen - Ein Lehrbuch für Theorie und Praxis

Computational Models

Hör auf zu ziehen! Erziehungsleine Training Leash

Prof. Dr. Dörte Haftendorn, Leuphana Universität Lüneburg, 2013

NEWSLETTER. FileDirector Version 2.5 Novelties. Filing system designer. Filing system in WinClient

CB RADIO Service Manual AE 6890

Fachbereich 5 Wirtschaftswissenschaften Univ.-Prof. Dr. Jan Franke-Viebach

Optimierung als Ziel. Optimierung als Ziel. Optimierung als Ziel. Optimization as a Goal. Optimization as a Goal. Optimization as a Goal

Cycling and (or?) Trams

Unterspezifikation in der Semantik Hole Semantics

Mock Exam Behavioral Finance

Prediction Market, 28th July 2012 Information and Instructions. Prognosemärkte Lehrstuhl für Betriebswirtschaftslehre insbes.

Schachaufgabe 05: Ma-Übung Chess Problem 05: Mate training

PONS DIE DREI??? FRAGEZEICHEN, ARCTIC ADVENTURE: ENGLISCH LERNEN MIT JUSTUS, PETER UND BOB

DIE NEUORGANISATION IM BEREICH DES SGB II AUSWIRKUNGEN AUF DIE ZUSAMMENARBEIT VON BUND LNDERN UND KOMMUNEN

DIBELS TM. German Translations of Administration Directions

Copyright by Hildegard Heilmann IAG Diese Unterlagen stelle ich den SchülerInnen des V. Bachilleratos des IAG zur Verfügung.

Angewandte Umweltsystemanalyse: Finite-Elemente-Methode (FEM) #3

Analysis Add-On Data Lineage

H o c h s c h u l e D e g g e n d o r f H o c h s c h u l e f ü r a n g e w a n d t e W i s s e n s c h a f t e n

Bayesian updating in natural hazard risk assessment

The Navier-Stokes equations on polygonal domains with mixed boundary conditions theory and approximation

GERMAN LANGUAGE Tania Hinderberger-Burton, Ph.D American University

Ingenics Project Portal

Hausaufgabe 1-4. Name: If homework late, explanation: Last class homework is being accepted: If correction late, explanation: Student Self-Grading

Informatik - Übungsstunde

Microcontroller VU Exam 1 (Programming)

Einbau- und Montageanleitung Wanddurchführungs-Set Seite 3-4 Assembly instructions and mounting guide Wall pipe set Page 5-6

Transkript:

D-Example - Finite Difference Method (FDM) h left. Geometry A = m 2 = m ents 4m q right x 2. Permeability k f = 5 m/s 3. Boundary Conditions q right = 4 m/s y m 2 3 4 5 h left = 5 m x x x x home/baumann/d_beispiel/folie.tex. p./9

D-Example - Finite Difference Method (FDM) Continuity equation (mass balance equation for an incompressible fluid): v q = Momentum balance equation Darcy equation (with all necessary assumptions): v = k f h with h = p ρg + z If we insert the Darcy equation into the continuity equation and then rewrite it in a one dimensional form, we get Assumptions: ( k f h) q = and D x ( k f No sinks or sources inside the tube, incompressible flow, and (Re ). h x ) q =. home/baumann/d_beispiel/folie2.tex. p.2/9

D-Example - Finite Difference Method (FDM) Goal: Direct transfer from the partial differential equation to the difference equation (algebraic equation). Finite Difference Approximation h PSfrag replacements ĥ i ĥ i+ () ĥ i (2) (3) =.[m] i i i+ x home/baumann/d_beispiel/folie3.tex. p.3/9

D-Example - Finite Difference Method (FDM) (e.g. from the Taylor ex- We can write the finite difference formulation for dh and d2 h dx dx 2 pansion) «dh dx i+ «dh dx i «dh dx i d 2 h dx 2 = d dx = h i+ h i = h i h i = h i+ h i «dh dx = forward difference () backward difference (2) central difference (3) " «dh dx i+ «# dh dx i d 2 h dx = 2 hi+ h i h i h i «= h i+ 2h i + h i 2 home/baumann/d_beispiel/folie4.tex. p.4/9

D-Example - Finite Difference Method (FDM) Calculation of the flow balance at the nodes: Node is our known boundary condition h left h left = h or k f h 2 h = q () Node 2 is calculated according to the presented scheme k f h i+ 2h i + h i 2 q 2 =, h i is known, k f h 2h 2 + h 3 2 q 2 =, with q 2 =, k f 2 (, 2, ) (h, h 2, h 3 ) T = with h as boundary condition. home/baumann/d_beispiel/folie5.tex. p.5/9

D-Example - Finite Difference Method (FDM) Node 3 and node 4 are calculated accordingly: k f h 4 2h 3 + h 2 2 q 3 = k f 2 (, 2, ) (h 4, h 3, h 2 ) T =, k f h 5 2h 4 + h 3 2 q 4 = k f 2 (, 2, ) (h 5, h 4, h 3 ) T =. Node 5 is a boundary node with the prescribed flux q right. This boundary condition will be used directly as the last equation k f h 5 h 4 = q right k f (, ) ((h 5, h 4 ) T = q right. home/baumann/d_beispiel/folie6.tex. p.6/9

D-Example - Finite Difference Method (FDM) Assemble the equations for the piezometric heads in matrix form 2 2 B C B @ 2 A @ h h 2 h 3 h 4 h 5 C A = k f q B @ C A k f q left. As h is known, we can delete the corresponding row and column and transfer h to the right hand side of the equation. 2 2 B C B @ 2 A @ h 2 h 3 h 4 h 5 C A = B @ h left k f q right C A home/baumann/d_beispiel/folie7.tex. p.7/9

D-Example: Integral Finite Difference Method (IFDM) Given: H left. Geometry A = z y = m 2 x = m ents h 2 A 4 m CV A Q right x 2. Permeability k f = 5 m/s 3. Boundary conditions Q right = 4 m 3 /s H left = 5 m 2 3 4 z y x x x x x home/baumann/d_beispiel/element.tex. p.8/9

D-Example: Starting equations (IFDM) Continuity equation: Z A (v n) da Z CV q dω = Momentum equation (Darcy equation): v = k f h Inserting the momentum equation into the continuity equation yields: Z A ( k f h) n da Z CV q dω =. If only one control volume is considered one obtains X Z CV A CV ( k f h) n da Z «q dω =. CV CV home/baumann/d_beispiel/starting equation.tex. p.9/9

D: Considering the second control volume (IFDM) Writing the integral over the boundary of the control volume as the sums over the interfaces, the first term can be written as: Z A CV ( k f h) n da = X i ( k fi h i )A i = X i Q i with i =, 2 for D. For a d problem each control volume has two interfaces. For the second control volume we have to take two fluxes into account. The source- and sinkterm R q dω, which CV describes extraction or injection of water inside of the domain, e.g. by a well, equals zero, as no water is extracted or injected inside of the second control volume. PSfrag replacements n 2 n x X ( k fi h i )A i = Q 2 + Q 2 3 = i home/baumann/d_beispiel/one_element.tex. p./9

D-Example - Calculating the fluxes (IFDM) The fluxes can now be approximated in the following way. Q 2 is the flux over the boundary of control volume two (CV 2) into control volume one (CV ). An inflow into CV 2 and an outflow out of CV 2 have positive and negative signs, respectively. Q 2 = h h 2 Q 2 3 = h 3 h 2 k f A k f A Inserting these fluxes into the balance equation for CV 2 yields Q 2 + Q 2 3 = h h 2 + h 3 h 2 «k f A = «h 2h 2 + h 3 k f A =. home/baumann/d_beispiel/fluxes.tex. p./9

D-Example - on the side: averaging (IFDM) What happens if k f k f2? How can k f2 be determined? 2 x In principle there are two possibilities arithmetic mean k f +k f2 2, harmonic mean 2k f k f2 k f +k f2. It stands to reason to proceed from the extreme case. What would happen if one of the permeabilities would be zero, which means one domain would be impermeable? As the system is one-dimensional, this domain would be a barrier and there would be no flow. The harmonic mean fulfills this criterion and is here the correct averaging method. home/baumann/d_beispiel/averaging.tex. p.2/9

D-Example - Stiffness matrix I (IFDM) In order to determine the unknowns, in this case the piezometric heads, all equations (one for each control volume) have to be solved. This leads to a system of equations, which can be written in a matrix - vector product. The matrix is called stiffness matrix analogous to structural mechanics. It consists of the factors in front of the piezometric heads and the structural parameters, such as cross sectional area and permeability. The solution vector contains the piezometric heads and on the right hand side are all the known values as well as the inflow and outflow of the system. S ij {z} h i {z} 2 = q j. {z} 3. Control volume matrix or stiffness matrix 2. Vector of unknowns 3. (right hand side) source and sink terms, boundary conditions home/baumann/d_beispiel/stiffnessmat.tex. p.3/9

D-Example - Stiffness matrix II (IFDM) The matrix form of the equation for the second control volume has the following shape: (h 2h 2 + h 3 )k f A = k f A(h 2h 2 + h 3 ) = k f A, 2, = k f A S CV Depending on the system, the different permeabilities are included into the stiffness matrix or, in case they are identical, they can be factored out and moved to the right hand side. In our example this is the case: h T CV B @ h h 2 h 3 C A S ij h T i = k f A Q j. home/baumann/d_beispiel/stiffnessmat2.tex. p.4/9

D-Example - Stiffness matrix III (IFDM) If we assemble all the equations in the system matrix, we yield the following result: 3 2 B C B @ 2 A @ h h 2 h 3 h 4 C A = B @ 2H left Q right k f A. C A In no control volume water is extracted or injected. In the first row the known piezometric head is moved to the boundary conditions on the right hand side. In the last row we can insert the other boundary condition directly into the flow equation. As it is known, it can be moved to the right hand side. On the next pages there will be further explanation about including boundary conditions. home/baumann/d_beispiel/stiffnessmat3.tex. p.5/9

D-Example - Boundary conditions I (IFDM) Dirichlet boundary condition: PSfrag replacements H left A further unknown (h ) enters the balance equation for the CV. In this case h is coupled with h via the boundary condition. As H left has to be constant, and we assume a linear piezometric head distribution, we can express H left as the arithmetic mean of the neighbouring piezometric heads. H left = h + h 2 h = 2H left h If we put this into our balance equation for CV, we get Q + Q 2 = «h 2h + h 2 k f A = «2Hleft 3h + h 2 k f A =. home/baumann/d_beispiel/boundary conditions.tex. p.6/9

D-Example - Solution I (IFDM) The system of equations could be solved e.g. using the Thomas-algorithm or the socalled double sweep procedure. On the next two slides the depenencies of the variables will be set up on the left hand side. On the right hand side we will insert the values back, and the values will be calculated from bottom to top. 3h + h 2 = 2H left h = 2H left h 2 3 h = 2 3 H left + 3 h 2 h 2h 2 + h 3 = h = 45m h = 2 3 5m + 3 35m 7 h 2 = 35m h 2 = h h 3 2 = 2 6 H left + 6 h 2 + 2 h 3 h 2 = 2 5 H left + 3 5 h 3 h 2 = 3 5 25m + 2 5 5m home/baumann/d_beispiel/solution.tex. p.7/9

D-Example - Solution II (IFDM) 2 h 2 2h 3 + h 4 = h 3 = h 2 h 4 2 = 5 H left + 3 h 3 + 2 h 4 6 h 3 = 25m h 3 = 2 7 H left + 5 7 h 4 h 3 = 5 7 5m + 2 7 5m 3 h 3 h 4 = Q k f A h 4 = Q k f A + h 3 = Q k f A + 5 7 h 4 + 2 7 H left 5 h 4 = 5m h 4 = 7 Q 2 k f A + H left = 4 h 4 = 7 4 m 3 /s m 2 5 m/s m 2 + 5m This yields the following distribution of piezometric heads: h = 45m ; h 2 = 35m ; h 3 = 25m ; h 4 = 5m. home/baumann/d_beispiel/solution_ii.tex. p.8/9