6. Komprimierung. (Text)komprimierung ist ein Wechsel der Repräsentation von Daten, so daß sie weniger

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "6. Komprimierung. (Text)komprimierung ist ein Wechsel der Repräsentation von Daten, so daß sie weniger"

Transkript

1 Komprimierung 6. Komprimierung (Text)komprimierung ist ein Wechsel der Repräsentation von Daten, so daß sie weniger Platz brauchen Motivation: beschleunigt Plattenzugriffe oder Datenübertragungen Voraussetzung: bei Textkomprimierung muß eine Datei exakt rekonstruiert werden können Einführung in Information Retrieval 216

2 Übersicht Wir betrachten folgende Verfahren: Huffmankodierung arithmetische Kodierung Ziv-Lempel (ZIP) wortweise Huffmankodierung Einführung in Information Retrieval 217

3 Huffmankodierung 6.1. Huffmankodierung zentrale Idee: ersetze häufig vorkommende Zeichen durch kurze Codes, selten vorkommende Zeichen durch längere Codes Prefix Constraint: kein gültiges Codewort darf Präfix eines anderen sein Problem ist nun, möglichst gute Balance zwischen Häufigkeit und Codewortlänge zu finden Einführung in Information Retrieval 218

4 Vorgehensweise in einem ersten Schritt muß die Häufigkeit jedes Zeichens im Text bestimmt werden je nach Häufigkeit bekommen diese Zeichen eine Bitsequenz zugeordnet bei der Dekodierung wird die komprimierte Datei Bit für Bit durchlaufen, bis wir eine Bitsequenz gefunden haben, die einem Zeichen entspricht dieses Zeichen wird ausgegeben und wir suchen weiter Einführung in Information Retrieval 219

5 Eindeutigkeit bei der Kodierung muß darauf geachtet werden, daß eindeutig dekodiert werden kann benutze Binärbaum, bei dem alle Knoten entweder zwei Kinder oder keine Kinder haben: Präfixeigenschaft ist erfüllt, wenn die Zeichencodes Blättern in diesem Baum entsprechen Einführung in Information Retrieval 220

6 Zuordnung Zuordnung der Codes: füge alle Zeichen in einen Heap H ein (nach Häufigkeit); while(h ist nicht leer) { if(nur ein Zeichen X in H) { mache X zur Wurzel von Baum T ; } else { nimm Zeichen X und Y mit kleinster Häufigkeit aus H; ersetze X und Y mit neuem Zeichen Z; Häufigkeit von Z = Häufigkeit X + Y ; mache X und Y zu Kindern von Z; } } Einführung in Information Retrieval 221

7 Beispiel Beispiel für Zeichen A, B, C, D, E und F mit den Häufigkeiten 5,2,3,4,10 und 1 Einführung in Information Retrieval 222

8 Arithmetische Kodierung 6.2. Arithmetische Kodierung Huffmankodierung kann die Codes nur auf ganzzahlige Bits anpassen, d.h. ein Zeichen wird durch 1,2,3,...,n Bits kodiert bei arithmetischer Kodierung kann die Kodierung beliebig genau an die Häufigkeitsverteilung angepasst werden auf diese Weise ist eine noch bessere Komprimierung möglich Einführung in Information Retrieval 223

9 Verfahren wie kodiert man z.b. ein Zeichen mit Bits? man benutzt nicht immer den gleichen Code für ein Zeichen, sondern wechselt je nach Häufigkeit den Code (und so eventuell auch die Länge des Codes) dabei wird der gesamte Text in eine einzige Fließkommazahl umgewandelt Einführung in Information Retrieval 224

10 Beispiel Wir haben Alphabet Σ = {a, b, c} und möchten bccb komprimieren Annahme zu Beginn: alle Zeichen treten gleich häufig auf für das erste Zeichen wählen wir eine Zahl zwischen und Einführung in Information Retrieval 225

11 Beispiel für das nächste Zeichen bleiben wir in diesem Interall dieses Intervall wird nun neu aufgeteilt (unter Berücksichtigung der neuen Auftrittshäufigkeiten) Einführung in Information Retrieval 226

12 Beispiel dieses Verfahren wird jetzt einfach für die nächsten Zeichen fortgesetzt: Einführung in Information Retrieval 227

13 Beispiel Endergebnis: wir müssen eine Zahl zwischen und wählen man wählt diese Zahl möglichst geschickt (mit kürzest möglicher Binärdarstellung) führende Null kann sowieso weggelassen werden (da alle Zahlen zwischen 0 und 1 Dekodierer hat keine Probleme, da er mit genau den gleichen Intervallen startet und diese auf die gleiche Art und Weise anpaßt Einführung in Information Retrieval 228

14 Beispiel Binärdarstellung von : Binärdarstellung von : kürzeste Zahl in diesem Intervall: bei einer Übertragung des Textes kann schon während des Kodierens mit der Übertragung begonnen werden (mit dem Teil, der sich definitiv nicht mehr ändert) Einführung in Information Retrieval 229

15 Fazit komprimiert besser als Huffman ist allerdings auch langsamer kann nicht mitten im Text aufsetzen Einführung in Information Retrieval 230

16 Ziv-Lempel 6.3. Ziv-Lempel bekannter unter dem Namen ZIP (alle ZIP- Verfahren basieren auf Ziv-Lempel) lexikonbasiertes Verfahren, jeder Teilstring im Text wird durch Codewort ersetzt Beispiel aus dem realen Leben: Dezember 12, Montag Mo, etc. Einführung in Information Retrieval 231

17 Möglichkeiten für Lexikon einfachstes Lexikon: Kodierung der häufigsten 2-grams (2-Buchstabenkombinationen) größere Lexika stellen uns allerdings vor Probleme: gespeicherte Information wird zu groß außerdem ist festes Lexikon ungeeignet für Spezialanwendungen Lösung: man benutzt den Text selbst als Lexikon Einführung in Information Retrieval 232

18 Beispiel erste Zahl im Tripel gibt an, wieviele Positionen vor aktuellem Zeichen Teilstring beginnt zweite Zahl gibt an, wie lange Teilstring ist drittes Zeichen gibt an, was dahinter gehängt wird Einführung in Information Retrieval 233

19 Wortbasierte Huffmankodierung 6.4. Wortbasierte Huffmankodierung Suchen und Komprimieren wurden traditionell aus sich ausschließende Verfahren betrachtet d.h. die bisherige Ansicht war, daß komprimierte Texte zum Durchsuchen erst dekomprimiert werden müssen in letzter Zeit wurden Verfahren entwickelt, um auf komprimierten Texten direkt zu suchen Einführung in Information Retrieval 234

20 Wortbasierte Huffmankodierung einer dieser Ansätze ist die wortbasierte Huffmankodierung Kodierung ebenfalls in 2 Phasen Häufigkeit der vorkommenden Worte bestimmen Kodierung aufbauen für englische Texte reduziert zeichenbasierte Huffmankodierung die Größe um ca. 40% wortbasierte Huffmankodierung die Größe um ca. 75% Einführung in Information Retrieval 235

21 Beispiel Einführung in Information Retrieval 236

22 Byte-orientierte Huffmankodierung variabel lange Codewörter bremsen Verarbeitung schnellere Verarbeitung möglich, wenn sich Kodierung an Bytegrenzen orientiert byte-orientierte Huffmankodierung funktioniert im Prinzip wie normale wortbasierte Huffmankodierung, nur daß Mehrweg- statt Binärbäume verwendet werden Einführung in Information Retrieval 237

23 Mehrweg- vs. Binärbäume Einführung in Information Retrieval 238

24 Mehrweg- vs. Binärbäume Verzweigungen werden in einem Byte kodiert üblicherweise wird zusätzliche Markierung (tag) benutzt (oberstes Bit markiert Wortanfang, um Suche noch weiter zu beschleunigen) Einführung in Information Retrieval 239

25 Vorteile/Nachteile ein Teil der besseren Komprimierung der wortweisen Kodierung wird wieder aufgegeben reduziert die Größe einer (englischen) Textdatei im Schnitt um 60% bis 70% mit byteorientierter Kodierung können aber die Standardsuchalgorithmen auf komprimierten Text angewendet werden! Einführung in Information Retrieval 240

Datenkompression. 1 Allgemeines. 2 Verlustlose Kompression. Holger Rauhut

Datenkompression. 1 Allgemeines. 2 Verlustlose Kompression. Holger Rauhut Datenkompression Holger Rauhut 1. September 2010 Skript für die Schülerwoche 2010, 8.-11.9.2010 Hausdorff Center for Mathematics, Bonn 1 Allgemeines Datenkompression hat zum Ziel, Daten in digitaler Form,

Mehr

Textkomprimierung. Stringologie. Codes. Textkomprimierung. Alle Komprimierung beruht auf Wiederholungen im Text. Textkomprimierung

Textkomprimierung. Stringologie. Codes. Textkomprimierung. Alle Komprimierung beruht auf Wiederholungen im Text. Textkomprimierung Stringologie Peter Leupold Universität Leipzig Vorlesung SS 2014 Alle Komprimierung beruht auf Wiederholungen im Text Die Komprimierung muss rückgängig gemacht werden können Je kleiner das Alphabet, desto

Mehr

Huffman-Kodierung. Fachbereich Medieninformatik. Hochschule Harz. Huffman-Kodierung. Referat. Henner Wöhler. Abgabe:

Huffman-Kodierung. Fachbereich Medieninformatik. Hochschule Harz. Huffman-Kodierung. Referat. Henner Wöhler. Abgabe: Fachbereich Medieninformatik Hochschule Harz Huffman-Kodierung Referat Henner Wöhler 11459 Abgabe: 15.01.2007 Inhaltsverzeichnis Einleitung...I 1. Entropiekodierung...1 1.1 Morse Code...2 1.2 Shannon-Fano-Kodierung...3

Mehr

Strings. Stringsuche, Boyer-Moore, Textkompression, Huffman Codes.

Strings. Stringsuche, Boyer-Moore, Textkompression, Huffman Codes. Strings Stringsuche, Boyer-Moore, Textkompression, Huffman Codes. Suche Substring Häufiges Problem Relevante Beispiele: Suche ein Schlagwort in einem Buch Alphabet: A-Za-z0-9 Suche Virussignatur auf der

Mehr

Seminar über Algorithmen, SS2004. Textkompression. von Christian Grümme und Robert Hartmann

Seminar über Algorithmen, SS2004. Textkompression. von Christian Grümme und Robert Hartmann Seminar über Algorithmen, SS2004 Textkompression von Christian Grümme und Robert Hartmann 1. Einleitung Textkompression wird zur Verringerung des Speicherbedarfs und der Übertragungskapazität von allgemeinen

Mehr

Dynamisches Huffman-Verfahren

Dynamisches Huffman-Verfahren Dynamisches Huffman-Verfahren - Adaptive Huffman Coding - von Michael Brückner 1. Einleitung 2. Der Huffman-Algorithmus 3. Übergang zu einem dynamischen Verfahren 4. Der FGK-Algorithmus 5. Überblick über

Mehr

Gierige Algorithmen Interval Scheduling

Gierige Algorithmen Interval Scheduling Gierige Algorithmen Interval Scheduling IntervalScheduling(s,f). n length[s] 2. A {} 3. j 4. for i 2 to n do 5. if s[i] f[j] then 6. A A {i} 7. j i 8. return A Gierige Algorithmen Interval Scheduling Beweisidee:

Mehr

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche: Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 5/ 44 Unser Modell Shannon

Mehr

2. Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung

2. Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 2 Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 2 Woche: Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 24/ 44 Zwei Beispiele a 0

Mehr

Übrigens: um den Algorithmus im Unterricht einzuführen, sind keine Formeln notwendig! Warum reicht die normale ASCII-Codierung nicht aus?

Übrigens: um den Algorithmus im Unterricht einzuführen, sind keine Formeln notwendig! Warum reicht die normale ASCII-Codierung nicht aus? Huffman-Code Dieser Text ist als Hintergrundinformation ausschliesslich für die Lehrperson gedacht. Der Text ist deshalb eher technisch gehalten. Er lehnt sich an das entsprechende Kapitel in "Turing Omnibus"

Mehr

15 Optimales Kodieren

15 Optimales Kodieren 15 Optimales Kodieren Es soll ein optimaler Kodierer C(T ) entworfen werden, welcher eine Information (z.b. Text T ) mit möglichst geringer Bitanzahl eindeutig überträgt. Die Anforderungen an den optimalen

Mehr

Algorithmus zur komprimierten Übertragung von Textdaten an mobile Endgeräte

Algorithmus zur komprimierten Übertragung von Textdaten an mobile Endgeräte Fachhochschule Wedel Seminararbeit Algorithmus zur komprimierten Übertragung von Textdaten an mobile Endgeräte Sven Reinck 7. Januar 2007 Inhaltsverzeichnis Inhaltsverzeichnis Motivation 2 Wörterbuch 2.

Mehr

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 16/17. Kapitel 14. Bäume. Bäume 1

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 16/17. Kapitel 14. Bäume. Bäume 1 Kapitel 14 Bäume Bäume 1 Ziele Den Begriff des Baums in der Informatik kennenlernen Bäume als verkettete Datenstruktur repräsentieren können Rekursive Funktionen auf Bäumen verstehen und schreiben können

Mehr

Eigenschaften von Kompressionsverfahren

Eigenschaften von Kompressionsverfahren 6 Textkompression Eigenschaften von Kompressionsverfahren Das Ziel der Datenkompression ist es, eine gegebene Information (Datenquelle) auf eine kompaktere Weise zu repräsentieren. Dies geschieht, indem

Mehr

Organisation. Was kommt zum Test? Buch Informatik Grundlagen bis inkl. Kapitel 7.4 Wissensfragen und Rechenbeispiele

Organisation. Was kommt zum Test? Buch Informatik Grundlagen bis inkl. Kapitel 7.4 Wissensfragen und Rechenbeispiele Organisation Was kommt zum Test? Buch Informatik Grundlagen bis inkl Kapitel 74 Wissensfragen und Rechenbeispiele 3 Vorträge zur Übung Informationstheorie, Huffman-Codierung und trennzeichenfreie Codierung

Mehr

Textkompression: Burrows-Wheeler-Transformation

Textkompression: Burrows-Wheeler-Transformation Proseminar Algorithmen der Bioinformatik WS 2010/11 Textkompression: Burrows-Wheeler-Transformation Johann Hawe Johann Hawe, WS 2010/11 1 Gliederung 1. Einleitung 2. BWT Kompressionstransformation 2.1

Mehr

Problem: Finde für Alphabet mit n Zeichen einen Binärcode, der die Gesamtlänge eines Textes (über diesem Alphabet) minimiert.

Problem: Finde für Alphabet mit n Zeichen einen Binärcode, der die Gesamtlänge eines Textes (über diesem Alphabet) minimiert. Anwendungen von Bäumen 4.3.2 Huffman Code Problem: Finde für Alphabet mit n Zeichen einen Binärcode, der die Gesamtlänge eines Textes (über diesem Alphabet) minimiert. => nutzbar für Kompression Code fester

Mehr

Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13)

Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13) Berlin, 21. Februar 2013 Name:... Matr.-Nr.:... Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13) 1 2 3 4 5 6 7 8 9 Σ Bearbeitungszeit: 90 min. max. Punktezahl:

Mehr

Datenkompression. Vortrag von Markus Durzinsky Student der Otto-von-Guericke-Universität Magdeburg

Datenkompression. Vortrag von Markus Durzinsky Student der Otto-von-Guericke-Universität Magdeburg Vortrag am 25. Januar 200 Werner von Siemens Gymnasium Magdeburg Zeitansatz: 5h (inklusive Programmieraufgaben) Datenkompression Vortrag von Markus Durzinsky Student der Otto-von-Guericke-Universität Magdeburg

Mehr

Arithmetisches Codieren

Arithmetisches Codieren Arithmetisches Codieren 1. Motivation: Als Alternative zum arithmetischen Codieren bot sich damals als effizientester Algorithmus das Huffmann-Coding an. Dieses jedoch hatte einen entscheidenden Nachteil:

Mehr

Basisinformationstechnologie II

Basisinformationstechnologie II Basisinformationstechnologie II Sommersemester 2014 28. Mai 2014 Algorithmen der Bildverarbeitung I: Kompression Universität zu Köln. Historisch-Kulturwissenschaftliche Informationsverarbeitung Jan G.

Mehr

Referat zum Thema Huffman-Codes

Referat zum Thema Huffman-Codes Referat zum Thema Huffman-Codes Darko Ostricki Yüksel Kahraman 05.02.2004 1 Huffman-Codes Huffman-Codes ( David A. Huffman, 1951) sind Präfix-Codes und das beste - optimale - Verfahren für die Codierung

Mehr

Run Length Coding und Variable Length Coding

Run Length Coding und Variable Length Coding Fachbereich Medieninformatik Hochschule Harz Run Length Coding und Variable Length Coding Referat Matthias Zittlau 11034 Abgabe: 15.01.2007 Inhaltsverzeichnis 1. RLC...1 2.1 Einführung...1 2.2 Prinzip...1

Mehr

Praktikum BKSPP. Aufgabenblatt Nr. 1. 1 Umrechnung zwischen Stellenwertsystemen

Praktikum BKSPP. Aufgabenblatt Nr. 1. 1 Umrechnung zwischen Stellenwertsystemen Dr. David Sabel Institut für Informatik Fachbereich Informatik und Mathematik Johann Wolfgang Goethe-Universität Frankfurt am Main Praktikum BKSPP Sommersemester 21 Aufgabenblatt Nr. 1 Abgabe: Mittwoch,

Mehr

Kodierung. Kodierung von Zeichen mit dem ASCII-Code

Kodierung. Kodierung von Zeichen mit dem ASCII-Code Kodierung Kodierung von Zeichen mit dem ASCII-Code Weiterführende Aspekte zur Kodierung: Speicherplatzsparende Codes Fehlererkennende und -korrigierende Codes Verschlüsselnde Codes Spezielle Codes, Beispiel

Mehr

Seminar Kompressionsalgorithmen Huffman-Codierung, arithmetische Codierung

Seminar Kompressionsalgorithmen Huffman-Codierung, arithmetische Codierung Huffman-Codierung, arithmetische Codierung Theoretische Informatik RWTH-Aachen 4. April 2012 Übersicht 1 Einführung 2 3 4 5 6 Einführung Datenkompression Disziplin,die Kompressionsalgorithmen entwirft

Mehr

(Ernst Erich Schnoor)

(Ernst Erich Schnoor) Codegraphie (Ernst Erich Schnoor) Mit dem CypherMatrix Verfahren Bezeichnung vom Autor - werden neue Zusammenhänge in der Kryptographie aufgezeigt. Bedingt durch Bitsysteme und Bit-Konversionen entstehen

Mehr

Codierung, Codes (variabler Länge)

Codierung, Codes (variabler Länge) Codierung, Codes (variabler Länge) A = {a, b, c,...} eine endliche Menge von Nachrichten (Quellalphabet) B = {0, 1} das Kanalalphabet Eine (binäre) Codierung ist eine injektive Abbildung Φ : A B +, falls

Mehr

Proseminar WS 2002/2003

Proseminar WS 2002/2003 Technische Universität Chemnitz Fakultät für Informatik Professur Theoretische Informatik Proseminar WS 2002/2003 Thema: Datenkompression Dynamisches / Adaptives Huffman-Verfahren Danny Grobe Rainer Kuhn

Mehr

Mathematik für Information und Kommunikation

Mathematik für Information und Kommunikation Mathematik für Information und Kommunikation Am Beispiel des Huffman- Algorithmus Thomas Borys und (Christian Urff) Huffman im Alltag MPEG Telefax JPEG MP3 ZIP avid Huffman avid Huffman [95-999] www.soe.ucsc.edu/people/faculty/huffman.html

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 13 (18.6.2014) Binäre Suchbäume IV (Rot Schwarz Bäume) Algorithmen und Komplexität Rot Schwarz Bäume Ziel: Binäre Suchbäume, welche immer

Mehr

JPEG Kompression technische Realisierung

JPEG Kompression technische Realisierung Experimentalphysik V 20. Januar 2005 Schema der JPEG Kompression Farbraumkonvertierung RGB YCbCr Subsampling der Farbkomponenten Cb, Cr Zerlegung in Blöcke 8 8 2D Kosinustransformation (DCT) Quantisierung

Mehr

Binäre Suchbäume. Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps

Binäre Suchbäume. Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps Binäre Suchbäume Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps Mengen n Ziel: Aufrechterhalten einer Menge (hier: ganzer Zahlen) unter folgenden Operationen: Mengen n Ziel: Aufrechterhalten einer

Mehr

Verkettete Datenstrukturen: Bäume

Verkettete Datenstrukturen: Bäume Verkettete Datenstrukturen: Bäume 1 Graphen Gerichteter Graph: Menge von Knoten (= Elementen) + Menge von Kanten. Kante: Verbindung zwischen zwei Knoten k 1 k 2 = Paar von Knoten (k 1, k 2 ). Menge aller

Mehr

Proseminar. Thema: Shannon-Fano und Huffman Verfahren

Proseminar. Thema: Shannon-Fano und Huffman Verfahren Proseminar Datenkompression Thema: Shannon-Fano und Huffman Verfahren Gehalten am 27.11.2002 von Lars Donat 1. Huffman Code Bei diesem bereits 1951 von David A. Huffman veröffentlichtem Algorithmus handelt

Mehr

Grundlagen von Rasterdaten

Grundlagen von Rasterdaten LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS DATABASE Kapitel 7: Grundlagen von Rasterdaten Skript zur Vorlesung Geo-Informationssysteme Wintersemester 2014/15 Ludwig-Maximilians-Universität

Mehr

Übung zur Vorlesung Algorithmische Geometrie

Übung zur Vorlesung Algorithmische Geometrie Übung zur Vorlesung Algorithmische Geometrie Dipl.-Math. Bastian Rieck Arbeitsgruppe Computergraphik und Visualisierung Interdisziplinäres Zentrum für Wissenschaftliches Rechnen 8. Mai 2012 B. Rieck (CoVis)

Mehr

Proseminar Kodierverfahren bei Dr. Ulrich Tamm Sommersemester 2003 Thema: Codierung von Bäumen (Prüfer Codes...)

Proseminar Kodierverfahren bei Dr. Ulrich Tamm Sommersemester 2003 Thema: Codierung von Bäumen (Prüfer Codes...) Proseminar Kodierverfahren bei Dr. Ulrich Tamm Sommersemester 2003 Thema: Codierung von Bäumen (Prüfer Codes...) Inhalt: Einleitung, Begriffe Baumtypen und deren Kodierung Binäre Bäume Mehrwegbäume Prüfer

Mehr

Informationstheorie und Codierung

Informationstheorie und Codierung Informationstheorie und Codierung 3. Codierung diskreter Quellen Gleichmäßiger Code Ungleichmäßiger Code Fano-, Huffman-Codierung Optimalcodierung von Markoff-Quellen Lauflängencodes nach Golomb und Rice

Mehr

CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005

CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005 CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005. Das Problem.. Quellcodierung und Datenkompression. Wir wollen eine Nachricht über einen digitalen Kanal, der nur 0 oder übertragen kann, schicken.

Mehr

Kodierungsalgorithmen

Kodierungsalgorithmen Kodierungsalgorithmen Komprimierung Verschlüsselung Komprimierung Zielsetzung: Reduktion der Speicherkapazität Schnellere Übertragung Prinzipien: Wiederholungen in den Eingabedaten kompakter speichern

Mehr

Übung 13: Quellencodierung

Übung 13: Quellencodierung ZHAW, NTM, FS2008, Rumc, /5 Übung 3: Quellencodierung Aufgabe : Huffmann-Algorithmus. Betrachten Sie die folgende ternäre, gedächtnislose Quelle mit dem Symbolalphabet A = {A,B,C} und den Symbol-Wahrscheinlichkeiten

Mehr

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Teil 3: Kodierung 1 Motivation 2 Exkurs Grundlagen formaler Sprachen 3 Grundlagen 4 Beispielkodierungen FM2 (WS 2014/15,

Mehr

Informationsdarstellung im Rechner

Informationsdarstellung im Rechner Informationsdarstellung im Rechner Dr. Christian Herta 15. Oktober 2005 Einführung in die Informatik - Darstellung von Information im Computer Dr. Christian Herta Darstellung von Information im Computer

Mehr

Übung 1: Quellencodierung

Übung 1: Quellencodierung ZHAW, NTM2, Rumc, /7 Übung : Quellencodierung Aufgabe : Huffman-Algorithmus. Betrachten Sie die folgende ternäre, gedächtnislose Quelle mit dem Symbolalphabet A = {A,B,C} und den Symbol-Wahrscheinlichkeiten

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 6. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Datenkomprimierung Bei den meisten bisher betrachteten

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (18 Bäume: Grundlagen und natürliche Suchbäume) Prof. Dr. Susanne Albers Bäume (1) Bäume sind verallgemeinerte Listen (jedes Knoten-Element kann mehr

Mehr

Codierung. Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau

Codierung. Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau Codierung Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau Ein bisschen Informationstheorie Betrachten wir das folgende Problem: Wie lautet eine sinnvolle Definition für das quantitative

Mehr

Beweisen mit Semantischen Tableaux

Beweisen mit Semantischen Tableaux Beweisen mit Semantischen Tableaux Semantische Tableaux geben ein Beweisverfahren, mit dem ähnlich wie mit Resolution eine Formel dadurch bewiesen wird, dass ihre Negation als widersprüchlich abgeleitet

Mehr

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie Gliederung 1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie 4/3, Folie 1 2010 Prof. Steffen Lange - HDa/FbI

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung

Mehr

Die Digitalisierung von Musik

Die Digitalisierung von Musik Die Digitalisierung von Musik 1 Analoges Speichern Speicherung von Musik auf einer LP Die Daten sind analog gespeichert Analysis 2 Digitale Datenerfassung 1.Sampling Das (akustische) elektrische Signal

Mehr

Einige Beispiele zur Turingmaschine

Einige Beispiele zur Turingmaschine Einige Beispiele zur Turingmaschine Beispiel 1: Addition von 1 zu einer Dualzahl Aufgabe: Auf dem Eingabe-Band einer Turingmaschine steht eine Dualzahl (= Binärzahl, bestehend aus 0-en und 1-en, links

Mehr

Vergleiche und Transformationen für XML-Dokumente - Teil 2. Ein Ansatz zur hierarchischen, adaptiven Kollationierung

Vergleiche und Transformationen für XML-Dokumente - Teil 2. Ein Ansatz zur hierarchischen, adaptiven Kollationierung Vergleiche und Transformationen für XML-Dokumente - Teil 2 Ein Ansatz zur hierarchischen, adaptiven Kollationierung Varianz in der Gleichheit nicht nur der Manuskripte, sondern auch ihrer Teile die Elemente

Mehr

Datenkompression. Kommunikationstechnik, SS 08, Prof. Dr. Stefan Brunthaler 167

Datenkompression. Kommunikationstechnik, SS 08, Prof. Dr. Stefan Brunthaler 167 Datenkompression Kommunikationstechnik, SS 08, Prof. Dr. Stefan Brunthaler 167 Datenkompression I Wie der Hofmathematikus herausgefunden hatte, läßt sich eine Kodierung durch Wahl einer variablen Wortlänge

Mehr

Eine verlustbehaftete Komprimierung ist es, wenn wir einige Kleidungsstücke zu

Eine verlustbehaftete Komprimierung ist es, wenn wir einige Kleidungsstücke zu Komprimierungen In Netzwerken müssen viele Daten transportiert werden. Dies geht natürlich schneller, wenn die Datenmengen klein sind. Um dies erreichen zu können werden die Daten komprimiert. Das heisst,

Mehr

Algorithmen & Datenstrukturen Lösungen zu Blatt 9 HS 16

Algorithmen & Datenstrukturen Lösungen zu Blatt 9 HS 16 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Departement Informatik 24. November 2016 Markus

Mehr

Entropie. Um der Begriff der Entropie zu erläutern brauchen wir erst mal einige Definitionen, z.b.

Entropie. Um der Begriff der Entropie zu erläutern brauchen wir erst mal einige Definitionen, z.b. Entropie Grundlegend für das Verständnis des Begriffes der Komprimierung ist der Begriff der Entropie. In der Physik ist die Entropie ein Maß für die Unordnung eines Systems. In der Informationstheorie

Mehr

Kryptologie und Kodierungstheorie

Kryptologie und Kodierungstheorie Kryptologie und Kodierungstheorie Alexander May Horst Görtz Institut für IT-Sicherheit Ruhr-Universität Bochum Lehrerfortbildung 17.01.2012 Kryptologie Verschlüsselung, Substitution, Permutation 1 / 18

Mehr

Sachauseinandersetzung und Begründung der Auswahl

Sachauseinandersetzung und Begründung der Auswahl Unterrichtsentwurf zum Thema Vergleich von Morse- und ASCII-Code Lernziele Die SchülerInnen wenden die Begriffe der mittleren Codewortlänge, Präfixfreiheit und binären Kodierung in der Beschreibung des

Mehr

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12. Kapitel 13. Bäume. Bäume

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12. Kapitel 13. Bäume. Bäume 1 Kapitel 13 Ziele 2 Den Begriff des Baums in der Informatik kennenlernen als verkettete Datenstruktur repräsentieren können Rekursive Funktionen auf n verstehen und schreiben können Verschiedene Möglichkeiten

Mehr

(Prüfungs-)Aufgaben zur Codierungstheorie

(Prüfungs-)Aufgaben zur Codierungstheorie (Prüfungs-)Aufgaben zur Codierungstheorie 1) Gegeben sei die folgende CCITT2-Codierung der Dezimalziffern: Dezimal CCITT2 0 0 1 1 0 1 1 1 1 1 0 1 2 1 1 0 0 1 3 1 0 0 0 0 4 0 1 0 1 0 5 0 0 0 0 1 6 1 0 1

Mehr

Digitaltechnik I WS 2006/2007. Klaus Kasper

Digitaltechnik I WS 2006/2007. Klaus Kasper Digitaltechnik I WS 2006/2007 Klaus Kasper Studium 6 Semester 5. Semester: Praxissemester im Anschluss: Bachelorarbeit 6. Semester: WPs Evaluation der Lehre Mentorensystem 2 Organisation des Studiums Selbständigkeit

Mehr

1.) Zahlensysteme (10 Punkte)

1.) Zahlensysteme (10 Punkte) 1.) Zahlensysteme (10 Punkte) (a) Stellen Sie die folgenden zur Basis 8 (oktal) angegebenen Ganzzahlen als vorzeichenbehaftete Binärzahlen in 7 Bit dar. Negative Binärzahlen sollen im Zweierkomplement

Mehr

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder Programmieren in PASCAL Bäume 1 1. Baumstrukturen Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder 1. die leere Struktur oder 2. ein Knoten vom Typ Element

Mehr

1 / 33. P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V5 07. Mai / 33

1 / 33. P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V5 07. Mai / 33 P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V5 07. Mai 204 7 / 33 P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V5 07. Mai 204 8 / 33 ADS: Algorithmen und Datenstrukturen 2 Teil 5 Prof. Peter F. Stadler

Mehr

B-Bäume I. Algorithmen und Datenstrukturen 220 DATABASE SYSTEMS GROUP

B-Bäume I. Algorithmen und Datenstrukturen 220 DATABASE SYSTEMS GROUP B-Bäume I Annahme: Sei die Anzahl der Objekte und damit der Datensätze. Das Datenvolumen ist zu groß, um im Hauptspeicher gehalten zu werden, z.b. 10. Datensätze auf externen Speicher auslagern, z.b. Festplatte

Mehr

DIGITALE VIDEO KOMPRESSION AM BEISPIEL DES JPEG-VERFAHRENS

DIGITALE VIDEO KOMPRESSION AM BEISPIEL DES JPEG-VERFAHRENS 1 DIGITALE VIDEO KOMPRESSION AM BEISPIEL DES JPEG-VERFAHRENS Um das digitale Schneiden von digitalisierten Bildern zu ermöglichen, ist es notwendig, die drastisch hohe Datenmenge, die für jedes Bild gespeichert

Mehr

Kapitel 2: Formale Sprachen Kontextfreie Sprachen. reguläre Grammatiken/Sprachen. kontextfreie Grammatiken/Sprachen

Kapitel 2: Formale Sprachen Kontextfreie Sprachen. reguläre Grammatiken/Sprachen. kontextfreie Grammatiken/Sprachen reguläre Grammatiken/prachen Beschreibung für Bezeichner in Programmiersprachen Beschreibung für wild cards in kriptsprachen (/* reguläre Ausdrücke */)?; [a-z]; * kontextfreie Grammatiken/prachen Beschreibung

Mehr

Kapitel 4. Programmierkurs. Datentypen. Arten von Datentypen. Wiederholung Kapitel 4. Birgit Engels, Anna Schulze WS 07/08

Kapitel 4. Programmierkurs. Datentypen. Arten von Datentypen. Wiederholung Kapitel 4. Birgit Engels, Anna Schulze WS 07/08 Kapitel 4 Programmierkurs Birgit Engels, Anna Schulze Wiederholung Kapitel 4 ZAIK Universität zu Köln WS 07/08 1 / 23 2 Datentypen Arten von Datentypen Bei der Deklaration einer Variablen(=Behälter für

Mehr

4.9.7 Konstruktion der Suffixbäume

4.9.7 Konstruktion der Suffixbäume .9.7 Konstruktion der Suffixbäume Beipiel: xabxa (siehe Abbildung.27) Man beginnt mit der Konstruktion eines Suffixbaumes für gesamten String und schreibt eine 1 am Blatt, weil der Suffix xabxa an der

Mehr

Theoretische Informatik SS 04 Übung 1

Theoretische Informatik SS 04 Übung 1 Theoretische Informatik SS 04 Übung 1 Aufgabe 1 Es gibt verschiedene Möglichkeiten, eine natürliche Zahl n zu codieren. In der unären Codierung hat man nur ein Alphabet mit einem Zeichen - sagen wir die

Mehr

TU8 Beweismethoden. Daniela Andrade

TU8 Beweismethoden. Daniela Andrade TU8 Beweismethoden Daniela Andrade daniela.andrade@tum.de 12.12.2016 1 / 21 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds findet ;) 2

Mehr

Der RSA-Algorithmus. 2. Anschließend ist n = p q und ϕ (n) = (p 1) (q 1) zu berechnen.

Der RSA-Algorithmus. 2. Anschließend ist n = p q und ϕ (n) = (p 1) (q 1) zu berechnen. Kapitel 4 Der RSA-Algorithmus Der RSA-Algorithmus ist das heute bekannteste Verfahren aus der Familie der Public-Key-Kryptosysteme. Es wurde 1978 der Öffentlichkeit vorgestellt und gilt bis heute als der

Mehr

Graphische Darstellung einer univariaten Verteilung:

Graphische Darstellung einer univariaten Verteilung: Graphische Darstellung einer univariaten Verteilung: Die graphische Darstellung einer univariaten Verteilung hängt von dem Messniveau der Variablen ab. Bei einer graphischen Darstellung wird die Häufigkeit

Mehr

Kapitel 3: Variablen

Kapitel 3: Variablen Kapitel 3: Variablen Thema: Programmieren Seite: 1 Kapitel 3: Variablen Im letzten Kapitel haben wir gelernt, bestimmte Ereignisse zu wiederholen solange eine Bedingung erfüllt ist. Nun möchten wir aber

Mehr

Arbeiten im Datennetz der Universität Regensburg

Arbeiten im Datennetz der Universität Regensburg Wiwi-Workshop Uni Regensburg August 2002 Arbeiten im Datennetz der Universität Regensburg - Das Komprimierungsprogramm Winzip - Dr. Wirtschaftswissenschaftliche Fakultät Gliederung Das Komprimierungsprogramm

Mehr

Binäre Bäume. 1. Allgemeines. 2. Funktionsweise. 2.1 Eintragen

Binäre Bäume. 1. Allgemeines. 2. Funktionsweise. 2.1 Eintragen Binäre Bäume 1. Allgemeines Binäre Bäume werden grundsätzlich verwendet, um Zahlen der Größe nach, oder Wörter dem Alphabet nach zu sortieren. Dem einfacheren Verständnis zu Liebe werde ich mich hier besonders

Mehr

13. Binäre Suchbäume

13. Binäre Suchbäume 1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),

Mehr

Digitalisierung. analoges Signal PAM. Quantisierung

Digitalisierung. analoges Signal PAM. Quantisierung Digitalisierung U analoges Signal t U PAM t U Quantisierung t Datenreduktion Redundanzreduktion (verlustfrei): mehrfach vorhandene Informationen werden nur einmal übertragen, das Signal ist ohne Verluste

Mehr

4. Induktives Definieren - Themenübersicht

4. Induktives Definieren - Themenübersicht Induktives Definieren 4. Induktives Definieren - Themenübersicht Induktives Definieren Natürliche Zahlen Operationen auf natürlichen Zahlen Induktive Algorithmen Induktiv definierte Mengen Binärbäume Boolesche

Mehr

Algorithmen, Datenstrukturen und Programmieren II SS 2001

Algorithmen, Datenstrukturen und Programmieren II SS 2001 Algorithmen, Datenstrukturen und Programmieren II SS 2001 1. InfixToPostfixConverter: Üblicherweise werden mathematische Ausdrücke in infix-notation geschrieben, d.h. der Operator steht zwischen den Operanden,

Mehr

Datenstrukturen. einfach verkettete Liste

Datenstrukturen. einfach verkettete Liste einfach verkettete Liste speichert Daten in einer linearen Liste, in der jedes Element auf das nächste Element zeigt Jeder Knoten der Liste enthält beliebige Daten und einen Zeiger auf den nächsten Knoten

Mehr

Modulation. Kommunikationstechnik, SS 08, Prof. Dr. Stefan Brunthaler 104

Modulation. Kommunikationstechnik, SS 08, Prof. Dr. Stefan Brunthaler 104 Modulation Kommunikationstechnik, SS 08, Prof. Dr. Stefan Brunthaler 104 Datenfernübertragung I Über kurze Entfernungen können Daten über Kupferkabel übertragen werden, indem jedes Bit mit einer positiven

Mehr

Das Postsche Korrespondenzproblem

Das Postsche Korrespondenzproblem Das Postsche Korrespondenzproblem Eine Instanz des PKP ist eine Liste von Paaren aus Σ Σ : (v 1, w 1 ),..., (v n, w n ) Eine Lösung ist eine Folge i 1,..., i k von Indizes 1 i j n mit v i1... v ik = w

Mehr

Methoden für den Entwurf von Algorithmen

Methoden für den Entwurf von Algorithmen Methoden für den Entwurf von Algorithmen Greedy Algorithmen: - Löse ein einfaches Optimierungsproblem durch eine Folge vernünftiger Entscheidungen. - Eine getroffene Entscheidung wird nie zurückgenommen.

Mehr

1 Potenzen und Polynome

1 Potenzen und Polynome 1 Potenzen und Polynome Für eine reelle Zahl x R und eine natürliche Zahl n N definieren wir x n := x x x... x }{{} n-mal Einschub über die bisher aufgetretenen mathematischen Symbole: Definition mittels

Mehr

INTERVALLBÄUME. Tanja Lehenauer, Besart Sylejmani

INTERVALLBÄUME. Tanja Lehenauer, Besart Sylejmani INTERVALLBÄUME Tanja Lehenauer, Besart Sylejmani Datenstrukturen in der Informatik Baumstrukturen Warum Intervallbäume? Centered Interval Tree Konstruktion Suchen eines Punktes Suchen eines Intervalls

Mehr

3 Quellencodierung. 3.1 Einleitung

3 Quellencodierung. 3.1 Einleitung Source coding is what Alice uses to save money on her telephone bills. It is usually used for data compression, in other words, to make messages shorter. John Gordon 3 Quellencodierung 3. Einleitung Im

Mehr

2 i. i=0. und beweisen Sie mittels eines geeigneten Verfahrens die Korrektheit der geschlossenen Form.

2 i. i=0. und beweisen Sie mittels eines geeigneten Verfahrens die Korrektheit der geschlossenen Form. für Informatik Prof. aa Dr. Ir. Joost-Pieter Katoen Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder Tutoraufgabe (Vollständige Induktion): Finden Sie eine geschlossene Form für die

Mehr

Kodierung. Kodierung von Zeichen mit dem ASCII-Code

Kodierung. Kodierung von Zeichen mit dem ASCII-Code Kodierung Kodierung von Zeichen mit dem ASCII-Code Weiterführende Aspekte zur Kodierung: Speicherplatzsparende Codes Fehlererkennende und -korrigierende Codes Verschlüsselnde Codes Spezielle Codes, Beispiel

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2011/12 Die Registermaschine (random access machine, RAM) 0 I 0 1 I 1 2 I 2 m I m Programm

Mehr

Abschnitt 4: Daten und Algorithmen

Abschnitt 4: Daten und Algorithmen Abschnitt 4: Daten und Algorithmen 4. Daten und Algorithmen 4.1 4.2 Syntaxdefinitionen 4.3 Eigenschaften von Algorithmen 4.4 Paradigmen der Algorithmenentwicklung Peer Kröger (LMU München) Einführung in

Mehr

3 Terme und Algebren 3.1 Terme

3 Terme und Algebren 3.1 Terme 3 Terme und Algebren 3.1 Terme Mod - 3.1 In allen formalen Kalkülen benutzt man Formeln als Ausdrucksmittel. Hier betrachten wir nur ihre Struktur - nicht ihre Bedeutung. Wir nennen sie Terme. Terme bestehen

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2010 Lösungsblatt 7 15. Juni 2010 Einführung in die Theoretische

Mehr

CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005

CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005 CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005 1. Das Problem 1.1. Kanalcodierung und Fehlerkorrektur. Wir wollen eine Nachricht über einen digitalen Kanal, der nur 0 oder 1 übertragen kann, schicken.

Mehr

Programmiersprachen und Übersetzer

Programmiersprachen und Übersetzer Programmiersprachen und Übersetzer Sommersemester 2010 19. April 2010 Theoretische Grundlagen Problem Wie kann man eine unendliche Menge von (syntaktisch) korrekten Programmen definieren? Lösung Wie auch

Mehr

Rechnernetze Übung 5. Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai Wo sind wir?

Rechnernetze Übung 5. Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai Wo sind wir? Rechnernetze Übung 5 Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2012 Wo sind wir? Quelle Nachricht Senke Sender Signal Übertragungsmedium Empfänger Quelle Nachricht Senke Primäres

Mehr

Algorithmen und Datenstrukturen SS09

Algorithmen und Datenstrukturen SS09 Foliensatz 8 Michael Brinkmeier Technische Universität Ilmenau Institut für Theoretische Informatik Sommersemester 29 TU Ilmenau Seite / 54 Binärbäume TU Ilmenau Seite 2 / 54 Binäre Bäume Bäume und speziell

Mehr

1 AVL-Bäume. 1.1 Aufgabentyp. 1.2 Überblick. 1.3 Grundidee

1 AVL-Bäume. 1.1 Aufgabentyp. 1.2 Überblick. 1.3 Grundidee AVL-Bäume. Aufgabentyp Fügen Sie in einen anfangs leeren AVL Baum die folgenden Schlüssel ein:... Wenden Sie hierbei konsequent den Einfüge /Balancierungsalgorithmus an und dokumentieren Sie die ausgeführten

Mehr