CSMA mit Kollisionsdetektion: CSMA/CD

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "CSMA mit Kollisionsdetektion: CSMA/CD"

Transkript

1 CSMA mit Kollisionsdetektion: CSMA/CD Start Beispiel: Persistent P Persistent Nonpersistent Starte Paketübertragung Kollision derweil? Ende nein ja Stoppe Paketübertragung SS 2012 Grundlagen der Rechnernetze Medienzugriffskontrolle 45

2 Binary Exponential Backoff Start Setze maximale Anzahl Slots N auf 2 Wähle einen zufälligen Zeit Slot k in {0,...,N 1} und starte Übertragung zum Slot k Letztes Frame Contention Periode Nächstes Frame nein Kollision? ja Mehr als 16 Versuche? ja Teile höherer Schicht mit, dass Paket nicht ausstellbar Ende nein Setze N auf 2*N Bemerkung: dies sind die Parameter aus Ethernet. Die Länge eines Zeitslots wird auf 2*Maximum Propagation Delay festgelegt. SS 2012 Grundlagen der Rechnernetze Medienzugriffskontrolle 46

3 Quiz: warum 2*Propagation Delay? Maximales Propagation Delay sei 1 2 Wie weit können Startzeitpunkte von zwei kollidierenden Nachrichten auseinander liegen? Wie lange dauert es maximal bis alle die Kollision erkannt haben? Also ist ab dem erstem Slot der Kanal einem Knoten sicher zugewiesen. Dann kann keine Kollision mehr stattfinden. SS 2012 Grundlagen der Rechnernetze Medienzugriffskontrolle 47

4 Betrachte ein sehr kurzes Paket und etwas längeres Paket: Sender 1 CD erfordert Mindestpaketlänge Empfänger 1 Sender 2 Also: Paket sollte groß genug sein, damit Sender die Kollision erkennen kann. Es sei p der maximale Propagation Delay und d die Datenrate. Welche Größe g sollte das Paket mindestens haben? SS 2012 Grundlagen der Rechnernetze Medienzugriffskontrolle 48

5 Multiple Access Protokolle Kollisionsfreie und Limited Contention Protokolle SS 2012 Grundlagen der Rechnernetze Medienzugriffskontrolle 49

6 Bit Map Protokoll Wechsel zwischen Contention und Frame Übertragungsphasen Es gibt eine feste Anzahl N von Knoten Jeder knoten hat eine eindeutige Nummer zwischen 0 und N 1 Was ist Kanaleffizienz (Nutz Bits über insgesamt gesendete Bits)? N=Anzahl Slots; jeder Slot ein Bit; d=anzahl Daten Bits pro Gerät Bei geringer Last: Bei hoher Last: SS 2012 Bildquelle: Andrew S. Tanenbaum, Computer Networks, 4th Edition, 2003 Grundlagen der Rechnernetze Medienzugriffskontrolle 50

7 Binary Countdown Binary Countdown am Beispiel Was ist die Kanaleffizienz (Nutz Bits über insgesamt gesendete Bits)? Bei geringer Last: Bei hoher Last: Wenn die Bits am Anfang als Adresse des Absenders Teil der Nachricht sind: SS 2012 Bildquelle: Andrew S. Tanenbaum, Computer Networks, 4th Edition, 2003 Grundlagen der Rechnernetze Medienzugriffskontrolle 51

8 Wie erreicht man Fairness bei Binary Countdown? Problem: Knoten mit größeren Adresswerten werden bevorzugt. Idee: Binary Countdown nach Prioritätswerten. Beispiel: Knotenadressen: C H D A G B E F Prioritäten: Wenn D erfolgreich gesendet hat, ändern sich Prioritäten wie folgt Knotenadressen: C H A G B E F D Prioritäten: SS 2012 Grundlagen der Rechnernetze Medienzugriffskontrolle 52

9 Limited Contention Protokolle Protokolle mit Contention (z.b. ALOHA, CSMA) geringe Latenz bei geringer Last aber schlechte Kanaleffizienz bei hoher Last Kollisionsfreie Protokolle (z.b. Binary Countdown) hohe Latenz bei geringer Last aber gute Kanaleffizienz bei hoher Last Warum nicht ein Protokoll welches sich bei geringer Last wie ein Protokoll mit Contention und bei hoher Last wie ein kollisionsfreies Protokoll verhält? Zunächst: Was ist der Einfluss der Anzahl k Stationen auf die Performance bei Protokollen mit Contention? SS 2012 Grundlagen der Rechnernetze Medienzugriffskontrolle 53

10 Erfolgswahrscheinlichkeit einer Übertragung Also: die Performance degradiert auch schon bei wenigen übertragenden Knoten recht schnell. Idee: Versuche alle Teilnehmer in kleine Gruppe einzuteilen. Jede Gruppe kommt mal dran. Contention findet nur innerhalb der Gruppe statt. SS 2012 Bildquelle: Andrew S. Tanenbaum, Computer Networks, 4th Edition, 2003 Grundlagen der Rechnernetze Medienzugriffskontrolle 54

11 Adaptive Tree Walk Protokoll SS 2012 Bildquelle: Andrew S. Tanenbaum, Computer Networks, 4th Edition, 2003 Grundlagen der Rechnernetze Medienzugriffskontrolle 55

12 Adaptive Tree Walk Protokoll Level 0 Level 1 Level 2 SS 2012 Bildquelle: Andrew S. Tanenbaum, Computer Networks, 4th Edition, 2003 Grundlagen der Rechnernetze Medienzugriffskontrolle 56

13 Tafelbild SS 2012 Grundlagen der Rechnernetze Medienzugriffskontrolle 57

14 Multiple Access Protokolle Wireless LAN Probleme SS 2012 Grundlagen der Rechnernetze Medienzugriffskontrolle 58

15 Ein ähnliches Problem; nur komplizierter Kollisionsdomäne S 2 T 2 S 1 T 1 SS 2012 Grundlagen der Rechnernetze Medienzugriffskontrolle 59

16 Das Hidden Terminal Problem Collision S 1 T 1 S 2 T 2 CSMA verhindert nicht, dass S 2 sendet 60 SS 2012 Grundlagen der Rechnernetze Medienzugriffskontrolle

17 Das Exposed Terminal Problem T 1 S 1 S 2 T 2 CSMA verhindert, dass S 2 sendet 61 SS 2012 Grundlagen der Rechnernetze Medienzugriffskontrolle

18 Multiple Access Protokolle Vermeiden von Hidden und Exposed Terminal Problem SS 2012 Grundlagen der Rechnernetze Medienzugriffskontrolle 62

19 Busy Tones S 1 T 1 S 2 T 2 Datenübertragung Busy tone während des Empfangs t 1 Andere Knoten sind während des Busy Tone Empfangs geblockt t 2 Daten Frequenz 63 SS 2012 Grundlagen der Rechnernetze Medienzugriffskontrolle Busy Tone Frequenz

20 BT und das Hidden Terminal Problem Busy Tone S 1 T 1 S 2 T 2 Busy Tone verhindert, dass S 2 sendet 64 SS 2012 Grundlagen der Rechnernetze Medienzugriffskontrolle

21 BT und das Exposed Terminal Problem Busy Tone T 1 S 1 S 2 T 2 Busy Tone verhindert nicht, dass S 2 sendet 65 SS 2012 Grundlagen der Rechnernetze Medienzugriffskontrolle

22 Das Problem mit Busy Tones (1/2) Busy Tone S 1 T 1 S 2 T 2 Collision Daten und Busy Tone Frequenz unterliegen unterschiedlichen Fading und Dämpfungscharakteristiken. Busy Tone kann möglicherweise Kommunikationsnachbarn von T 1 nicht erreichen. SS 2012 Grundlagen der Rechnernetze Medienzugriffskontrolle 66

23 Das Problem mit Busy Tones (2/2) Busy Tone T 1 S 1 S 2 T 2 67 SS 2012 Busy Tone erreicht möglicherweise Knoten S 2, welcher kein Kommunikationsnachbar ist. Grundlagen der Rechnernetze Medienzugriffskontrolle

24 Eine bessere Lösung: CSMA & RTS/CTS S 1 T 1 RTS Beachte CTS Antwortzeit CTS Data NAV belegt das Medium für die Kommunikations Dauer 68 SS 2012 Grundlagen der Rechnernetze Medienzugriffskontrolle

25 RTS/CTS und das HT Problem RTS CTS CTS S 1 T 1 S 2 T 2 CTS verhindert, dass S 2 sendet 69 SS 2012 Grundlagen der Rechnernetze Medienzugriffskontrolle

26 RTS/CTS und das ET Problem RTS CTS T 1 S 1 S 2 T 2 S 2 hört CTS nicht und wird damit durch NAV nicht geblockt 70 SS 2012 Grundlagen der Rechnernetze Medienzugriffskontrolle

27 Quiz: wird das HT Problem immer verhindert? S 1 T 1 T 2 S 2 S 1 T 1 S 2 T 2 RTS RTS CTS CTS Data Data Example 1: Data CTS Collision 71 SS 2012 Grundlagen der Rechnernetze Medienzugriffskontrolle Example 2: Data Data Collision

P Persistent CSMA. Beispiel: Start. höre in den Kanal. Kanal frei? ja Senden? Warte einen Zeit Slot. nein. Warte einen Zeit Slot und dann.

P Persistent CSMA. Beispiel: Start. höre in den Kanal. Kanal frei? ja Senden? Warte einen Zeit Slot. nein. Warte einen Zeit Slot und dann. P Persistent CSMA Start Höre in den Kanal Beispiel: 1 2 3 Kanal frei? ja Senden? (mit WK p) ja Sende Paket Kollision? nein Ende nein nein ja Warte einen Zeit Slot Warte einen Zeit Slot und dann höre in

Mehr

Verbesserung Slotted ALOHA

Verbesserung Slotted ALOHA Verbesserung Slotted ALOHA Starte Übertragung wann immer ein Datenpaket vorliegt Beginne die Übertragung jedoch nur zu Beginn von festen Zeit Slots Zeit Slot Paketankunft Paketübertragung Zeit Grundlagen

Mehr

Grundlagen der Rechnernetze. Medienzugriffskontrolle

Grundlagen der Rechnernetze. Medienzugriffskontrolle Grundlagen der Rechnernetze Medienzugriffskontrolle Übersicht Multiplexing und Multiple Access Dynamische Kanalzuweisung Multiple Access Protokolle Spread Spectrum Orthogonal Frequency Division Multiplexing

Mehr

Grundlagen der Rechnernetze. Medienzugriffskontrolle

Grundlagen der Rechnernetze. Medienzugriffskontrolle Grundlagen der Rechnernetze Medienzugriffskontrolle Übersicht Multiplexing und Multiple Access Dynamische Kanalzuweisung Multiple Access Protokolle Spread Spectrum Orthogonal Frequency Division Multiplexing

Mehr

Delay Rechnung. Was ist die mittlere Wartezeit T eines Pakets bei idealem Kanalzugriff mit einer zentralen globalen Warteschlange?

Delay Rechnung. Was ist die mittlere Wartezeit T eines Pakets bei idealem Kanalzugriff mit einer zentralen globalen Warteschlange? Delay Rechnung Betrachte: Kanal mit Kapazität C bps Exponential verteilte Paket Ankunftsrate von Pakete/Sekunde Exponential verteilte Paketlängen mit mittlerer Paketlänge von 1/ Bits/Frame Was ist die

Mehr

Systeme II. 6. Vorlesungswoche

Systeme II. 6. Vorlesungswoche 6. Vorlesungswoche 02.06. 06.06.2008 Institut für Informatik 1 1 Kapitel 4 Mediumzugriff in der Sicherungsschicht 2 2 CSMA und Übertragungszeit CSMA-Problem: Übertragungszeit d (propagation delay) Zwei

Mehr

Multiplexing und Multiple Access

Multiplexing und Multiple Access Multiplexing und Multiple Access Auf der Physikalischen Schicht Multiplexing um eine Leitung für mehrere Übertragungen zugleich zu verwenden Beispiele: Kabel TV, Telefon Auf der Verbindungsschicht Multiplexing

Mehr

Spread Spectrum. Frequency Hopping Spread Spectrum (FHSS) Grundlagen der Rechnernetze Medienzugriffskontrolle 82

Spread Spectrum. Frequency Hopping Spread Spectrum (FHSS) Grundlagen der Rechnernetze Medienzugriffskontrolle 82 Spread Spectrum Frequency Hopping Spread Spectrum (FHSS) Grundlagen der Rechnernetze Medienzugriffskontrolle 82 FHSS Beispiel Spreading Code = 58371462 Nach 8 Intervallen wird der Code wiederholt Bildquelle:

Mehr

Übungen zu Rechnerkommunikation Wintersemester 2010/2011 Übung 8

Übungen zu Rechnerkommunikation Wintersemester 2010/2011 Übung 8 Übungen zu Rechnerkommunikation Wintersemester 2010/2011 Übung 8 Mykola Protsenko, Jürgen Eckert PD. Dr.-Ing. Falko Dressler Friedrich-Alexander d Universität Erlangen-Nürnberg Informatik 7 (Rechnernetze

Mehr

Systeme II 6. Woche Mediumzugriff in der Sicherungsschicht

Systeme II 6. Woche Mediumzugriff in der Sicherungsschicht Systeme II 6. Woche Mediumzugriff in der Sicherungsschicht Christian Schindelhauer Technische Fakultät Rechnernetze und Telematik Albert-Ludwigs-Universität Freiburg Der Mediumzugriff in der Sicherungsschicht

Mehr

Systeme II. Christian Schindelhauer Sommersemester Vorlesung

Systeme II. Christian Schindelhauer Sommersemester Vorlesung Systeme II Christian Schindelhauer Sommersemester 2006 12. Vorlesung 14.06.2006 schindel@informatik.uni-freiburg.de 1 Der Mediumzugriff in der Sicherungsschicht Statisches Multiplexen Dynamische Kanalbelegung

Mehr

Random-Access-Verfahren

Random-Access-Verfahren Random-Access-Verfahren Random-Access, 1 Referenzen - D. Bertsekas, R. Gallager: Data Networks, Prentice-Hall, 1992. - Du, Swamy, "Wireless Communications Systems", S. 108, Cambridge, 2010. TDMA-, FDMA-

Mehr

Systeme II 7. Die Datensicherungsschicht (Teil 5)

Systeme II 7. Die Datensicherungsschicht (Teil 5) Systeme II 7. Die Datensicherungsschicht (Teil 5) Thomas Janson, Kristof Van Laerhoven*, Christian Ortolf Folien: Christian Schindelhauer Technische Fakultät : Rechnernetze und Telematik, *: Eingebettete

Mehr

Systeme II. Christian Schindelhauer Sommersemester Vorlesung

Systeme II. Christian Schindelhauer Sommersemester Vorlesung Systeme II Christian Schindelhauer Sommersemester 2006 11. Vorlesung 01.06.2006 schindel@informatik.uni-freiburg.de 1 Der Mediumzugriff in der Sicherungsschicht Statisches Multiplexen Dynamische Kanalbelegung

Mehr

Übung zu Drahtlose Kommunikation. 8. Übung

Übung zu Drahtlose Kommunikation. 8. Übung Übung zu Drahtlose Kommunikation 8. Übung 17.12.2012 Aufgabe 1 a) Erläutern Sie die drei Grundprobleme, die beim drahtlosen Medienzugriff auftreten können und die verhindern, dass die gleichen Mechanismen

Mehr

Zugriffsverfahren CSMA/CD CSMA/CA

Zugriffsverfahren CSMA/CD CSMA/CA Zugriffsverfahren CSMA/CD CSMA/CA Carrier Sense Multiple Access/Collision Detection (CSMA/CD) Mehrfachzugriff auf ein Medium inkl. Kollisionserkennung Es handelt sich um ein asynchrones Medienzugriffsverfahren

Mehr

MAC-Layer-Protokolle. Your Name Your Title. Hauptseminar Kommunikation in drahtlosen Sensornetzen

MAC-Layer-Protokolle. Your Name Your Title. Hauptseminar Kommunikation in drahtlosen Sensornetzen MAC-Layer-Protokolle Hauptseminar Kommunikation in drahtlosen Sensornetzen 2005-12-31 Your Name Your Title Christian Fehler Your Organization (Line #1) Your Organization (Line #2) Übersicht Einleitung

Mehr

Systeme II 7. Woche Funkprobleme und Ethernet

Systeme II 7. Woche Funkprobleme und Ethernet Systeme II 7. Woche Funkprobleme und Ethernet Christian Schindelhauer Technische Fakultät Rechnernetze und Telematik Albert-Ludwigs-Universität Freiburg Spezielle Probleme in drahtlosen Netzwerken 2 Probleme

Mehr

Grundlagen der Rechnernetze. Medienzugriffskontrolle

Grundlagen der Rechnernetze. Medienzugriffskontrolle Grundlagen der Rechnernetze Medienzugriffskontrolle Übersicht Multiplexing und Multiple Access Dynamische Kanalzuweisung Multiple Access Protokolle Spread Spectrum Orthogonal Frequency Division Multiplexing

Mehr

Ergänzung: MLT 3. (ein Beispiel für ein ternäres Encoding)

Ergänzung: MLT 3. (ein Beispiel für ein ternäres Encoding) Ergänzung: MLT 3 (ein Beispiel für ein ternäres Encoding) Vermeiden von langen Symbolfolgen ohne Änderung wird mittels Scrambling erreicht (siehe folgende Folie). Bildquelle: William Stallings, Data and

Mehr

Grundlagen Rechnernetze und Verteilte Systeme IN0010, SoSe 2018

Grundlagen Rechnernetze und Verteilte Systeme IN0010, SoSe 2018 Grundlagen Rechnernetze und Verteilte Systeme IN0010, SoSe 2018 Übungsblatt 5 14. Mai 18. Mai 2018 Hinweis: Mit * gekennzeichnete Teilaufgaben sind ohne Lösung vorhergehender Teilaufgaben lösbar. Aufgabe

Mehr

Übungen zu Rechnerkommunikation

Übungen zu Rechnerkommunikation Übungen zu Rechnerkommunikation Sommersemester 2009 Übung 7 Jürgen Eckert, Mykola Protsenko PD Dr.-Ing. Falko Dressler Friedrich-Alexander Universität Erlangen-Nürnberg Informatik 7 (Rechnernetze und Kommunikationssysteme)

Mehr

Kommunikationsnetze. Mehrere Knoten nutzen ein gemeinsames physisches Medium Multiplexen notwendig. Beispiel: Drahtloses lokales Netz.

Kommunikationsnetze. Mehrere Knoten nutzen ein gemeinsames physisches Medium Multiplexen notwendig. Beispiel: Drahtloses lokales Netz. Kommunikationsnetze 5. Medienzugang Zentrale Steuerung Dezentrale Steuerung Verteilte Steuerung Hybride Verfahren Geteiltes Medium Ausgangslage: Mehrere Knoten nutzen ein gemeinsames physisches Medium

Mehr

Der Backoff-Algorithmus

Der Backoff-Algorithmus Der Backoff-Algorithmus Ausarbeitung im Rahmen der Vorlesung Lokale und Weitverkehrsnetze II (Prof. Koops) SS 2001 3570316 Lars Möhlmann 3570317 Jens Olejak 3570326 Till Tarara Fachhochschule Oldenburg/Ostfriesland/Wilhelmshaven

Mehr

Rechnernetze 2. Grundlagen

Rechnernetze 2. Grundlagen Rechnernetze 2. Grundlagen Typische Topologien Dedizierte Leitungen Bus Zugangsverfahren Kollisionsfreier Zugang Kollisionserkennung Multicast & Broadcast Eigenschaftsgarantien Zugangsverfahren Ethernet

Mehr

Korrigieren von Bitfehlern

Korrigieren von Bitfehlern Korrigieren von Bitfehlern Datenblock Codewort 00 -> 00000 01 -> 00111 10 -> 11001 11 -> 11110 Empfangen Nächstes gültiges CW Daten Korrigieren von Bit Fehlern: Es sei Code = {b 1,...,b k } und es werde

Mehr

Kapitel 5 Medienzugang (Media Access Control)

Kapitel 5 Medienzugang (Media Access Control) Kapitel 5 Medienzugang (Media Access Control) i. Zentral geregelte Media Access Control (MAC ) ii. Dezentraler, koordinierter Media Access Control (MAC) iii. Verteilter Media Access Control (MAC) a. Ohne

Mehr

Vorgehen: Election des Spanning Tree Root

Vorgehen: Election des Spanning Tree Root Vorgehen: Election des Spanning Tree Root C A B B3 B5 E B2 D B7 F K G I B6 B1 Root behält alle Ports bei. B4 H J SS 2012 Grundlagen der Rechnernetze Lokale Netze 19 Vorgehen: Bridges berechnen kürzeste

Mehr

Fallstudie Ethernet. Grundlagen der Rechnernetze Lokale Netze 39

Fallstudie Ethernet. Grundlagen der Rechnernetze Lokale Netze 39 Fallstudie Ethernet SS 2012 Grundlagen der Rechnernetze Lokale Netze 39 IEEE 802.3 MAC 1 persistent CSMA/CD mit Binary Exponential Backoff Auch in geswitchten Netzen in denen es keine Kollisionen gibt

Mehr

Rechnernetze II SS Betriebssysteme / verteilte Systeme Tel.: 0271/ , Büro: H-B 8404

Rechnernetze II SS Betriebssysteme / verteilte Systeme Tel.: 0271/ , Büro: H-B 8404 Rechnernetze II SS 2017 Betriebssysteme / verteilte Systeme rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404 Stand: 31. März 2017 Betriebssysteme / verteilte Systeme Rechnernetze

Mehr

Themen. MAC Teilschicht. Ethernet. Stefan Szalowski Rechnernetze MAC Teilschicht

Themen. MAC Teilschicht. Ethernet. Stefan Szalowski Rechnernetze MAC Teilschicht Themen MAC Teilschicht Ethernet Medium Access Control (MAC) Untere Teilschicht der Sicherungsschicht Verwendung für Broadcast-Netze Mehrere Benutzer (Stationen) verwenden einen Übertragungskanal z.b. LANs

Mehr

Mobilkommunikationsnetze. - Medienzugriff -

Mobilkommunikationsnetze. - Medienzugriff - - Medienzugriff - Andreas Mitschele-Thiel 1 Motivation Problem: gemeinsame Nutzung des Mediums durch mehrere Teilnehmer à wer greift wann zu? Unterschied Multiplexing Medienzugriff: Multiplexing Medienzugriff

Mehr

IEEE Physical Layer

IEEE Physical Layer IEEE 802.3 Physical Layer 100BASE T Alternativen (Fast Ethernet) 100BASE TX 100BASE TX 100BASE FX 100BASE T4 Medium 2 Paar STP 2 Paar Category 5 UTP 2 Optische Leitungen 4 Paar Category 3, 4 oder 5 UTP

Mehr

Themen. Wireless LAN. Repeater, Hub, Bridge, Switch, Router, Gateway

Themen. Wireless LAN. Repeater, Hub, Bridge, Switch, Router, Gateway Themen Repeater, Hub, Bridge, Switch, Router, Gateway WLAN Kommunikation Direkte Verbindung zweier Rechner Ad Hoc Networking WLAN Kommunikation Kommunikation über Zugriffspunkt Access Point WLAN Kommunikation

Mehr

Nonreturn to Zero (NRZ)

Nonreturn to Zero (NRZ) Nonreturn to Zero (NRZ) Hi 0 Hi 0 Grundlagen der Rechnernetze Physikalische Schicht 40 Multilevel Binary 0 1 0 0 1 1 0 0 0 1 1 0 0 Grundlagen der Rechnernetze Physikalische Schicht 41 Das Clocking Problem

Mehr

Sicherungsschicht (Ethernet)

Sicherungsschicht (Ethernet) Sicherungsschicht (Ethernet) 5.1 Einleitung und Dienste 5.2 Fehlererkennung und -korrektur 5.3 Adressierung auf der Sicherungsschicht 5.4 Ethernet 5.5 Switches auf der Sicherungsschicht Sicherungsschicht:

Mehr

Grundlagen der Rechnernetze. Lokale Netze

Grundlagen der Rechnernetze. Lokale Netze Grundlagen der Rechnernetze Lokale Netze Protokollarchitektur Repeater und Bridges Hubs und Switches Virtual LANs Fallstudie Ethernet Fallstudie Wireless LAN Übersicht Grundlagen der Rechnernetze Lokale

Mehr

Kap. 4. Sicherungs-Schicht ( Data Link Schicht)

Kap. 4. Sicherungs-Schicht ( Data Link Schicht) Kap. 4 Sicherungs-Schicht ( Data Link Schicht) Sicherungs-Schicht (Data-Link-Schicht) Rolle: Beförderung eines Datagramms von einem Knoten zum anderen via einer einzigen Kommunikationsleitung. 4-2 Dienste

Mehr

Selective Reject ARQ

Selective Reject ARQ Selective Reject ARQ Reübertragung von Frames mit negative ACK Reübertragung von Frames mit Timeout Bildquelle: William Stallings, Data and Computer Communications, 2004 Grundlagen der Rechnernetze Übertragungssicherung

Mehr

Protokollgraph. Host 1. Host 2. Protokoll 2. Protokoll 1. Protokoll 3. Protokoll 4. Grundlagen der Rechnernetze Einführung 46

Protokollgraph. Host 1. Host 2. Protokoll 2. Protokoll 1. Protokoll 3. Protokoll 4. Grundlagen der Rechnernetze Einführung 46 Protokollgraph Host 1 Host 2 Protokoll 1 Protokoll 2 Protokoll 1 Protokoll 2 Protokoll 3 Protokoll 3 Protokoll 4 Protokoll 4 Grundlagen der Rechnernetze Einführung 46 Nachrichtenkapselung Host 1 Anwendung

Mehr

Election der Root Bridge

Election der Root Bridge Election der Root Bridge C E G SS 2012 B2 I A B6 B3 D B1 B5 Empfängt eine Nicht Root Bridge eine Konfigurationsnachricht mit B kleinerer Root ID, als die zuletzt B7 empfangene, dann leite die Nachricht

Mehr

Internet Modell. Nothing stated. Bildquelle: Andrew S. Tanenbaum, Computer Networks, Fourth Edition, 2003 Grundlagen der Rechnernetze Einführung 50

Internet Modell. Nothing stated. Bildquelle: Andrew S. Tanenbaum, Computer Networks, Fourth Edition, 2003 Grundlagen der Rechnernetze Einführung 50 Internet Modell Nothing stated by TCP/IP model Bildquelle: Andrew S. Tanenbaum, Computer Networks, Fourth Edition, 2003 Grundlagen der Rechnernetze Einführung 50 Internet Protokolle Bildquelle: Andrew

Mehr

Utilization bei Go Back N ARQ

Utilization bei Go Back N ARQ Utilization bei Go Back N ARQ Wir hatten für Sliding Window ohne Fehler die Utilization U schon hergeleitet: (mit W = Fenstergröße, a = Propagation Delay / Transmission Delay) Es sei m die Anzahl zu übertragender

Mehr

Vorlesung "Verteilte Systeme" Sommersemester Verteilte Systeme. Empfänger Kommunikationssystem. Netzwerk

Vorlesung Verteilte Systeme Sommersemester Verteilte Systeme. Empfänger Kommunikationssystem. Netzwerk Verteilte Systeme 1. Netzwerke Grundstruktur Sender Empfänger Kommunikationssystem Empfänger Systemsoftware Systemsoftware Hardware Hardware Netzwerk Verteilte Systeme, Sommersemester 1999 Folie 1.2 (c)

Mehr

Vorlesung "Verteilte Systeme" Wintersemester 2000/2001. Verteilte Systeme. Empfänger Kommunikationssystem. Netzwerk

Vorlesung Verteilte Systeme Wintersemester 2000/2001. Verteilte Systeme. Empfänger Kommunikationssystem. Netzwerk Verteilte Systeme 1. Netzwerke Grundstruktur Sender Empfänger Kommunikationssystem Empfänger Systemsoftware Systemsoftware Hardware Hardware Netzwerk Verteilte Systeme, Wintersemester 2000/2001 Folie 1.2

Mehr

6. Foliensatz Computernetze

6. Foliensatz Computernetze Prof. Dr. Christian Baun 6. Foliensatz Computernetze Frankfurt University of Applied Sciences WS1617 1/37 6. Foliensatz Computernetze Prof. Dr. Christian Baun Frankfurt University of Applied Sciences (1971

Mehr

Protokolle und Schichten. Grundlagen der Rechnernetze Einführung 41

Protokolle und Schichten. Grundlagen der Rechnernetze Einführung 41 Protokolle und Schichten Grundlagen der Rechnernetze Einführung 41 Protokoll und Interface Host 1 Host 2 High Level Objekt High Level Objekt Service Interface Service Interface Protokoll Peer to peer Interface

Mehr

Grundlagen der Rechnernetze. Lokale Netze

Grundlagen der Rechnernetze. Lokale Netze Grundlagen der Rechnernetze Lokale Netze Repeater und Bridges Hubs und Switches Virtual LANs Fallstudie Ethernet Fallstudie Wireless LAN Übersicht Grundlagen der Rechnernetze Lokale Netze 2 Protokollarchitektur

Mehr

Grundlagen der Rechnernetze. Lokale Netze

Grundlagen der Rechnernetze. Lokale Netze Grundlagen der Rechnernetze Lokale Netze Protokollarchitektur Repeater und Bridges Hubs und Switches Virtual LANs Fallstudie Ethernet Fallstudie Wireless LAN Übersicht Grundlagen der Rechnernetze Lokale

Mehr

Der sogenannte Genie (ein zentraler Knoten) weckt Knoten rechtzeitig immer dann, wenn der Kanal nicht frei ist, also Nachrichten eintreffen.

Der sogenannte Genie (ein zentraler Knoten) weckt Knoten rechtzeitig immer dann, wenn der Kanal nicht frei ist, also Nachrichten eintreffen. Klassische Medium Access Control (MAC) für Sensorknoten? Energieeffizienz des (best case) Im Gegensatz zum regulären Alloha sollte man versuchen, das sog. Idle-Listening zu vermeiden, in dem der Knoten

Mehr

Übersicht. Drahtlose Kommunikation - Medienzugriffskontrolle WS 12/13 9

Übersicht. Drahtlose Kommunikation - Medienzugriffskontrolle WS 12/13 9 Übersicht Motivation für spezielle MAC-Verfahren Mehrfachzugriff durch Raummultiplex (SDMA) Mehrfachzugriff durch Frequenzmultiplex (FDMA) Mehrfachzugriff durch Zeitmultiplex (TDMA) Code Division Multiple

Mehr

Computeranwendung in der Chemie Informatik für Chemiker(innen) 4. Netzwerke

Computeranwendung in der Chemie Informatik für Chemiker(innen) 4. Netzwerke Computeranwendung in der Chemie Informatik für Chemiker(innen) 4. Netzwerke Jens Döbler 2003 "Computer in der Chemie", WS 2003-04, Humboldt-Universität VL4 Folie 1 Grundlagen Netzwerke dienen dem Datenaustausch

Mehr

Encoding und Modulation. Grundlagen der Rechnernetze Physikalische Schicht 47

Encoding und Modulation. Grundlagen der Rechnernetze Physikalische Schicht 47 Encoding und Modulation Digitale it Dt Daten auf Analogen Signalen Grundlagen der Rechnernetze Physikalische Schicht 47 Amplitude Shift Keying (ASK) Formal: Signal s(t) für Carrier Frequenz f c : Bildquelle:

Mehr

Kanalkapazität. Gestörter Kanal. Grundlagen der Rechnernetze Physikalische Schicht 25

Kanalkapazität. Gestörter Kanal. Grundlagen der Rechnernetze Physikalische Schicht 25 Kanalkapazität Gestörter Kanal Grundlagen der Rechnernetze Physikalische Schicht 25 Signalstärken und Dämpfung Spannung U, Strom I, Leistung P und Energie E: Dämpfung Signalstärke Distanz Grundlagen der

Mehr

Wireless Local Area Network

Wireless Local Area Network Wireless Local Area Network (WLAN) Zengyu Lu 1. Einleitung 2. Der IEEE 802.11 Standard 3. Die Zugriffskontrollebene(MAC) 4. Der Verbindungsprozess eines WLANs 5. Quellen - 1 - 1. Einleitung Mobilität ist

Mehr

Drahtlose Netzwerke. Grundlagen und Einsatzfelder. Sicherungsschicht (MAC-Layer) Allgemein

Drahtlose Netzwerke. Grundlagen und Einsatzfelder. Sicherungsschicht (MAC-Layer) Allgemein Drahtlose Netzwerke Grundlagen und Einsatzfelder Sicherungsschicht (MAC-Layer) Allgemein IEEE 802.x Schichten (Wiederholung) Aufgaben LLC Fehlererkennung Flusskontrolle Adressierung Authentisierung Verschlüsselung

Mehr

Übung 2 - Media Access Control (MAC)

Übung 2 - Media Access Control (MAC) Übung 2 - Musterlösung 1 Übung 2 - Media Access Control (MAC) 0 Vorbereitung Arbeiten Sie im Ethernet-Buch von Jörg Rech das Unterkapitel 2.9 Media Access Control (MAC) durch (S. 59-71). 1 Kollisionsdomäne

Mehr

Internet-Praktikum II Lab 4: Wireless LAN - WLAN

Internet-Praktikum II Lab 4: Wireless LAN - WLAN Communication Networks Internet-Praktikum II Lab 4: Wireless LAN - WLAN Mark Schmidt, Andreas Stockmayer Wintersemester 2015/16 http://kn.inf.uni-tuebingen.de Motivation Vermeidung von Kabelsalat Schneller

Mehr

Übung 4. Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen Mo-T1 / Di-T11 SS 2016) Dennis Fischer

Übung 4. Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen Mo-T1 / Di-T11 SS 2016) Dennis Fischer Übung 4 Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen Mo-T1 / Di-T11 SS 2016) Dennis Fischer Technische Universität München Fakultät für Informatik 09.05.2016 / 10.05.2016 1/12

Mehr

Quadrature Amplitude Modulation (QAM)

Quadrature Amplitude Modulation (QAM) Quadrature Amplitude Modulation (QAM) Bildquelle: William Stallings, Data and Computer Communications, Seventh Edition, 2004 Grundlagen der Rechnernetze Physikalische Schicht 55 Konstellationsdiagramme

Mehr

Übungsblatt Warum brauchen Bridges und Layer-2-Switches keine physischen oder logischen

Übungsblatt Warum brauchen Bridges und Layer-2-Switches keine physischen oder logischen Übungsblatt 3 Aufgabe 1 (Bridges und Switche) 1. Was ist die Aufgabe von Bridges in Computernetzen? 2. Wie viele Schnittstellen ( Ports ) hat eine Bridge? 3. Was ist der Hauptunterschied zwischen Bridges

Mehr

Teilnehmer kooperieren Kein Schutz der Teilnehmer voreinander. Einige Protokolle in beiden Kategorien

Teilnehmer kooperieren Kein Schutz der Teilnehmer voreinander. Einige Protokolle in beiden Kategorien LAN-Protokolle LAN LAN-Protokollen Lokale Netze beschränkte Entfernung Teilnehmer kooperieren Kein Schutz der Teilnehmer voreinander Einige Protokolle in beiden Kategorien IP kooperatives LAN-Protokoll

Mehr

Netzwerktopologien und -begriffe. Local Area Network (LAN)

Netzwerktopologien und -begriffe. Local Area Network (LAN) Local Area Network (LAN) Definition eines LAN ein Netzwerk zur bitseriellen Datenübertragung zwischen unabhängigen, untereinander verbundenen Komponenten befindet sich rechtlich unter der Kontrolle des

Mehr

Systeme II. Christian Schindelhauer Sommersemester Vorlesung

Systeme II. Christian Schindelhauer Sommersemester Vorlesung Systeme II Christian Schindelhauer Sommersemester 2006 10. Vorlesung 31.05.2006 schindel@informatik.uni-freiburg.de 1 Rückwärtsfehlerkorrektur Bei Fehlererkennung muss der Frame nochmal geschickt werden

Mehr

Wireless Local Area Network (Internet Mobil) Zengyu Lu

Wireless Local Area Network (Internet Mobil) Zengyu Lu Wireless Local Area Network (Internet Mobil) Zengyu Lu Überblick Einleitung Der IEEE 802.11 Standard Die Zugriffskontrollebene (MAC) Der Verbindungsprozess eines WLANs Literaturen & Quellen 19.07.2004

Mehr

Vorlesung Rechnernetze I Teil 12

Vorlesung Rechnernetze I Teil 12 Vorlesung Rechnernetze I Teil 12 Wintersemester 2008/2009 Christian Grimm Fachgebiet Distributed Virtual Reality (DVR) Lehrgebiet Rechnernetze Termine Klausur Rechnernetze I schriftlich (90 Minuten) am

Mehr

Algorithmen für Ad-hoc- und Sensornetze

Algorithmen für Ad-hoc- und Sensornetze Algorithmen für Ad-hoc- und Sensornetze Übung 6 Kommunikation und Färbungen im SINR Modell (basierend auf VL11) Fabian Fuchs 17. Jan. 2015 (Version 1) INSTITUT FÜR THEORETISCHE INFORMATIK - LEHRSTUHL FÜR

Mehr

Konsequenz für Forwarding Tabellen

Konsequenz für Forwarding Tabellen Konsequenz für Forwarding Tabellen Subnetznummer : 128. 96. 34. 0 Subnetzmaske : 255.255.255.128 128. 96. 34. 15 H1 128. 96. 34. 1 128. 96. 34.130 R1 Interface 1 Interface 2 128. 96. 34.128 255.255.255.128

Mehr

Modul 3: WLAN. 3.1Einführung 3.2 Schicht 2 Adressierung und Aufbau der Rahmen 3.3 Medien-Zugriffsprotokoll bei WLAN

Modul 3: WLAN. 3.1Einführung 3.2 Schicht 2 Adressierung und Aufbau der Rahmen 3.3 Medien-Zugriffsprotokoll bei WLAN Modul 3: WLAN 3.1Einführung 3.2 Schicht 2 Adressierung und Aufbau der Rahmen 3.3 Medien-Zugriffsprotokoll bei WLAN Netze, BCS, 2. Semester Folie 1 3.1 Einführung Netze, BCS, 2. Semester Folie 2 Wichtige

Mehr

Flusskontrolle. Grundlagen der Rechnernetze Übertragungssicherung 68

Flusskontrolle. Grundlagen der Rechnernetze Übertragungssicherung 68 Flusskontrolle Grundlagen der Rechnernetze Übertragungssicherung 68 Data Link Layer Frame synchronization how to make frames Flow control adjusting the rate of data Error control correction of errors Addressing

Mehr

Digitale Kommunikation und Internetdienste 1

Digitale Kommunikation und Internetdienste 1 Digitale Kommunikation und Internetdienste 1 Wintersemester 2004/2005 Teil 5 Belegnummer Vorlesung: 39 30 02 Übungen: 39 30 05 Jan E. Hennig AG (RVS) Technische Fakultät Universität Bielefeld jhennig@rvs.uni-bielefeld.de

Mehr

Wireless LAN Meßverfahren

Wireless LAN Meßverfahren Wireless LAN 802.11 Meßverfahren Ad-hoc-Netzwerke für mobile Anlagen und Systeme 199. PTB-Seminar und Diskussionssitzung FA 9.1 Meßverfahren der Informationstechnik Berlin, 3. - 4.11.2004 Martin Weiß Rohde

Mehr

Drahtlose Kommunikation. Medienzugriffskontrolle

Drahtlose Kommunikation. Medienzugriffskontrolle Drahtlose Kommunikation Medienzugriffskontrolle Übersicht Motivation für spezielle MAC-Verfahren Mehrfachzugriff durch Raummultiplex (SDMA) Mehrfachzugriff durch Frequenzmultiplex (FDMA) Mehrfachzugriff

Mehr

Drahtlose Kommunikation. Medienzugriffskontrolle

Drahtlose Kommunikation. Medienzugriffskontrolle Drahtlose Kommunikation Medienzugriffskontrolle Übersicht Motivation für spezielle MAC-Verfahren Mehrfachzugriff durch Raummultiplex (SDMA) Mehrfachzugriff durch Frequenzmultiplex (FDMA) Mehrfachzugriff

Mehr

Übung 2: Multiplexverfahren (2)

Übung 2: Multiplexverfahren (2) ZHAW, NTM2, FS2011, Rumc, 1 Übung 2: Multiplexverfahren (2) Aufgabe 1: CDMA im Mobilfunk. In einer isolierten CDMA-Zelle verwendet jeder Benutzer N=100 mal mehr Bandbreite, als zur Übertragung mit der

Mehr

2. Rechnernetze. 2.1 Netze und Dienste auf Netzen. (Physische) Netze. Dienste auf Netzen. Fernsprechnetz. Integriertes Datennetz (IDN)

2. Rechnernetze. 2.1 Netze und Dienste auf Netzen. (Physische) Netze. Dienste auf Netzen. Fernsprechnetz. Integriertes Datennetz (IDN) 2. Rechnernetze 2.1 Netze und Dienste auf Netzen (Physische) Netze Fernsprechnetz Integriertes Datennetz (IDN) Kabelfernsehnetz Standleitungen... Dienste auf Netzen Telefon Telefax Datex-P, Datex-L Bildschirmtext

Mehr

Modul 3: WLAN. 3.1Einführung 3.2 CSMA/CA Medien-Zugriffsprotokoll 3.3 Schicht 2 Adressierung und Aufbau des Rahmens der Schicht 2 3.

Modul 3: WLAN. 3.1Einführung 3.2 CSMA/CA Medien-Zugriffsprotokoll 3.3 Schicht 2 Adressierung und Aufbau des Rahmens der Schicht 2 3. Modul 3: WLAN 3.1Einführung 3.2 CSMA/CA Medien-Zugriffsprotokoll 3.3 Schicht 2 Adressierung und Aufbau des Rahmens der Schicht 2 3.4 Ausblick Netze, BCS, 2. Semester Folie 1 3.1 Einführung Netze, BCS,

Mehr

Summation der I und Q Signale

Summation der I und Q Signale Offset QPSK (OQPSK) Bildquelle: William Stallings, Data and Computer Communications, Seventh Edition, 2004 Grundlagen der Rechnernetze Physikalische Schicht 52 Summation der I und Q Signale Carrier + Shifted

Mehr

Netzwerktechnologien 3 VO

Netzwerktechnologien 3 VO Netzwerktechnologien 3 VO Univ.-Prof. Dr. Helmut Hlavacs helmut.hlavacs@univie.ac.at Dr. Ivan Gojmerac gojmerac@ftw.at Bachelorstudium Medieninformatik SS 2012 Kapitel 5 Sicherungsschicht und lokale Netzwerke

Mehr

QoS-enabled MAC Schemes for Wireless Networks

QoS-enabled MAC Schemes for Wireless Networks QoS-enabled MAC Schemes for Seminar Mobile Systems WS 06/07 Mattias Aggeler, Martin Hochstrasser, Seung Hee Ma Inhalt QoS Anforderungen aus Sicht des Medienzugriffs 802.11 ATM GPRS Überblick / Fazit 1

Mehr

Im Vorlesungsskript (5) auf Seite 7 haben wir folgendes Bild:

Im Vorlesungsskript (5) auf Seite 7 haben wir folgendes Bild: Übungsblatt 4 Aufgabe 1 Sie möchten ein IEEE 802.11-Netzwerk (WLAN) mit einem IEEE 802.3-Netzwerk (Ethernet) verbinden. 1a) Auf welcher Schicht würden Sie ein Zwischensystem zur Übersetzung ansiedeln?

Mehr

dbw und dbm dbw und dbm zur logarithmischen Darstellung einer Leistungsgröße P [W]:

dbw und dbm dbw und dbm zur logarithmischen Darstellung einer Leistungsgröße P [W]: dbw und dbm dbw und dbm zur logarithmischen Darstellung einer Leistungsgröße P [W]: Beispiel: Leistungsgröße P out [dbw] bei Leistungsgröße P in [dbw] und Dämpfung L [db] Leistungsgröße P out [W] Grundlagen

Mehr

5.) Nach erfolgreicher Übertragung entfernt der Sender seinen Daten-Rahmen vom Ring. Wodurch kann ein verwaister Rahmen entstehen?

5.) Nach erfolgreicher Übertragung entfernt der Sender seinen Daten-Rahmen vom Ring. Wodurch kann ein verwaister Rahmen entstehen? Übung 5 1.) In einem CSMA/CD-LAN mit einer Übertragungsrate von 10 Mbps soll der erste Bit- Schlitz nach jeder erfolgreichen Rahmenübertragung für den Empfänger reserviert sein, der dann den Kanal besetzt

Mehr

Systeme II. Christian Schindelhauer Sommersemester Vorlesungswoche

Systeme II. Christian Schindelhauer Sommersemester Vorlesungswoche Systeme II Christian Schindelhauer Sommersemester 2007 6. Vorlesungswoche 21.05.-25.05.2007 schindel@informatik.uni-freiburg.de 1 Systeme II Kapitel 3 Sicherungsschicht 2 Fehlerkontrolle Zumeist gefordert

Mehr

4 Lokale Netze (LANs)

4 Lokale Netze (LANs) 4 Lokale Netze (LANs) 4.1 Topologien für lokale Netze 4.2 Medienzugangskontrolle 4.3 ALOHA 4.4 CSMA/CD (Ethernet) 4.5 Sternkoppler ( hubs ) und LAN-Switching 4.6 Token Ring 4.7 Wireless LAN (IEEE 802.11)

Mehr

4 Lokale Netze (LANs)

4 Lokale Netze (LANs) 4 Lokale Netze (LANs) 4.1 Topologien für lokale Netze 4.2 Medienzugangskontrolle 4.3 ALOHA 4.4 CSMA/CD (Ethernet) 4.5 Sternkoppler ( hubs ) und LAN-Switching 4.6 Token Ring 4.7 Wireless LAN (IEEE 802.11)

Mehr

4 Lokale Netze (LANs)

4 Lokale Netze (LANs) 4 Lokale Netze (LANs) 4.1 Topologien für lokale Netze 4.2 Medienzugangskontrolle 4.3 ALOHA 4.4 CSMA/CD (Ethernet) 4.5 Sternkoppler ( hubs ) und LAN-Switching 4.6 Token Ring 4.7 Wireless LAN (IEEE 802.11)

Mehr

Betriebssysteme und Netze

Betriebssysteme und Netze TECHNISCHE UNIVERSITÄT BRAUNSCHWEIG INSTITUT FÜR BETRIEBSSYSTEME UND RECHNERVERBUND Prof. Dr. S. Fischer Klausur: Betriebssysteme und Netze Schwerpunkt Netze Hinweise zur Bearbeitung: 26. Juli 2004 Als

Mehr

A MAC protocol for full exploitation of Directional Antennas in Ad-hoc Wireless Networks

A MAC protocol for full exploitation of Directional Antennas in Ad-hoc Wireless Networks A MAC protocol for full exploitation of Directional Antennas in Ad-hoc Wireless Networks Ad hoc Network Seminar von Dominik Erb bassierend auf einer Arbeit von Thanasis Korakis, Gentian Jakllari und Leandros

Mehr

Zugriffsverfahren in Netzwerken

Zugriffsverfahren in Netzwerken Zugriffsverfahren in Netzwerken Begriffsbestimmung Kollisionen in Netzwerken Das Verfahren CSMA/CD Das Verfahren Token Passing Christian-Weise-Gymnasium Zittau - FB Informatik - Mirko Hans 1 Begriffsbestimmung

Mehr

Adressauflösung. IP Adresse Physikalische Adresse 128.96.34.1 57:FF:AA:36:AB:11 128.96.34.16 85:48:A4:28:AA:18

Adressauflösung. IP Adresse Physikalische Adresse 128.96.34.1 57:FF:AA:36:AB:11 128.96.34.16 85:48:A4:28:AA:18 Adressauflösung IP Adresse Physikalische Adresse 128.96.34.1 57:FF:AA:36:AB:11 128.96.34.16 85:48:A4:28:AA:18 IP Adresse Physikalische Adresse 128.96.34.15??? 128.96.34.16 85:48:A4:28:AA:18 128.96.34.15

Mehr

Kanalkapazität. Grundlagen der Rechnernetze Physikalische Schicht 25

Kanalkapazität. Grundlagen der Rechnernetze Physikalische Schicht 25 Kanalkapazität Gestörter t Kanal Grundlagen der Rechnernetze Physikalische Schicht 25 Signalstärken und Dämpfung Spannung U, Strom I, Leistung P und Energie E: Dämpfung Signalstärk ke Distanz Grundlagen

Mehr

Internet Protocols. Advanced computer networking. Chapter 3. Thomas Fuhrmann

Internet Protocols. Advanced computer networking. Chapter 3. Thomas Fuhrmann Chapter 3 Advanced computer networking Internet Protocols Thomas Fuhrmann Network Architectures Computer Science Department Technical University Munich Recap: The Data Link Layer 7. 4. 3. 2. 1. Application

Mehr

(LANs) NET 4 Teil 1.4 - Local Area Networks 1

(LANs) NET 4 Teil 1.4 - Local Area Networks 1 Teil 1.4 Local Area Networks (LANs) NET 4 Teil 1.4 - Local Area Networks 1 Klassifikation Netzwerke Primär nach Ausdehnung: Local Area Network (LAN) Metropolitan Area Netzwork (MAN) Wide Area Network (WAN)

Mehr

MAC-Layer Protokolle für Sensornetze

MAC-Layer Protokolle für Sensornetze MAC-Layer Protokolle für Sensornetze Seminararbeit im Rahmen des Fachseminars Verteilte Systeme im Sommersemester 2003 Thomas Moscibroda Professor: Betreuer: Institut: Prof. Dr. Friedemann Mattern Matthias

Mehr

Neuaufsetzen bei Übertragungsfehlern. Lehrstuhl für Informatik 4. Hier nur noch MAC-Layer: Kapitel 3: Netze. Lehrstuhl für Informatik 4

Neuaufsetzen bei Übertragungsfehlern. Lehrstuhl für Informatik 4. Hier nur noch MAC-Layer: Kapitel 3: Netze. Lehrstuhl für Informatik 4 Sicherungsebene Netztypen Lokale Netze (LAN): 10m - wenige km, einfache Verbindungsstruktur Ethernet / Fast Ethernet / Gigabit Ethernet Token Ring LAN Wireless LAN (WLAN, bis wenige 100m) FDDI (bis 100km,

Mehr

Motivation Algorithmen für Ad-hoc- und Sensornetze. Ad-hoc-Lösung: CSMA/CA. VL 10 Eine kurze Geschichte vom Färben

Motivation Algorithmen für Ad-hoc- und Sensornetze. Ad-hoc-Lösung: CSMA/CA. VL 10 Eine kurze Geschichte vom Färben Motivation Algorithmen für Ad-hoc- und Sensornetze VL 0 Eine kurze Geschichte vom Färben Dr. rer. nat. Bastian Katz. Juli 009 (Version vom. Juli 009) Kommunikation im drahtlosen Kanal ist nicht beliebig

Mehr

Computernetze 1. Inhalt

Computernetze 1. Inhalt Computernetze 1 Inhalt 1 Einführung: Problemanalyse Computernetze... 2 2 Betrachtungsweise von Computernetzen... 3 2.1 Topologien... 3 2.2 Vermittlungsprinzipien... 5 Circuit Switching... 5 Paketvermittlung...

Mehr

Grundlagen der Rechnernetze. Physikalische Schicht

Grundlagen der Rechnernetze. Physikalische Schicht Grundlagen der Rechnernetze Physikalische Schicht Übersicht Frequenz, Spektrum und Bandbreite Kanalkapazität Encoding und Modulation Beispiele für Übertragungsmedien Grundlagen der Rechnernetze Physikalische

Mehr

Grundlagen der Rechnernetze. Physikalische Schicht

Grundlagen der Rechnernetze. Physikalische Schicht Grundlagen der Rechnernetze Physikalische Schicht Übersicht Frequenz, Spektrum und Bandbreite Kanalkapazität Encoding und Modulation Beispiele für Übertragungsmedien Grundlagen der Rechnernetze Physikalische

Mehr